Skip to main content
Top
Published in: Intensive Care Medicine 12/2020

Open Access 01-12-2020 | Acute Respiratory Distress-Syndrome | ORIGINAL

Physiological and quantitative CT-scan characterization of COVID-19 and typical ARDS: a matched cohort study

Authors: Davide Chiumello, Mattia Busana, Silvia Coppola, Federica Romitti, Paolo Formenti, Matteo Bonifazi, Tommaso Pozzi, Maria Michela Palumbo, Massimo Cressoni, Peter Herrmann, Konrad Meissner, Michael Quintel, Luigi Camporota, John J. Marini, Luciano Gattinoni

Published in: Intensive Care Medicine | Issue 12/2020

Login to get access

Abstract

Purpose

To investigate whether COVID-19-ARDS differs from all-cause ARDS.

Methods

Thirty-two consecutive, mechanically ventilated COVID-19-ARDS patients were compared to two historical ARDS sub-populations 1:1 matched for PaO2/FiO2 or for compliance of the respiratory system. Gas exchange, hemodynamics and respiratory mechanics were recorded at 5 and 15 cmH2O PEEP. CT scan variables were measured at 5 cmH2O PEEP.

Results

Anthropometric characteristics were similar in COVID-19-ARDS, PaO2/FiO2-matched-ARDS and Compliance-matched-ARDS. The PaO2/FiO2-matched-ARDS and COVID-19-ARDS populations (both with PaO2/FiO2 106 ± 59 mmHg) had different respiratory system compliances (Crs) (39 ± 11 vs 49.9 ± 15.4 ml/cmH2O, p = 0.03). The Compliance-matched-ARDS and COVID-19-ARDS had similar Crs (50.1 ± 15.7 and 49.9 ± 15.4 ml/cmH2O, respectively) but significantly lower PaO2/FiO2 for the same Crs (160 ± 62 vs 106.5 ± 59.6 mmHg, p < 0.001). The three populations had similar lung weights but COVID-19-ARDS had significantly higher lung gas volume (PaO2/FiO2-matched-ARDS 930 ± 644 ml, COVID-19-ARDS 1670 ± 791 ml and Compliance-matched-ARDS 1301 ± 627 ml, p < 0.05). The venous admixture was significantly related to the non-aerated tissue in PaO2/FiO2-matched-ARDS and Compliance-matched-ARDS (p < 0.001) but unrelated in COVID-19-ARDS (p = 0.75), suggesting that hypoxemia was not only due to the extent of non-aerated tissue. Increasing PEEP from 5 to 15 cmH2O improved oxygenation in all groups. However, while lung mechanics and dead space improved in PaO2/FiO2-matched-ARDS, suggesting recruitment as primary mechanism, they remained unmodified or worsened in COVID-19-ARDS and Compliance-matched-ARDS, suggesting lower recruitment potential and/or blood flow redistribution.

Conclusions

COVID-19-ARDS is a subset of ARDS characterized overall by higher compliance and lung gas volume for a given PaO2/FiO2, at least when considered within the timeframe of our study.
Appendix
Available only for authorised users
Literature
1.
go back to reference Ranieri VM, Rubenfeld GD, Thompson BT, Ferguson ND et al (2012) Acute respiratory distress syndrome: the Berlin Definition. JAMA 307(23):2526–2533PubMed Ranieri VM, Rubenfeld GD, Thompson BT, Ferguson ND et al (2012) Acute respiratory distress syndrome: the Berlin Definition. JAMA 307(23):2526–2533PubMed
2.
go back to reference Gattinoni L, Coppola S, Cressoni M, Busana M et al (2020) COVID-19 does not lead to a “Typical” acute respiratory distress syndrome. Am J Respir Crit Care Med 201(10):1299–1300CrossRef Gattinoni L, Coppola S, Cressoni M, Busana M et al (2020) COVID-19 does not lead to a “Typical” acute respiratory distress syndrome. Am J Respir Crit Care Med 201(10):1299–1300CrossRef
3.
go back to reference Gattinoni L, Chiumello D, Caironi P, Busana M et al (2020) COVID-19 pneumonia: different respiratory treatments for different phenotypes? Intensive Care Med 46(6):1099–1102CrossRef Gattinoni L, Chiumello D, Caironi P, Busana M et al (2020) COVID-19 pneumonia: different respiratory treatments for different phenotypes? Intensive Care Med 46(6):1099–1102CrossRef
4.
go back to reference Schenck EJ, Hoffman K, Goyal P, Choi J et al (2020) Respiratory mechanics and gas exchange in COVID-19-associated respiratory failure. Ann Am Thorac Soc 17(9):1158–1161CrossRef Schenck EJ, Hoffman K, Goyal P, Choi J et al (2020) Respiratory mechanics and gas exchange in COVID-19-associated respiratory failure. Ann Am Thorac Soc 17(9):1158–1161CrossRef
6.
go back to reference Ziehr DR, Alladina J, Petri CR, Maley JH, Moskowitz A, Medoff BD, Hibbert KA, Thompson BT, Hardin CC (2020) Respiratory pathophysiology of mechanically ventilated patients with COVID-19: a cohort study. Am J Respir Crit Care Med 201(12):1560–1564CrossRef Ziehr DR, Alladina J, Petri CR, Maley JH, Moskowitz A, Medoff BD, Hibbert KA, Thompson BT, Hardin CC (2020) Respiratory pathophysiology of mechanically ventilated patients with COVID-19: a cohort study. Am J Respir Crit Care Med 201(12):1560–1564CrossRef
7.
go back to reference Cummings MJ, Baldwin MR, Abrams D, Jacobson SD et al (2020) Epidemiology, clinical course, and outcomes of critically ill adults with COVID-19 in New York City: a prospective cohort study. Lancet 395(10239):1763–1770CrossRef Cummings MJ, Baldwin MR, Abrams D, Jacobson SD et al (2020) Epidemiology, clinical course, and outcomes of critically ill adults with COVID-19 in New York City: a prospective cohort study. Lancet 395(10239):1763–1770CrossRef
9.
go back to reference Fan E, Beitler JR, Brochard L, Calfee CS et al (2020) COVID-19-associated acute respiratory distress syndrome: is a different approach to management warranted? Lancet Respir Med 8(8):816–821CrossRef Fan E, Beitler JR, Brochard L, Calfee CS et al (2020) COVID-19-associated acute respiratory distress syndrome: is a different approach to management warranted? Lancet Respir Med 8(8):816–821CrossRef
10.
go back to reference Ferguson ND, Fan E, Camporota L, Antonelli M et al (2012) The Berlin definition of ARDS: an expanded rationale, justification, and supplementary material. Intensive Care Med 38(10):1573–1582CrossRef Ferguson ND, Fan E, Camporota L, Antonelli M et al (2012) The Berlin definition of ARDS: an expanded rationale, justification, and supplementary material. Intensive Care Med 38(10):1573–1582CrossRef
11.
go back to reference Ackermann M, Verleden SE, Kuehnel M, Haverich A et al (2020) Pulmonary Vascular Endothelialitis, Thrombosis, and Angiogenesis in Covid-19. N Engl J Med 383(2):120–128CrossRef Ackermann M, Verleden SE, Kuehnel M, Haverich A et al (2020) Pulmonary Vascular Endothelialitis, Thrombosis, and Angiogenesis in Covid-19. N Engl J Med 383(2):120–128CrossRef
12.
go back to reference Santamarina MG, Boisier D, Contreras R, Baque M et al (2020) COVID-19: a hypothesis regarding the ventilation-perfusion mismatch. Crit Care 24(1):395CrossRef Santamarina MG, Boisier D, Contreras R, Baque M et al (2020) COVID-19: a hypothesis regarding the ventilation-perfusion mismatch. Crit Care 24(1):395CrossRef
13.
go back to reference Teuwen LA, Geldhof V, Pasut A, Carmeliet P (2020) COVID-19: the vasculature unleashed. Nat Rev Immunol 20(7):389–391CrossRef Teuwen LA, Geldhof V, Pasut A, Carmeliet P (2020) COVID-19: the vasculature unleashed. Nat Rev Immunol 20(7):389–391CrossRef
14.
go back to reference Wichmann D, Sperhake JP, Lutgehetmann M, Steurer S et al (2020) Autopsy findings and venous thromboembolism in patients with covid-19: a prospective cohort study. Ann Intern Med 173(4):268–277CrossRef Wichmann D, Sperhake JP, Lutgehetmann M, Steurer S et al (2020) Autopsy findings and venous thromboembolism in patients with covid-19: a prospective cohort study. Ann Intern Med 173(4):268–277CrossRef
15.
go back to reference Patel BV, Arachchillage DJ, Ridge CA, Bianchi P et al (2020) Pulmonary Angiopathy in Severe COVID-19: physiologic, imaging, and hematologic observations. Am J Respir Crit Care Med 202(5):690–699CrossRef Patel BV, Arachchillage DJ, Ridge CA, Bianchi P et al (2020) Pulmonary Angiopathy in Severe COVID-19: physiologic, imaging, and hematologic observations. Am J Respir Crit Care Med 202(5):690–699CrossRef
16.
go back to reference Tomashefski JF Jr, Davies P, Boggis C, Greene R et al (1983) The pulmonary vascular lesions of the adult respiratory distress syndrome. Am J Pathol 112(1):112–126PubMedPubMedCentral Tomashefski JF Jr, Davies P, Boggis C, Greene R et al (1983) The pulmonary vascular lesions of the adult respiratory distress syndrome. Am J Pathol 112(1):112–126PubMedPubMedCentral
17.
go back to reference Vesconi S, Rossi GP, Pesenti A, Fumagalli R et al (1988) Pulmonary microthrombosis in severe adult respiratory distress syndrome. Crit Care Med 16(2):111–113CrossRef Vesconi S, Rossi GP, Pesenti A, Fumagalli R et al (1988) Pulmonary microthrombosis in severe adult respiratory distress syndrome. Crit Care Med 16(2):111–113CrossRef
18.
go back to reference Greene R, Zapol WM, Snider MT, Reid L et al (1981) Early bedside detection of pulmonary vascular occlusion during acute respiratory failure. Am Rev Respir Dis 124(5):593–601PubMed Greene R, Zapol WM, Snider MT, Reid L et al (1981) Early bedside detection of pulmonary vascular occlusion during acute respiratory failure. Am Rev Respir Dis 124(5):593–601PubMed
19.
go back to reference Shi H, Han X, Jiang N, Cao Y et al (2020) Radiological findings from 81 patients with COVID-19 pneumonia in Wuhan, China: a descriptive study. Lancet Infect Dis 20(4):425–434CrossRef Shi H, Han X, Jiang N, Cao Y et al (2020) Radiological findings from 81 patients with COVID-19 pneumonia in Wuhan, China: a descriptive study. Lancet Infect Dis 20(4):425–434CrossRef
20.
go back to reference Zhang L, Feng X, Zhang D, Jiang C et al (2020) Deep vein thrombosis in hospitalized patients with COVID-19 in Wuhan, China: prevalence, risk factors, and outcome. Circulation 142(2):114–128CrossRef Zhang L, Feng X, Zhang D, Jiang C et al (2020) Deep vein thrombosis in hospitalized patients with COVID-19 in Wuhan, China: prevalence, risk factors, and outcome. Circulation 142(2):114–128CrossRef
22.
go back to reference Ladakis C, Myrianthefs P, Karabinis A, Karatzas G et al (2001) Central venous and mixed venous oxygen saturation in critically ill patients. Respiration 68(3):279–285CrossRef Ladakis C, Myrianthefs P, Karabinis A, Karatzas G et al (2001) Central venous and mixed venous oxygen saturation in critically ill patients. Respiration 68(3):279–285CrossRef
23.
go back to reference Herrmann P, Nguyen XP, Luecke T, Quintel M (2002) MALUNA 1.03 ein Softwaretool zur analyse computertomographischer Schnittbilder del Lunge. In: Jamal R, Jaschinski H (eds) Virtuelle instrumente in der praxis. Huethig Verlag, Heidelberg, pp 389–395 Herrmann P, Nguyen XP, Luecke T, Quintel M (2002) MALUNA 1.03 ein Softwaretool zur analyse computertomographischer Schnittbilder del Lunge. In: Jamal R, Jaschinski H (eds) Virtuelle instrumente in der praxis. Huethig Verlag, Heidelberg, pp 389–395
24.
go back to reference Stuart EA (2010) Matching methods for causal inference: A review and a look forward. Stat Sci 25(1):1–21CrossRef Stuart EA (2010) Matching methods for causal inference: A review and a look forward. Stat Sci 25(1):1–21CrossRef
25.
go back to reference Bellani G, Laffey JG, Pham T, Fan E et al (2016) Epidemiology, patterns of care, and mortality for patients with acute respiratory distress syndrome in intensive care units in 50 countries. JAMA 315(8):788–800CrossRef Bellani G, Laffey JG, Pham T, Fan E et al (2016) Epidemiology, patterns of care, and mortality for patients with acute respiratory distress syndrome in intensive care units in 50 countries. JAMA 315(8):788–800CrossRef
26.
go back to reference Caironi P, Carlesso E, Cressoni M, Chiumello D et al (2015) Lung recruitability is better estimated according to the Berlin definition of acute respiratory distress syndrome at standard 5 cm H2O rather than higher positive end-expiratory pressure: a retrospective cohort study. Crit Care Med 43(4):781–790CrossRef Caironi P, Carlesso E, Cressoni M, Chiumello D et al (2015) Lung recruitability is better estimated according to the Berlin definition of acute respiratory distress syndrome at standard 5 cm H2O rather than higher positive end-expiratory pressure: a retrospective cohort study. Crit Care Med 43(4):781–790CrossRef
27.
go back to reference Riley RL, Cournand A (1949) Ideal alveolar air and the analysis of ventilation-perfusion relationships in the lungs. J Appl Physiol 1(12):825–847CrossRef Riley RL, Cournand A (1949) Ideal alveolar air and the analysis of ventilation-perfusion relationships in the lungs. J Appl Physiol 1(12):825–847CrossRef
28.
go back to reference Reske AW, Costa EL, Reske AP, Rau A et al (2013) Bedside estimation of nonaerated lung tissue using blood gas analysis. Crit Care Med 41(3):732–743CrossRef Reske AW, Costa EL, Reske AP, Rau A et al (2013) Bedside estimation of nonaerated lung tissue using blood gas analysis. Crit Care Med 41(3):732–743CrossRef
29.
go back to reference Gattinoni L, Caironi P, Cressoni M, Chiumello D et al (2006) Lung recruitment in patients with the acute respiratory distress syndrome. N Engl J Med 354(17):1775–1786CrossRef Gattinoni L, Caironi P, Cressoni M, Chiumello D et al (2006) Lung recruitment in patients with the acute respiratory distress syndrome. N Engl J Med 354(17):1775–1786CrossRef
30.
go back to reference Henderson WR, Chen L, Amato MBP, Brochard LJ (2017) Fifty Years of Research in ARDS. Respiratory Mechanics in Acute Respiratory Distress Syndrome. Am J Respir Crit Care Med 196(7):822–833CrossRef Henderson WR, Chen L, Amato MBP, Brochard LJ (2017) Fifty Years of Research in ARDS. Respiratory Mechanics in Acute Respiratory Distress Syndrome. Am J Respir Crit Care Med 196(7):822–833CrossRef
31.
go back to reference Diehl JL, Mercat A, Pesenti A (2019) Understanding hypoxemia on ECCO2R: back to the alveolar gas equation. Intensive Care Med 45(2):255–256CrossRef Diehl JL, Mercat A, Pesenti A (2019) Understanding hypoxemia on ECCO2R: back to the alveolar gas equation. Intensive Care Med 45(2):255–256CrossRef
32.
go back to reference Pan C, Chen L, Lu C, Zhang W et al (2020) Lung recruitability in COVID-19-associated acute respiratory distress syndrome: a single-center observational study. Am J Respir Crit Care Med 201(10):1294–1297CrossRef Pan C, Chen L, Lu C, Zhang W et al (2020) Lung recruitability in COVID-19-associated acute respiratory distress syndrome: a single-center observational study. Am J Respir Crit Care Med 201(10):1294–1297CrossRef
33.
go back to reference Roesthuis L, van den Berg M, van der Hoeven H (2020) Advanced respiratory monitoring in COVID-19 patients: use less PEEP! Crit Care 24(1):230CrossRef Roesthuis L, van den Berg M, van der Hoeven H (2020) Advanced respiratory monitoring in COVID-19 patients: use less PEEP! Crit Care 24(1):230CrossRef
34.
go back to reference Bos LDJ, Paulus F, Vlaar APJ, Beenen LFM et al (2020) Subphenotyping acute respiratory distress syndrome in patients with COVID-19: consequences for ventilator management. Ann Am Thorac Soc 17(9):1161–1163CrossRef Bos LDJ, Paulus F, Vlaar APJ, Beenen LFM et al (2020) Subphenotyping acute respiratory distress syndrome in patients with COVID-19: consequences for ventilator management. Ann Am Thorac Soc 17(9):1161–1163CrossRef
35.
go back to reference Shi H, Han X, Jiang N, Cao Y, Alwalid O, Gu J, Fan Y, Zheng C (2020) Radiological findings from 81 patients with COVID-19 pneumonia in Wuhan, China: a descriptive study. Lancet Infect Dis 20:425–434CrossRef Shi H, Han X, Jiang N, Cao Y, Alwalid O, Gu J, Fan Y, Zheng C (2020) Radiological findings from 81 patients with COVID-19 pneumonia in Wuhan, China: a descriptive study. Lancet Infect Dis 20:425–434CrossRef
36.
go back to reference Gattinoni L, Coppola S, Cressoni M, Busana M et al (2020) Reply by Gattinoni et al. to Hedenstierna et al., to Maley et al., to Fowler et al., to Bhatia and Mohammed, to Bos, to Koumbourlis and Motoyama, and to Haouzi et al. Am J Respir Crit Care Med 202(4):628–630CrossRef Gattinoni L, Coppola S, Cressoni M, Busana M et al (2020) Reply by Gattinoni et al. to Hedenstierna et al., to Maley et al., to Fowler et al., to Bhatia and Mohammed, to Bos, to Koumbourlis and Motoyama, and to Haouzi et al. Am J Respir Crit Care Med 202(4):628–630CrossRef
Metadata
Title
Physiological and quantitative CT-scan characterization of COVID-19 and typical ARDS: a matched cohort study
Authors
Davide Chiumello
Mattia Busana
Silvia Coppola
Federica Romitti
Paolo Formenti
Matteo Bonifazi
Tommaso Pozzi
Maria Michela Palumbo
Massimo Cressoni
Peter Herrmann
Konrad Meissner
Michael Quintel
Luigi Camporota
John J. Marini
Luciano Gattinoni
Publication date
01-12-2020
Publisher
Springer Berlin Heidelberg
Published in
Intensive Care Medicine / Issue 12/2020
Print ISSN: 0342-4642
Electronic ISSN: 1432-1238
DOI
https://doi.org/10.1007/s00134-020-06281-2

Other articles of this Issue 12/2020

Intensive Care Medicine 12/2020 Go to the issue