Skip to main content
Top
Published in: Knee Surgery, Sports Traumatology, Arthroscopy 11/2009

01-11-2009 | Experimental Study

Perfusion and cyclic compression of mesenchymal cell-loaded and clinically applicable osteochondral grafts

Authors: Carl Haasper, Michael Colditz, Stefan Budde, Eric Hesse, Thomas Tschernig, Michael Frink, Christian Krettek, Christof Hurschler, Michael Jagodzinski

Published in: Knee Surgery, Sports Traumatology, Arthroscopy | Issue 11/2009

Login to get access

Abstract

Osteochondral lesions are often seen in orthopedics, but the available treatment strategies are limited in success. Regenerative medicine provides novel concepts for curing them. The purpose of this study was to test the effects of perfusion and cyclic compression on cell differentiation and mechanical properties using a custom-made biomechanoreactor in a recently established system of human bone marrow stromal cells (hBMSC) cultured in a 3-D collagen I-bone hybrid matrix out of commercially available and separately in human-certified products. Seeded hBMSC were viable for 88 ± 8.9% during the entire experimental period in the constructs. GAG and DNA levels did not change. Perfusion induced collagen II and cyclic compression increased collagen X expression. Matrix stiffness was significantly increased after 28 days of cyclic compression. Cyclic compression of cell-loaded hybrid constructs enhanced chondrocyte differentiation and matrix stiffness. This system is a promising tool with a view to a later clinical application.
Literature
1.
go back to reference Angele P, Kujat R, Nerlich M, Yoo J, Goldberg V, Johnstone B (1999) Engineering of osteochondral tissue with bone marrow mesenchymal progenitor cells in a derivatized hyaluronan-gelatin composite sponge. Tissue Eng 5:545–554CrossRefPubMed Angele P, Kujat R, Nerlich M, Yoo J, Goldberg V, Johnstone B (1999) Engineering of osteochondral tissue with bone marrow mesenchymal progenitor cells in a derivatized hyaluronan-gelatin composite sponge. Tissue Eng 5:545–554CrossRefPubMed
2.
go back to reference Angele P, Yoo JU, Smith C, Mansour J, Jepsen KJ, Nerlich M, Johnstone B (2003) Cyclic hydrostatic pressure enhances the chondrogenic phenotype of human mesenchymal progenitor cells differentiated in vitro. J Orthop Res 21:451–457CrossRefPubMed Angele P, Yoo JU, Smith C, Mansour J, Jepsen KJ, Nerlich M, Johnstone B (2003) Cyclic hydrostatic pressure enhances the chondrogenic phenotype of human mesenchymal progenitor cells differentiated in vitro. J Orthop Res 21:451–457CrossRefPubMed
3.
go back to reference Aubin JE, Triffitt JT (2002) Mesenchymal stem cells and osteoblast differentiation. In: Bilezikian JP, Raisz LG, Rodan GA (eds) Principles of bone biology, 2nd edn. Academic Press, San Diego, pp 59–81 Aubin JE, Triffitt JT (2002) Mesenchymal stem cells and osteoblast differentiation. In: Bilezikian JP, Raisz LG, Rodan GA (eds) Principles of bone biology, 2nd edn. Academic Press, San Diego, pp 59–81
4.
go back to reference Bancroft GN, Sikavitsas VI, van den DJ, Sheffield TL, Ambrose CG, Jansen JA, Mikos AG (2002) Fluid flow increases mineralized matrix deposition in 3D perfusion culture of marrow stromal osteoblasts in a dose-dependent manner. Proc Natl Acad Sci USA 99:12600–12605 Bancroft GN, Sikavitsas VI, van den DJ, Sheffield TL, Ambrose CG, Jansen JA, Mikos AG (2002) Fluid flow increases mineralized matrix deposition in 3D perfusion culture of marrow stromal osteoblasts in a dose-dependent manner. Proc Natl Acad Sci USA 99:12600–12605
5.
go back to reference Brown TD, Johnston RC, Saltzman CL, Marsh JL, Buckwalter JA (2006) Posttraumatic osteoarthritis: a first estimate of incidence, prevalence, and burden of disease. J Orthop Trauma 20:739–744CrossRefPubMed Brown TD, Johnston RC, Saltzman CL, Marsh JL, Buckwalter JA (2006) Posttraumatic osteoarthritis: a first estimate of incidence, prevalence, and burden of disease. J Orthop Trauma 20:739–744CrossRefPubMed
6.
go back to reference Cancedda R, Bianchi G, Derubeis A, Quarto R (2003) Cell therapy for bone disease: a review of current status. Stem Cells 21:610–619CrossRefPubMed Cancedda R, Bianchi G, Derubeis A, Quarto R (2003) Cell therapy for bone disease: a review of current status. Stem Cells 21:610–619CrossRefPubMed
8.
go back to reference Caplan AI, Bruder SP (2001) Mesenchymal stem cells: building blocks for molecular medicine in the 21st century. Trends Mol Med 7:259–264CrossRefPubMed Caplan AI, Bruder SP (2001) Mesenchymal stem cells: building blocks for molecular medicine in the 21st century. Trends Mol Med 7:259–264CrossRefPubMed
9.
go back to reference Catelas I, Sese N, Wu BM, Dunn JCY, Helgerson S, Tawil B (2006) Human mesenchymal stem cell proliferation and osteogenic differentiation in fibrin gels in vitro. Tissue Eng 12:2385–2396CrossRefPubMed Catelas I, Sese N, Wu BM, Dunn JCY, Helgerson S, Tawil B (2006) Human mesenchymal stem cell proliferation and osteogenic differentiation in fibrin gels in vitro. Tissue Eng 12:2385–2396CrossRefPubMed
10.
go back to reference Evans CH, Ghivizzani SC, Robbins PD (2006) Gene therapy for arthritis: what next? Arthritis Rheum 54:1714–1729CrossRefPubMed Evans CH, Ghivizzani SC, Robbins PD (2006) Gene therapy for arthritis: what next? Arthritis Rheum 54:1714–1729CrossRefPubMed
11.
go back to reference Haasper C, Zeichen J, Meister R, Krettek C, Jagodzinski M (2008) Tissue engineering of osteochondral constructs in vitro using bioreactors. Injury 39:S66–S76CrossRefPubMed Haasper C, Zeichen J, Meister R, Krettek C, Jagodzinski M (2008) Tissue engineering of osteochondral constructs in vitro using bioreactors. Injury 39:S66–S76CrossRefPubMed
12.
go back to reference Haasper C, Colditz M, Kirsch L, Tschernig T, Viering J, Graubner G, Runtemund A, Zeichen J, Meller R, Glasmacher B, Windhagen H, Krettek C, Hurschler C, Jagodzinski M (2008) A system for engineering an osteochondral construct in the shape of an articular surface: preliminary results. Ann Anat 190:351–359CrossRefPubMed Haasper C, Colditz M, Kirsch L, Tschernig T, Viering J, Graubner G, Runtemund A, Zeichen J, Meller R, Glasmacher B, Windhagen H, Krettek C, Hurschler C, Jagodzinski M (2008) A system for engineering an osteochondral construct in the shape of an articular surface: preliminary results. Ann Anat 190:351–359CrossRefPubMed
13.
go back to reference Haasper C, Jagodzinski M, Drescher M, Meller R, Wehmeier M, Krettek C, Hesse E (2008) Cyclic strain induces FosB and initiates osteogenic differentiation of mesenchymal cells. Exp Toxicol Pathol 59:355–363PubMed Haasper C, Jagodzinski M, Drescher M, Meller R, Wehmeier M, Krettek C, Hesse E (2008) Cyclic strain induces FosB and initiates osteogenic differentiation of mesenchymal cells. Exp Toxicol Pathol 59:355–363PubMed
14.
go back to reference Hankemeier S, Keus M, Zeichen J, Jagodzinski M, Barkhausen T, Bosch U, Krettek C, van Griensven M (2005) Modulation of proliferation and differentiation of human bone marrow stromal cells by fibroblast growth factor 2: potential implications for tissue engineering of tendons and ligaments. Tissue Eng 11:41–49CrossRefPubMed Hankemeier S, Keus M, Zeichen J, Jagodzinski M, Barkhausen T, Bosch U, Krettek C, van Griensven M (2005) Modulation of proliferation and differentiation of human bone marrow stromal cells by fibroblast growth factor 2: potential implications for tissue engineering of tendons and ligaments. Tissue Eng 11:41–49CrossRefPubMed
15.
go back to reference Ignatius A, Blessing H, Liedert A, Schmidt C, Neidlinger-Wilke C, Kaspar D, Friemert B, Claes L (2005) Tissue engineering of bone: effects of mechanical strain on osteoblastic cells in type I collagen matrices. Biomaterials 26:311–318CrossRefPubMed Ignatius A, Blessing H, Liedert A, Schmidt C, Neidlinger-Wilke C, Kaspar D, Friemert B, Claes L (2005) Tissue engineering of bone: effects of mechanical strain on osteoblastic cells in type I collagen matrices. Biomaterials 26:311–318CrossRefPubMed
16.
go back to reference Jagodzinski M, Drescher M, Zeichen J, Hankemeier S, Krettek C, Bosch U, Griensven M (2004) Effects of cyclic longitudinal mechanical strain and dexamethasone on osteogenic differentiation of human bone marrow stromal cells. Eur Cell Mater 7:35–41PubMed Jagodzinski M, Drescher M, Zeichen J, Hankemeier S, Krettek C, Bosch U, Griensven M (2004) Effects of cyclic longitudinal mechanical strain and dexamethasone on osteogenic differentiation of human bone marrow stromal cells. Eur Cell Mater 7:35–41PubMed
17.
go back to reference Jiang J, Nicoll SB, Lu HH (2005) Co-culture of osteoblasts and chondrocytes modulates cellular differentiation in vitro. Biochem Biophys Res Commun 338:762–770CrossRefPubMed Jiang J, Nicoll SB, Lu HH (2005) Co-culture of osteoblasts and chondrocytes modulates cellular differentiation in vitro. Biochem Biophys Res Commun 338:762–770CrossRefPubMed
18.
go back to reference Kaspar D, Seidl W, Neidlinger-Wilke C, Ignatius A, Claes L (2000) Dynamic cell stretching increases human osteoblast proliferation and CICP synthesis but decreases osteocalcin synthesis and alkaline phosphatase activity. J Biomech 33:45–51CrossRefPubMed Kaspar D, Seidl W, Neidlinger-Wilke C, Ignatius A, Claes L (2000) Dynamic cell stretching increases human osteoblast proliferation and CICP synthesis but decreases osteocalcin synthesis and alkaline phosphatase activity. J Biomech 33:45–51CrossRefPubMed
19.
go back to reference Krampera M, Pizzolo G, Aprili G, Franchini M (2006) Mesenchymal stem cells for bone, cartilage, tendon and skeletal muscle repair. Bone 39:678–683CrossRefPubMed Krampera M, Pizzolo G, Aprili G, Franchini M (2006) Mesenchymal stem cells for bone, cartilage, tendon and skeletal muscle repair. Bone 39:678–683CrossRefPubMed
20.
go back to reference Lee CS, Gleghorn JP, Won CN, Cabodi M, Stroock AD, Bonassar LJ (2007) Integration of layered chondrocyte-seeded alginate hydrogel scaffolds. Biomaterials 28:2987–2993CrossRefPubMed Lee CS, Gleghorn JP, Won CN, Cabodi M, Stroock AD, Bonassar LJ (2007) Integration of layered chondrocyte-seeded alginate hydrogel scaffolds. Biomaterials 28:2987–2993CrossRefPubMed
21.
go back to reference Magnussen RA, Dunn WR, Carey JL, Spindler KP (2008) Treatment of focal articular cartilage defects in the knee: a systematic review. Clin Orthop Relat Res 466:952–962CrossRefPubMed Magnussen RA, Dunn WR, Carey JL, Spindler KP (2008) Treatment of focal articular cartilage defects in the knee: a systematic review. Clin Orthop Relat Res 466:952–962CrossRefPubMed
22.
go back to reference Mauney JR, Sjostorm S, Blumberg J, Horan R, O’Leary JP, Vunjak-Novakovic G, Volloch V, Kaplan DL (2004) Mechanical stimulation promotes osteogenic differentiation of human bone marrow stromal cells on 3-D partially demineralized bone scaffolds in vitro. Calcif Tissue Int 74:458–468CrossRefPubMed Mauney JR, Sjostorm S, Blumberg J, Horan R, O’Leary JP, Vunjak-Novakovic G, Volloch V, Kaplan DL (2004) Mechanical stimulation promotes osteogenic differentiation of human bone marrow stromal cells on 3-D partially demineralized bone scaffolds in vitro. Calcif Tissue Int 74:458–468CrossRefPubMed
23.
go back to reference Perka C, Sittinger M, Schultz O, Spitzer RS, Schlenzka D, Burmester GR (2000) Tissue engineered cartilage repair using cryopreserved and noncryopreserved chondrocytes. Clin Orthop Relat Res 245–254 Perka C, Sittinger M, Schultz O, Spitzer RS, Schlenzka D, Burmester GR (2000) Tissue engineered cartilage repair using cryopreserved and noncryopreserved chondrocytes. Clin Orthop Relat Res 245–254
24.
go back to reference Pound JC, Green DW, Roach HI, Mann S, Oreffo RO (2007) An ex vivo model for chondrogenesis and osteogenesis. Biomaterials 28:2839–2849CrossRefPubMed Pound JC, Green DW, Roach HI, Mann S, Oreffo RO (2007) An ex vivo model for chondrogenesis and osteogenesis. Biomaterials 28:2839–2849CrossRefPubMed
25.
26.
go back to reference Schumann D, Kujat R, Nerlich M, Angele P (2006) Mechanobiological conditioning of stem cells for cartilage tissue engineering. Biomed Mater Eng 16:S37–S52PubMed Schumann D, Kujat R, Nerlich M, Angele P (2006) Mechanobiological conditioning of stem cells for cartilage tissue engineering. Biomed Mater Eng 16:S37–S52PubMed
27.
go back to reference Sharma B, Elisseeff J (2004) Engineering structurally organized cartilage and bone tissues. Ann Biochem Eng 32:148–159CrossRef Sharma B, Elisseeff J (2004) Engineering structurally organized cartilage and bone tissues. Ann Biochem Eng 32:148–159CrossRef
28.
go back to reference Terraciano V, Hwang N, Moroni L, Park HB, Zhang Z, Mizrahi J, Seliktar D, Elisseeff J (2007) Differential response of adult and embryonic mesenchymal progenitor cells to mechanical compression in hydrogels. Stem Cells 25:2730–2738CrossRefPubMed Terraciano V, Hwang N, Moroni L, Park HB, Zhang Z, Mizrahi J, Seliktar D, Elisseeff J (2007) Differential response of adult and embryonic mesenchymal progenitor cells to mechanical compression in hydrogels. Stem Cells 25:2730–2738CrossRefPubMed
29.
go back to reference Vunjak-Novakovic G, Meinel L, Altman G, Kaplan D (2005) Bioreactor cultivation of osteochondral grafts. Orthod Craniofac Res 8:209–218CrossRefPubMed Vunjak-Novakovic G, Meinel L, Altman G, Kaplan D (2005) Bioreactor cultivation of osteochondral grafts. Orthod Craniofac Res 8:209–218CrossRefPubMed
30.
go back to reference Zhang X, Mitsuru A, Igura K, Takahashi K, Ichinose S, Yamaguchi S, Takahashi TA (2006) Mesenchymal progenitor cells derived from chorionic villi of human placenta for cartilage tissue engineering. Biochem Biophys Res Commun 340:944–952CrossRefPubMed Zhang X, Mitsuru A, Igura K, Takahashi K, Ichinose S, Yamaguchi S, Takahashi TA (2006) Mesenchymal progenitor cells derived from chorionic villi of human placenta for cartilage tissue engineering. Biochem Biophys Res Commun 340:944–952CrossRefPubMed
31.
go back to reference Zuscik MJ, Hilton MJ, Zhang X, Chen D, O’Keefe RJ (2008) Regulation of chondrogenesis and chondrocyte differentiation by stress. J Clin Invest 118:429–438CrossRefPubMed Zuscik MJ, Hilton MJ, Zhang X, Chen D, O’Keefe RJ (2008) Regulation of chondrogenesis and chondrocyte differentiation by stress. J Clin Invest 118:429–438CrossRefPubMed
Metadata
Title
Perfusion and cyclic compression of mesenchymal cell-loaded and clinically applicable osteochondral grafts
Authors
Carl Haasper
Michael Colditz
Stefan Budde
Eric Hesse
Thomas Tschernig
Michael Frink
Christian Krettek
Christof Hurschler
Michael Jagodzinski
Publication date
01-11-2009
Publisher
Springer-Verlag
Published in
Knee Surgery, Sports Traumatology, Arthroscopy / Issue 11/2009
Print ISSN: 0942-2056
Electronic ISSN: 1433-7347
DOI
https://doi.org/10.1007/s00167-009-0791-3

Other articles of this Issue 11/2009

Knee Surgery, Sports Traumatology, Arthroscopy 11/2009 Go to the issue