Skip to main content
Top
Published in: Knee Surgery, Sports Traumatology, Arthroscopy 11/2009

01-11-2009 | Knee

A novel injectable hydrogel in combination with a surgical sealant in a rat knee osteochondral defect model

Authors: Natasa D. Miljkovic, Yen-Chih Lin, Mario Cherubino, Danielle Minteer, Kacey G. Marra

Published in: Knee Surgery, Sports Traumatology, Arthroscopy | Issue 11/2009

Login to get access

Abstract

Osteochondral defects are frequent, painful, debilitating and expensive to treat, often resulting in poor results. The goal of the present study was to synthesize and characterize a novel biocompatible and biodegradable hydrogel comprised of poly(ethylene glycol), gelatin, and genipin, and examine the hydrogel as an injectable biomaterial in combination with a cyanoacrylate-based surgical sealant for cartilage repair. An osteochondral knee defect was generated in 24 rats, then the hydrogel, with or without a surgical sealant, was injected into the defect and followed for 14 days. The results demonstrated that the hydrogel is biocompatible and biodegradable, and that the cyanoacrylate-based surgical sealant is a relatively safe option for maintaining the hydrogel in the defect. This is the first study describing a cyanoacrylate-based surgical sealant in combination with a polymer hydrogel for cartilage repair.
Literature
1.
go back to reference Aaron R, Ciombor D, Wang S, Simon B (2006) Clinical biophysics: the promotion of skeletal repair by physical forces. Ann N Y Acad Sci 1068:513–531CrossRefPubMed Aaron R, Ciombor D, Wang S, Simon B (2006) Clinical biophysics: the promotion of skeletal repair by physical forces. Ann N Y Acad Sci 1068:513–531CrossRefPubMed
3.
go back to reference Bryant S, Anseth K, Lee D, Bader D (2004) Crosslinking density influences the morphology of chondrocytes photoencapsulated in PEG hydrogels during the application of compressive strain. J Orthop Res 22:1143–1149CrossRefPubMed Bryant S, Anseth K, Lee D, Bader D (2004) Crosslinking density influences the morphology of chondrocytes photoencapsulated in PEG hydrogels during the application of compressive strain. J Orthop Res 22:1143–1149CrossRefPubMed
4.
go back to reference Bryant S, Arthur J, Anseth K (2005) Incorporation of tissue-specific molecules alters chondrocyte metabolism and gene expression in photocrosslinked hydrogels. Acta Biomater 1:243–252CrossRefPubMed Bryant S, Arthur J, Anseth K (2005) Incorporation of tissue-specific molecules alters chondrocyte metabolism and gene expression in photocrosslinked hydrogels. Acta Biomater 1:243–252CrossRefPubMed
5.
go back to reference Bryant S, Durand K, Anseth K (2003) Manipulations in hydrogel chemistry control photoencapsulated chondrocyte behavior and their extracellular matrix production. J Biomed Mater Res A 67:1430–1460CrossRefPubMed Bryant S, Durand K, Anseth K (2003) Manipulations in hydrogel chemistry control photoencapsulated chondrocyte behavior and their extracellular matrix production. J Biomed Mater Res A 67:1430–1460CrossRefPubMed
6.
go back to reference Charlton D, Peterson M, Spiller K, Lowman A et al (2008) Semi-degradable scaffold for articular cartilage replacement. Tissue Eng Part A 14:207–213CrossRefPubMed Charlton D, Peterson M, Spiller K, Lowman A et al (2008) Semi-degradable scaffold for articular cartilage replacement. Tissue Eng Part A 14:207–213CrossRefPubMed
7.
go back to reference Cole J, Bondurant C (1964) Late thrombosis following the use of autogenous fascia and a cyanoacrylate (Eastman 910 monomer) for the wrapping of an intracranial aneurysm. J Neurosurg 21:884–886CrossRef Cole J, Bondurant C (1964) Late thrombosis following the use of autogenous fascia and a cyanoacrylate (Eastman 910 monomer) for the wrapping of an intracranial aneurysm. J Neurosurg 21:884–886CrossRef
8.
go back to reference Dickhut A, Gottwald E, Steck E, Heisel C et al (2008) Chondrogenesis of mesenchymal stem cells in gel-like biomaterials in vitro and in vivo. Front Biosci 13:4517–4528CrossRefPubMed Dickhut A, Gottwald E, Steck E, Heisel C et al (2008) Chondrogenesis of mesenchymal stem cells in gel-like biomaterials in vitro and in vivo. Front Biosci 13:4517–4528CrossRefPubMed
9.
go back to reference Ferretti M, Marra KG, Kobayashi K, Defail AJ et al (2006) Controlled in vivo degradation of genipin crosslinked polyethylene glycol hydrogels within osteochondral defects. Tissue Eng 12(9):2657–2663CrossRefPubMed Ferretti M, Marra KG, Kobayashi K, Defail AJ et al (2006) Controlled in vivo degradation of genipin crosslinked polyethylene glycol hydrogels within osteochondral defects. Tissue Eng 12(9):2657–2663CrossRefPubMed
10.
go back to reference Holland T, Bodde E, Baggett L, Tabata Y et al (2005) Osteochondral repair in the rabbit model utilizing bilayered, degradable oligo(poly(ethylene glycol)fumarate) hydrogel scaffolds. J Biomed Mater Res A 75:156–167PubMed Holland T, Bodde E, Baggett L, Tabata Y et al (2005) Osteochondral repair in the rabbit model utilizing bilayered, degradable oligo(poly(ethylene glycol)fumarate) hydrogel scaffolds. J Biomed Mater Res A 75:156–167PubMed
11.
go back to reference Holland T, Tessmar J, Tabata Y, Mikos A (2004) Transforming growth factor-beta 1 release from oligo(poly(ethylene glycol) fumarate) hydrogels in conditions that model the cartilage wound healing environment. J Control Release 94:101–114CrossRefPubMed Holland T, Tessmar J, Tabata Y, Mikos A (2004) Transforming growth factor-beta 1 release from oligo(poly(ethylene glycol) fumarate) hydrogels in conditions that model the cartilage wound healing environment. J Control Release 94:101–114CrossRefPubMed
12.
go back to reference Ishii I, Mizuta H, Sei A, Hirose J et al (2007) Healing of full-thickness defects of the articular cartilage in rabbits using fibroblast growth factor-2 and a fibrin sealant. J Bone Joint Surg Br 89:693–700CrossRefPubMed Ishii I, Mizuta H, Sei A, Hirose J et al (2007) Healing of full-thickness defects of the articular cartilage in rabbits using fibroblast growth factor-2 and a fibrin sealant. J Bone Joint Surg Br 89:693–700CrossRefPubMed
13.
go back to reference Ishida K, Kuroda R, Miwa M, Tabata Y et al (2007) The regenerative effects of platelet-rich plasma on meniscal cells in vitro and its in vivo application with biodegradable gelatin hydrogel. Tissue Eng 13:1103–1112CrossRefPubMed Ishida K, Kuroda R, Miwa M, Tabata Y et al (2007) The regenerative effects of platelet-rich plasma on meniscal cells in vitro and its in vivo application with biodegradable gelatin hydrogel. Tissue Eng 13:1103–1112CrossRefPubMed
14.
go back to reference Issa J, Bentley M, Iyomasa M, Sebald W et al (2008) Sustained release carriers used to delivery bone morphogenetic proteins in the bone healing process. Anat Histol Embryol 37:181–187CrossRefPubMed Issa J, Bentley M, Iyomasa M, Sebald W et al (2008) Sustained release carriers used to delivery bone morphogenetic proteins in the bone healing process. Anat Histol Embryol 37:181–187CrossRefPubMed
15.
go back to reference Ito Y, Ochi M, Adachi N, Sugawara K et al (2005) Repair of osteochondral defect with tissue-engineered chondral plug in a rabbit model. Arthroscopy 21:1155–1163PubMedCrossRef Ito Y, Ochi M, Adachi N, Sugawara K et al (2005) Repair of osteochondral defect with tissue-engineered chondral plug in a rabbit model. Arthroscopy 21:1155–1163PubMedCrossRef
16.
go back to reference Kim J, Lee K, Hefferan T, Currier B et al (2008) Synthesis and evaluation of novel biodegradable hydrogels based on poly(ethylene glycol) and sebacic acid as tissue engineering scaffolds. Biomacromolecules 9:149–157CrossRefPubMed Kim J, Lee K, Hefferan T, Currier B et al (2008) Synthesis and evaluation of novel biodegradable hydrogels based on poly(ethylene glycol) and sebacic acid as tissue engineering scaffolds. Biomacromolecules 9:149–157CrossRefPubMed
17.
go back to reference Koo H, Song Y, Kim H, Lee Y et al (2004) Anti-inflammatory effects of genipin, an active principle of gardenia. Eur J Pharmacol 495:201–208CrossRefPubMed Koo H, Song Y, Kim H, Lee Y et al (2004) Anti-inflammatory effects of genipin, an active principle of gardenia. Eur J Pharmacol 495:201–208CrossRefPubMed
18.
go back to reference Kushibiki T, Matsuoka H, Tabata Y (2004) Synthesis and physical characterization of poly(ethylene glycol)-gelatin conjugates. Biomacromolecules 5:202–208CrossRefPubMed Kushibiki T, Matsuoka H, Tabata Y (2004) Synthesis and physical characterization of poly(ethylene glycol)-gelatin conjugates. Biomacromolecules 5:202–208CrossRefPubMed
19.
go back to reference Lenaerts V, Couvreur P, Christiaens-Leyh D, Joiris E et al (1984) Degradation of poly (isobutyl cyanoacrylate) nanoparticles. Biomaterials 5:65–68CrossRefPubMed Lenaerts V, Couvreur P, Christiaens-Leyh D, Joiris E et al (1984) Degradation of poly (isobutyl cyanoacrylate) nanoparticles. Biomaterials 5:65–68CrossRefPubMed
20.
go back to reference Liu Y, Shu X, Prestwich G (2006) Osteochondral defect repair with autologous bone marrow-derived mesenchymal stem cells in an injectable, in situ, cross-linked synthetic extracellular matrix. Tissue Eng 12:3405–3416CrossRefPubMed Liu Y, Shu X, Prestwich G (2006) Osteochondral defect repair with autologous bone marrow-derived mesenchymal stem cells in an injectable, in situ, cross-linked synthetic extracellular matrix. Tissue Eng 12:3405–3416CrossRefPubMed
21.
go back to reference Lu L, Zhu X, Valenzuela R, Currier B et al (2001) Biodegradable polymer scaffolds for cartilage tissue engineering. Clin Orthop Relat Res 391(Suppl):S251–S270CrossRefPubMed Lu L, Zhu X, Valenzuela R, Currier B et al (2001) Biodegradable polymer scaffolds for cartilage tissue engineering. Clin Orthop Relat Res 391(Suppl):S251–S270CrossRefPubMed
22.
go back to reference Martens P, Bryant S, Anseth K (2003) Tailoring the degradation of hydrogels formed from multivinyl poly(ethylene glycol) and poly(vinyl alcohol) macromers for cartilage tissue engineering. Biomacromolecules 4:283–292CrossRefPubMed Martens P, Bryant S, Anseth K (2003) Tailoring the degradation of hydrogels formed from multivinyl poly(ethylene glycol) and poly(vinyl alcohol) macromers for cartilage tissue engineering. Biomacromolecules 4:283–292CrossRefPubMed
23.
go back to reference Moffat L, Marra K (2004) Biodegradable poly(ethylene glycol) hydrogels crosslinked with genipin for tissue engineering applications. J Biomed Mater Res B Appl Biomater 71:181–187CrossRefPubMed Moffat L, Marra K (2004) Biodegradable poly(ethylene glycol) hydrogels crosslinked with genipin for tissue engineering applications. J Biomed Mater Res B Appl Biomater 71:181–187CrossRefPubMed
24.
go back to reference Nakayama J, Fujioka H, Nagura I, Kokubu T et al (2009) The effect of fibroblast growth factor-2 on autologous osteochondral transplantation. Int Orthop 33(1):275–280CrossRefPubMed Nakayama J, Fujioka H, Nagura I, Kokubu T et al (2009) The effect of fibroblast growth factor-2 on autologous osteochondral transplantation. Int Orthop 33(1):275–280CrossRefPubMed
25.
go back to reference Nishida T, Kubota S, Kojima S, Kuboki T et al (2004) Regeneration of defects in articular cartilage in rat knee joints by CCN2 (connective tissue growth factor). J Bone Miner Res 19:1308–1319CrossRefPubMed Nishida T, Kubota S, Kojima S, Kuboki T et al (2004) Regeneration of defects in articular cartilage in rat knee joints by CCN2 (connective tissue growth factor). J Bone Miner Res 19:1308–1319CrossRefPubMed
26.
go back to reference Papatheofanis F (1989) Surgical repair of rabbit tibia osteotomy using isobutyl-2-cyanoacrylate. Arch Orthop Trauma Surg 108:236–237CrossRefPubMed Papatheofanis F (1989) Surgical repair of rabbit tibia osteotomy using isobutyl-2-cyanoacrylate. Arch Orthop Trauma Surg 108:236–237CrossRefPubMed
27.
go back to reference Park Y, Lutolf M, Hubbell J, Hunziker E et al (2004) Bovine primary chondrocyte culture in synthetic matrix metalloproteinase-sensitive poly(ethylene glycol)-based hydrogels as a scaffold for cartilage repair. Tissue Eng 10:515–522CrossRefPubMed Park Y, Lutolf M, Hubbell J, Hunziker E et al (2004) Bovine primary chondrocyte culture in synthetic matrix metalloproteinase-sensitive poly(ethylene glycol)-based hydrogels as a scaffold for cartilage repair. Tissue Eng 10:515–522CrossRefPubMed
28.
go back to reference Passl R, Plenk HJ (1989) Fibrin adhesion of cartilage surfaces. Beitr Orthop Traumatol 36:503–507PubMed Passl R, Plenk HJ (1989) Fibrin adhesion of cartilage surfaces. Beitr Orthop Traumatol 36:503–507PubMed
29.
go back to reference Pérez M, Fernández I, Márquez D, Bretaña R (2000) Use of N-butyl-2-cyanoacrylate in oral surgery: biological and clinical evaluation. Artif Organs 24:241–243CrossRefPubMed Pérez M, Fernández I, Márquez D, Bretaña R (2000) Use of N-butyl-2-cyanoacrylate in oral surgery: biological and clinical evaluation. Artif Organs 24:241–243CrossRefPubMed
30.
go back to reference Schagemann JC, Erggelet C, Chung HW, Lahm A et al (2009) Cell-laden and cell-free biopolymer hydrogel for the treatment of osteochondral defects in a sheep model. Tissue Eng Part 15(1):75–82CrossRef Schagemann JC, Erggelet C, Chung HW, Lahm A et al (2009) Cell-laden and cell-free biopolymer hydrogel for the treatment of osteochondral defects in a sheep model. Tissue Eng Part 15(1):75–82CrossRef
31.
go back to reference Schulz R, Bader A (2007) Cartilage tissue engineering and bioreactor systems for the cultivation and stimulation of chondrocytes. Eur Biophys J 36:539–568CrossRefPubMed Schulz R, Bader A (2007) Cartilage tissue engineering and bioreactor systems for the cultivation and stimulation of chondrocytes. Eur Biophys J 36:539–568CrossRefPubMed
32.
go back to reference Setlik D, Seldomridge D, Adelman R, Semchyshyn T et al (2005) The effectiveness of isobutyl cyanoacrylate tissue adhesive for the treatment of corneal perforations. Am J Ophthalmol 140:920–921CrossRefPubMed Setlik D, Seldomridge D, Adelman R, Semchyshyn T et al (2005) The effectiveness of isobutyl cyanoacrylate tissue adhesive for the treatment of corneal perforations. Am J Ophthalmol 140:920–921CrossRefPubMed
33.
go back to reference Sun G, Zhang X, Chu C (2008) Effect of the molecular weight of polyethylene glycol (PEG) on the properties of chitosan-PEG-poly(N-isopropylacrylamide) hydrogels. J Mater Sci: Mater Med 19:2865–2872CrossRef Sun G, Zhang X, Chu C (2008) Effect of the molecular weight of polyethylene glycol (PEG) on the properties of chitosan-PEG-poly(N-isopropylacrylamide) hydrogels. J Mater Sci: Mater Med 19:2865–2872CrossRef
34.
go back to reference Tam H, Srivastava A, Colwell CJ, D’Lima D (2007) In vitro model of full-thickness cartilage defect healing. J Orthop Res 25:1136–1144CrossRefPubMed Tam H, Srivastava A, Colwell CJ, D’Lima D (2007) In vitro model of full-thickness cartilage defect healing. J Orthop Res 25:1136–1144CrossRefPubMed
35.
go back to reference Toriumi D, Raslan W, Friedman M, Tardy M (1990) Histotoxicity of cyanoacrylate tissue adhesives. A comparative study. Arch Otolaryngol Head Neck Surg 116:546–550PubMed Toriumi D, Raslan W, Friedman M, Tardy M (1990) Histotoxicity of cyanoacrylate tissue adhesives. A comparative study. Arch Otolaryngol Head Neck Surg 116:546–550PubMed
36.
go back to reference Toriumi D, Raslan W, Friedman M, Tardy MJ (1991) Variable histotoxicity of histoacryl when used in a subcutaneous site: an experimental study. Laryngoscope 101:339–343PubMed Toriumi D, Raslan W, Friedman M, Tardy MJ (1991) Variable histotoxicity of histoacryl when used in a subcutaneous site: an experimental study. Laryngoscope 101:339–343PubMed
37.
go back to reference Varghese S, Hwang N, Canver A, Theprungsirikul P et al (2008) Chondroitin sulfate based niches for chondrogenic differentiation of mesenchymal stem cells. Matrix Biol 27:12–21CrossRefPubMed Varghese S, Hwang N, Canver A, Theprungsirikul P et al (2008) Chondroitin sulfate based niches for chondrogenic differentiation of mesenchymal stem cells. Matrix Biol 27:12–21CrossRefPubMed
38.
go back to reference Wilson D, Chenery D, Bowring H, Wilson K et al (2005) Physical and biological properties of a novel siloxane adhesive for soft tissue applications. J Biomater Sci Polym Ed 16:449–472CrossRefPubMed Wilson D, Chenery D, Bowring H, Wilson K et al (2005) Physical and biological properties of a novel siloxane adhesive for soft tissue applications. J Biomater Sci Polym Ed 16:449–472CrossRefPubMed
39.
go back to reference Xian C, Foster B (2006) Repair of injured articular and growth plate cartilage using mesenchymal stem cells and chondrogenic gene therapy. Curr Stem Cell Res Ther 1:213–229CrossRefPubMed Xian C, Foster B (2006) Repair of injured articular and growth plate cartilage using mesenchymal stem cells and chondrogenic gene therapy. Curr Stem Cell Res Ther 1:213–229CrossRefPubMed
Metadata
Title
A novel injectable hydrogel in combination with a surgical sealant in a rat knee osteochondral defect model
Authors
Natasa D. Miljkovic
Yen-Chih Lin
Mario Cherubino
Danielle Minteer
Kacey G. Marra
Publication date
01-11-2009
Publisher
Springer-Verlag
Published in
Knee Surgery, Sports Traumatology, Arthroscopy / Issue 11/2009
Print ISSN: 0942-2056
Electronic ISSN: 1433-7347
DOI
https://doi.org/10.1007/s00167-009-0881-2

Other articles of this Issue 11/2009

Knee Surgery, Sports Traumatology, Arthroscopy 11/2009 Go to the issue