Skip to main content
Top
Published in: Diabetologia 10/2018

01-10-2018 | Article

Use of the PET ligand florbetapir for in vivo imaging of pancreatic islet amyloid deposits in hIAPP transgenic mice

Authors: Andrew T. Templin, Daniel T. Meier, Joshua R. Willard, Tami Wolden-Hanson, Kelly Conway, Yin-Guo Lin, Patrick J. Gillespie, Krister B. Bokvist, Giorgio Attardo, Steven E. Kahn, Donalyn Scheuner, Rebecca L. Hull

Published in: Diabetologia | Issue 10/2018

Login to get access

Abstract

Aims/hypothesis

Islet amyloid deposits contribute to beta cell dysfunction and death in most individuals with type 2 diabetes but non-invasive methods to determine the presence of these pathological protein aggregates are currently not available. Therefore, we examined whether florbetapir, a radiopharmaceutical agent used for detection of amyloid-β deposits in the brain, also allows identification of islet amyloid in the pancreas.

Methods

Saturation binding assays were used to determine the affinity of florbetapir for human islet amyloid polypeptide (hIAPP) aggregates in vitro. Islet amyloid-prone transgenic mice that express hIAPP in their beta cells and amyloid-free non-transgenic control mice were used to examine the ability of florbetapir to detect islet amyloid deposits in vitro, in vivo and ex vivo. Mice or mouse pancreases were subjected to autoradiographic, histochemical and/or positron emission tomography (PET) analyses to assess the utility of florbetapir in identifying islet amyloid.

Results

In vitro, florbetapir bound synthetic hIAPP fibrils with a dissociation constant of 7.9 nmol/l. Additionally, florbetapir bound preferentially to amyloid-containing hIAPP transgenic vs amyloid-free non-transgenic mouse pancreas sections in vitro, as determined by autoradiography (16,475 ± 5581 vs 5762 ± 575 density/unit area, p < 0.05). In hIAPP transgenic and non-transgenic mice fed a high-fat diet for 1 year, intravenous administration of florbetapir followed by PET scanning showed that the florbetapir signal was significantly higher in amyloid-laden hIAPP transgenic vs amyloid-free non-transgenic pancreases in vivo during the first 5 min of the scan (36.83 ± 2.22 vs 29.34 ± 2.03 standardised uptake value × min, p < 0.05). Following PET, pancreases were excised and florbetapir uptake was determined ex vivo by γ counting. Pancreatic uptake of florbetapir was significantly correlated with the degree of islet amyloid deposition, the latter assessed by histochemistry (r = 0.74, p < 0.001).

Conclusions/interpretation

Florbetapir binds to islet amyloid deposits in a specific and quantitative manner. In the future, florbetapir may be useful as a non-invasive tool to identify islet amyloid deposits in humans.
Appendix
Available only for authorised users
Literature
1.
go back to reference Westermark P, Grimelius L (1973) The pancreatic islet cells in insular amyloidosis in human diabetic and non-diabetic adults. Acta Pathol Microbiol Scand 81:291–300 Westermark P, Grimelius L (1973) The pancreatic islet cells in insular amyloidosis in human diabetic and non-diabetic adults. Acta Pathol Microbiol Scand 81:291–300
2.
go back to reference Jurgens CA, Toukatly MN, Fligner CL et al (2011) β-Cell loss and β-cell apoptosis in human type 2 diabetes are related to islet amyloid deposition. Am J Pathol 178:2632–2640CrossRefPubMedPubMedCentral Jurgens CA, Toukatly MN, Fligner CL et al (2011) β-Cell loss and β-cell apoptosis in human type 2 diabetes are related to islet amyloid deposition. Am J Pathol 178:2632–2640CrossRefPubMedPubMedCentral
3.
go back to reference Hull RL, Westermark GT, Westermark P, Kahn SE (2004) Islet amyloid: a critical entity in the pathogenesis of type 2 diabetes. J Clin Endocrinol Metab 89:3629–3643CrossRefPubMed Hull RL, Westermark GT, Westermark P, Kahn SE (2004) Islet amyloid: a critical entity in the pathogenesis of type 2 diabetes. J Clin Endocrinol Metab 89:3629–3643CrossRefPubMed
4.
go back to reference Butler AE, Janson J, Bonner-Weir S, Ritzel R, Rizza RA, Butler PC (2003) β-Cell deficit and increased beta-cell apoptosis in humans with type 2 diabetes. Diabetes 52:102–110CrossRefPubMed Butler AE, Janson J, Bonner-Weir S, Ritzel R, Rizza RA, Butler PC (2003) β-Cell deficit and increased beta-cell apoptosis in humans with type 2 diabetes. Diabetes 52:102–110CrossRefPubMed
5.
go back to reference Westermark GT, Davalli AM, Secchi A et al (2012) Further evidence for amyloid deposition in clinical pancreatic islet grafts. Transplantation 93:219–223CrossRefPubMedPubMedCentral Westermark GT, Davalli AM, Secchi A et al (2012) Further evidence for amyloid deposition in clinical pancreatic islet grafts. Transplantation 93:219–223CrossRefPubMedPubMedCentral
6.
go back to reference Davalli AM, Perego L, Bertuzzi F et al (2008) Disproportionate hyperproinsulinemia, β-cell restricted prohormone convertase 2 deficiency, and cell cycle inhibitors expression by human islets transplanted into athymic nude mice: insights into nonimmune-mediated mechanisms of delayed islet graft failure. Cell Transplant 17:1323–1336CrossRefPubMed Davalli AM, Perego L, Bertuzzi F et al (2008) Disproportionate hyperproinsulinemia, β-cell restricted prohormone convertase 2 deficiency, and cell cycle inhibitors expression by human islets transplanted into athymic nude mice: insights into nonimmune-mediated mechanisms of delayed islet graft failure. Cell Transplant 17:1323–1336CrossRefPubMed
7.
go back to reference Westermark P, Wernstedt C, Wilander E, Hayden DW, O’Brien TD, Johnson KH (1987) Amyloid fibrils in human insulinoma and islets of Langerhans of the diabetic cat are derived from a neuropeptide-like protein also present in normal islet cells. Proc Natl Acad Sci U S A 84:3881–3885CrossRefPubMedPubMedCentral Westermark P, Wernstedt C, Wilander E, Hayden DW, O’Brien TD, Johnson KH (1987) Amyloid fibrils in human insulinoma and islets of Langerhans of the diabetic cat are derived from a neuropeptide-like protein also present in normal islet cells. Proc Natl Acad Sci U S A 84:3881–3885CrossRefPubMedPubMedCentral
8.
go back to reference Cooper GJ, Willis AC, Clark A, Turner RC, Sim RB, Reid KB (1987) Purification and characterization of a peptide from amyloid-rich pancreases of type 2 diabetic patients. Proc Natl Acad Sci U S A 84:8628–8632CrossRefPubMedPubMedCentral Cooper GJ, Willis AC, Clark A, Turner RC, Sim RB, Reid KB (1987) Purification and characterization of a peptide from amyloid-rich pancreases of type 2 diabetic patients. Proc Natl Acad Sci U S A 84:8628–8632CrossRefPubMedPubMedCentral
9.
go back to reference Kahn SE, D’Alessio DA, Schwartz MW et al (1990) Evidence of cosecretion of islet amyloid polypeptide and insulin by β-cells. Diabetes 39:634–638CrossRefPubMed Kahn SE, D’Alessio DA, Schwartz MW et al (1990) Evidence of cosecretion of islet amyloid polypeptide and insulin by β-cells. Diabetes 39:634–638CrossRefPubMed
10.
go back to reference Verchere CB, D’Alessio DA, Palmiter RD et al (1996) Islet amyloid formation associated with hyperglycemia in transgenic mice with pancreatic beta cell expression of human islet amyloid polypeptide. Proc Natl Acad Sci U S A 93:3492–3496CrossRefPubMedPubMedCentral Verchere CB, D’Alessio DA, Palmiter RD et al (1996) Islet amyloid formation associated with hyperglycemia in transgenic mice with pancreatic beta cell expression of human islet amyloid polypeptide. Proc Natl Acad Sci U S A 93:3492–3496CrossRefPubMedPubMedCentral
11.
go back to reference Masters SL, Dunne A, Subramanian SL et al (2010) Activation of the NLRP3 inflammasome by islet amyloid polypeptide provides a mechanism for enhanced IL-1β in type 2 diabetes. Nat Immunol 11:897–904CrossRefPubMedPubMedCentral Masters SL, Dunne A, Subramanian SL et al (2010) Activation of the NLRP3 inflammasome by islet amyloid polypeptide provides a mechanism for enhanced IL-1β in type 2 diabetes. Nat Immunol 11:897–904CrossRefPubMedPubMedCentral
12.
go back to reference Zraika S, Hull RL, Udayasankar J et al (2009) Oxidative stress is induced by islet amyloid formation and time-dependently mediates amyloid-induced beta cell apoptosis. Diabetologia 52:626–635CrossRefPubMedPubMedCentral Zraika S, Hull RL, Udayasankar J et al (2009) Oxidative stress is induced by islet amyloid formation and time-dependently mediates amyloid-induced beta cell apoptosis. Diabetologia 52:626–635CrossRefPubMedPubMedCentral
13.
go back to reference Zraika S, Aston-Mourney K, Marek P et al (2010) Neprilysin impedes islet amyloid formation by inhibition of fibril formation rather than peptide degradation. J Biol Chem 285:18177–18183CrossRefPubMedPubMedCentral Zraika S, Aston-Mourney K, Marek P et al (2010) Neprilysin impedes islet amyloid formation by inhibition of fibril formation rather than peptide degradation. J Biol Chem 285:18177–18183CrossRefPubMedPubMedCentral
14.
go back to reference Aston-Mourney K, Zraika S, Udayasankar J et al (2013) Matrix metalloproteinase-9 reduces islet amyloid formation by degrading islet amyloid polypeptide. J Biol Chem 288:3553–3559CrossRefPubMed Aston-Mourney K, Zraika S, Udayasankar J et al (2013) Matrix metalloproteinase-9 reduces islet amyloid formation by degrading islet amyloid polypeptide. J Biol Chem 288:3553–3559CrossRefPubMed
15.
go back to reference Potter KJ, Scrocchi LA, Warnock GL et al (2009) Amyloid inhibitors enhance survival of cultured human islets. Biochim Biophys Acta 1790:566–574CrossRefPubMed Potter KJ, Scrocchi LA, Warnock GL et al (2009) Amyloid inhibitors enhance survival of cultured human islets. Biochim Biophys Acta 1790:566–574CrossRefPubMed
16.
17.
go back to reference Eriksson O, Laughlin M, Brom M et al (2016) In vivo imaging of beta cells with radiotracers: state of the art, prospects and recommendations for development and use. Diabetologia 59:1340–1349CrossRefPubMed Eriksson O, Laughlin M, Brom M et al (2016) In vivo imaging of beta cells with radiotracers: state of the art, prospects and recommendations for development and use. Diabetologia 59:1340–1349CrossRefPubMed
18.
20.
go back to reference Selvaraju RK, Velikyan I, Johansson L et al (2013) In vivo imaging of the glucagonlike peptide 1 receptor in the pancreas with 68Ga-labeled DO3A-exendin-4. J Nucl Med 54:1458–1463CrossRefPubMed Selvaraju RK, Velikyan I, Johansson L et al (2013) In vivo imaging of the glucagonlike peptide 1 receptor in the pancreas with 68Ga-labeled DO3A-exendin-4. J Nucl Med 54:1458–1463CrossRefPubMed
21.
go back to reference Normandin MD, Petersen KF, Ding Y-S et al (2012) In vivo imaging of endogenous pancreatic β-cell mass in healthy and type 1 diabetic subjects using 18F-fluoropropyl-dihydrotetrabenazine and PET. J Nucl Med 53:908–916CrossRefPubMedPubMedCentral Normandin MD, Petersen KF, Ding Y-S et al (2012) In vivo imaging of endogenous pancreatic β-cell mass in healthy and type 1 diabetic subjects using 18F-fluoropropyl-dihydrotetrabenazine and PET. J Nucl Med 53:908–916CrossRefPubMedPubMedCentral
22.
go back to reference Guo T, Brendel M, Grimmer T, Rominger A, Yakushev I (2016) Predicting regional pattern of longitudinal beta-amyloid accumulation by baseline positron emission tomography. J Nucl Med 58:639–645CrossRefPubMed Guo T, Brendel M, Grimmer T, Rominger A, Yakushev I (2016) Predicting regional pattern of longitudinal beta-amyloid accumulation by baseline positron emission tomography. J Nucl Med 58:639–645CrossRefPubMed
23.
go back to reference Insel PS, Mattsson N, Mackin RS et al (2016) Accelerating rates of cognitive decline and imaging markers associated with β-amyloid pathology. Neurology 86:1887–1896CrossRefPubMedPubMedCentral Insel PS, Mattsson N, Mackin RS et al (2016) Accelerating rates of cognitive decline and imaging markers associated with β-amyloid pathology. Neurology 86:1887–1896CrossRefPubMedPubMedCentral
24.
go back to reference Nakamura T, Iwata A, Ueda K, Namiki C (2016) Clinical implications and appropriate use of amyloid imaging with florbetapir (18F) in diagnosis of patients with Alzheimer disease. Brain Nerve 68:1215–1222PubMed Nakamura T, Iwata A, Ueda K, Namiki C (2016) Clinical implications and appropriate use of amyloid imaging with florbetapir (18F) in diagnosis of patients with Alzheimer disease. Brain Nerve 68:1215–1222PubMed
25.
go back to reference Kayed R, Head E, Thompson JL et al (2003) Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis. Science 300:486–489CrossRefPubMed Kayed R, Head E, Thompson JL et al (2003) Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis. Science 300:486–489CrossRefPubMed
26.
go back to reference Yoshimura M, Ono M, Watanabe H, Kimura H, Saji H (2014) Feasibility of amylin imaging in pancreatic islets with β-amyloid imaging probes. Sci Rep 4:6155CrossRefPubMedPubMedCentral Yoshimura M, Ono M, Watanabe H, Kimura H, Saji H (2014) Feasibility of amylin imaging in pancreatic islets with β-amyloid imaging probes. Sci Rep 4:6155CrossRefPubMedPubMedCentral
27.
go back to reference Yoshimura M, Ono M, Watanabe H, Kimura H, Saji H (2016) Development of 99mTc-labeled pyridyl benzofuran derivatives to detect pancreatic amylin in islet amyloid model mice. Bioconjug Chem 27:1532–1539CrossRefPubMed Yoshimura M, Ono M, Watanabe H, Kimura H, Saji H (2016) Development of 99mTc-labeled pyridyl benzofuran derivatives to detect pancreatic amylin in islet amyloid model mice. Bioconjug Chem 27:1532–1539CrossRefPubMed
28.
go back to reference Romano M, Buratti E (2013) Florbetapir F 18 for brain imaging of β-amyloid plaques. Drugs Today (Barc) 49:181–193 Romano M, Buratti E (2013) Florbetapir F 18 for brain imaging of β-amyloid plaques. Drugs Today (Barc) 49:181–193
29.
go back to reference Yang L, Rieves D, Ganley C (2012) Brain amyloid imaging—FDA approval of florbetapir F18 injection. N Engl J Med 367:885–887CrossRefPubMed Yang L, Rieves D, Ganley C (2012) Brain amyloid imaging—FDA approval of florbetapir F18 injection. N Engl J Med 367:885–887CrossRefPubMed
30.
go back to reference Hull RL, Andrikopoulos S, Verchere CB et al (2003) Increased dietary fat promotes islet amyloid formation and beta-cell secretory dysfunction in a transgenic mouse model of islet amyloid. Diabetes 52:372–379CrossRefPubMed Hull RL, Andrikopoulos S, Verchere CB et al (2003) Increased dietary fat promotes islet amyloid formation and beta-cell secretory dysfunction in a transgenic mouse model of islet amyloid. Diabetes 52:372–379CrossRefPubMed
31.
go back to reference Meier DT, Morcos M, Samarasekera T, Zraika S, Hull RL, Kahn SE (2014) Islet amyloid formation is an important determinant for inducing islet inflammation in high-fat-fed human IAPP transgenic mice. Diabetologia 57:1884–1888CrossRefPubMedPubMedCentral Meier DT, Morcos M, Samarasekera T, Zraika S, Hull RL, Kahn SE (2014) Islet amyloid formation is an important determinant for inducing islet inflammation in high-fat-fed human IAPP transgenic mice. Diabetologia 57:1884–1888CrossRefPubMedPubMedCentral
32.
33.
go back to reference Klunk WE, Wang Y, Huang G et al (2003) The binding of 2-(4′-methylaminophenyl)benzothiazole to postmortem brain homogenates is dominated by the amyloid component. J Neurosci 23:2086–2092CrossRefPubMed Klunk WE, Wang Y, Huang G et al (2003) The binding of 2-(4′-methylaminophenyl)benzothiazole to postmortem brain homogenates is dominated by the amyloid component. J Neurosci 23:2086–2092CrossRefPubMed
34.
go back to reference D’Alessio DA, Verchere CB, Kahn SE et al (1994) Pancreatic expression and secretion of human islet amyloid polypeptide in a transgenic mouse. Diabetes 43:1457–1461CrossRefPubMed D’Alessio DA, Verchere CB, Kahn SE et al (1994) Pancreatic expression and secretion of human islet amyloid polypeptide in a transgenic mouse. Diabetes 43:1457–1461CrossRefPubMed
35.
go back to reference Trembath L, Newell M, Devous MD (2015) Technical considerations in brain amyloid PET imaging with 18F-florbetapir. J Nucl Med Technol 43:175–184CrossRefPubMed Trembath L, Newell M, Devous MD (2015) Technical considerations in brain amyloid PET imaging with 18F-florbetapir. J Nucl Med Technol 43:175–184CrossRefPubMed
36.
go back to reference Hull RL, Shen Z-P, Watts MR et al (2005) Long-term treatment with rosiglitazone and metformin reduces the extent of, but does not prevent, islet amyloid deposition in mice expressing the gene for human islet amyloid polypeptide. Diabetes 54:2235–2244CrossRefPubMed Hull RL, Shen Z-P, Watts MR et al (2005) Long-term treatment with rosiglitazone and metformin reduces the extent of, but does not prevent, islet amyloid deposition in mice expressing the gene for human islet amyloid polypeptide. Diabetes 54:2235–2244CrossRefPubMed
37.
go back to reference Hull RL, Willard JR, Struck MD et al (2017) High fat feeding unmasks variable insulin responses in male C57BL/6 mouse substrains. J Endocrinol 233:53–64CrossRefPubMedPubMedCentral Hull RL, Willard JR, Struck MD et al (2017) High fat feeding unmasks variable insulin responses in male C57BL/6 mouse substrains. J Endocrinol 233:53–64CrossRefPubMedPubMedCentral
39.
40.
go back to reference Guardado-Mendoza R, Davalli AM, Chavez AO et al (2009) Pancreatic islet amyloidosis, β-cell apoptosis, and α-cell proliferation are determinants of islet remodeling in type-2 diabetic baboons. Proc Natl Acad Sci 106:13992–13997CrossRefPubMed Guardado-Mendoza R, Davalli AM, Chavez AO et al (2009) Pancreatic islet amyloidosis, β-cell apoptosis, and α-cell proliferation are determinants of islet remodeling in type-2 diabetic baboons. Proc Natl Acad Sci 106:13992–13997CrossRefPubMed
41.
go back to reference Guardado-Mendoza R, Perego C, Finzi G et al (2015) Delta cell death in the islet of Langerhans and the progression from normal glucose tolerance to type 2 diabetes in non-human primates (baboon, Papio hamadryas). Diabetologia 58:1814–1826CrossRefPubMedPubMedCentral Guardado-Mendoza R, Perego C, Finzi G et al (2015) Delta cell death in the islet of Langerhans and the progression from normal glucose tolerance to type 2 diabetes in non-human primates (baboon, Papio hamadryas). Diabetologia 58:1814–1826CrossRefPubMedPubMedCentral
42.
go back to reference Kahn SE, Haffner SM, Heise MA et al (2006) Glycemic durability of rosiglitazone, metformin, or glyburide monotherapy. N Engl J Med 355:2427–2443CrossRefPubMed Kahn SE, Haffner SM, Heise MA et al (2006) Glycemic durability of rosiglitazone, metformin, or glyburide monotherapy. N Engl J Med 355:2427–2443CrossRefPubMed
43.
go back to reference Kahn SE, Lachin JM, Zinman B et al (2011) Effects of rosiglitazone, glyburide, and metformin on beta-cell function and insulin sensitivity in ADOPT. Diabetes 60:1552–1560CrossRefPubMedPubMedCentral Kahn SE, Lachin JM, Zinman B et al (2011) Effects of rosiglitazone, glyburide, and metformin on beta-cell function and insulin sensitivity in ADOPT. Diabetes 60:1552–1560CrossRefPubMedPubMedCentral
44.
go back to reference Aston-Mourney K, Subramanian SL, Zraika S et al (2013) One year of sitagliptin treatment protects against islet amyloid-associated β-cell loss and does not induce pancreatitis or pancreatic neoplasia in mice. Am J Physiol Endocrinol Metab 305:E475–E484CrossRefPubMedPubMedCentral Aston-Mourney K, Subramanian SL, Zraika S et al (2013) One year of sitagliptin treatment protects against islet amyloid-associated β-cell loss and does not induce pancreatitis or pancreatic neoplasia in mice. Am J Physiol Endocrinol Metab 305:E475–E484CrossRefPubMedPubMedCentral
45.
go back to reference Nemmi F, Saint-Aubert L, Adel D et al (2014) Insight on AV-45 binding in white and grey matter from histogram analysis: a study on early Alzheimer’s disease patients and healthy subjects. Eur J Nucl Med Mol Imaging 41:1408–1418CrossRefPubMed Nemmi F, Saint-Aubert L, Adel D et al (2014) Insight on AV-45 binding in white and grey matter from histogram analysis: a study on early Alzheimer’s disease patients and healthy subjects. Eur J Nucl Med Mol Imaging 41:1408–1418CrossRefPubMed
46.
go back to reference Maclean N, Ogilvie RF (1955) Quantitative estimation of the pancreatic islet tissue in diabetic subjects. Diabetes 4:367–376CrossRefPubMed Maclean N, Ogilvie RF (1955) Quantitative estimation of the pancreatic islet tissue in diabetic subjects. Diabetes 4:367–376CrossRefPubMed
47.
go back to reference Hanley SC, Austin E, Assouline-Thomas B et al (2010) β-Cell mass dynamics and islet cell plasticity in human type 2 diabetes. Endocrinology 151:1462–1472CrossRefPubMed Hanley SC, Austin E, Assouline-Thomas B et al (2010) β-Cell mass dynamics and islet cell plasticity in human type 2 diabetes. Endocrinology 151:1462–1472CrossRefPubMed
48.
go back to reference Westermark P (1972) Quantitative studies on amyloid in the islets of Langerhans. Ups J Med Sci 77:91–94CrossRefPubMed Westermark P (1972) Quantitative studies on amyloid in the islets of Langerhans. Ups J Med Sci 77:91–94CrossRefPubMed
49.
go back to reference Clark A, Wells CA, Buley ID et al (1988) Islet amyloid, increased α-cells, reduced β-cells and exocrine fibrosis: quantitative changes in the pancreas in type 2 diabetes. Diabetes Res 9:151–159PubMed Clark A, Wells CA, Buley ID et al (1988) Islet amyloid, increased α-cells, reduced β-cells and exocrine fibrosis: quantitative changes in the pancreas in type 2 diabetes. Diabetes Res 9:151–159PubMed
Metadata
Title
Use of the PET ligand florbetapir for in vivo imaging of pancreatic islet amyloid deposits in hIAPP transgenic mice
Authors
Andrew T. Templin
Daniel T. Meier
Joshua R. Willard
Tami Wolden-Hanson
Kelly Conway
Yin-Guo Lin
Patrick J. Gillespie
Krister B. Bokvist
Giorgio Attardo
Steven E. Kahn
Donalyn Scheuner
Rebecca L. Hull
Publication date
01-10-2018
Publisher
Springer Berlin Heidelberg
Published in
Diabetologia / Issue 10/2018
Print ISSN: 0012-186X
Electronic ISSN: 1432-0428
DOI
https://doi.org/10.1007/s00125-018-4695-y

Other articles of this Issue 10/2018

Diabetologia 10/2018 Go to the issue