Skip to main content
Top
Published in: Diabetologia 9/2014

01-09-2014 | Short Communication

Islet amyloid formation is an important determinant for inducing islet inflammation in high-fat-fed human IAPP transgenic mice

Authors: Daniel T. Meier, Mary Morcos, Thanya Samarasekera, Sakeneh Zraika, Rebecca L. Hull, Steven E. Kahn

Published in: Diabetologia | Issue 9/2014

Login to get access

Abstract

Aims/hypothesis

Amyloid deposition and inflammation are characteristic of islet pathology in type 2 diabetes. The aim of this study was to determine whether islet amyloid formation is required for the development of islet inflammation in vivo.

Methods

Human islet amyloid polypeptide transgenic mice and non-transgenic littermates (the latter incapable of forming islet amyloid) were fed a low-fat (10%) or high-fat (60%) diet for 12 months; high-fat feeding induces islet amyloid formation in transgenic mice. At the conclusion of the study, glycaemia, beta cell function, islet amyloid deposition, markers of islet inflammation and islet macrophage infiltration were measured.

Results

Fasting plasma glucose levels did not differ by diet or genotype. Insulin release in response to i.v. glucose was significantly greater in both high vs low fat groups, and significantly lower in both transgenic compared with non-transgenic groups. Only high-fat-fed transgenic mice developed islet amyloid and showed a trend towards reduced beta cell area. Compared with islets from low-fat-fed transgenic or high-fat-fed non-transgenic mice, islets of high-fat-fed transgenic mice displayed a significant increase in the expression of genes encoding chemokines (Ccl2, Cxcl1), macrophage/dendritic cell markers (Emr1, Itgax), NACHT, LRR and PYD domains-containing protein 3 (NLRP3) inflammasome components (Nlrp3, Pycard, Casp1) and proinflammatory cytokines (Il1b, Tnf, Il6), as well as increased F4/80 staining, consistent with increased islet inflammation and macrophage infiltration.

Conclusions/interpretation

Our results indicate that islet amyloid formation is required for the induction of islet inflammation in this long-term high-fat-diet model, and thus could promote beta cell dysfunction in type 2 diabetes via islet inflammation.

Literature
  1. Hull RL, Westermark GT, Westermark P, Kahn SE (2004) Islet amyloid: a critical entity in the pathogenesis of type 2 diabetes. J Clin Endocrinol Metab 89:3629–3643PubMedView Article
  2. Donath MY, Boni-Schnetzler M, Ellingsgaard H, Halban PA, Ehses JA (2010) Cytokine production by islets in health and diabetes: cellular origin, regulation and function. Trends Endocrinol Metab 21:261–267PubMedView Article
  3. Jurgens CA, Toukatly MN, Fligner CL et al (2011) Beta-cell loss and beta-cell apoptosis in human type 2 diabetes are related to islet amyloid deposition. Am J Pathol 178:2632–2640PubMed CentralPubMedView Article
  4. Larsen CM, Faulenbach M, Vaag A et al (2007) Interleukin-1-receptor antagonist in type 2 diabetes mellitus. N Engl J Med 356:1517–1526PubMedView Article
  5. Westwell-Roper C, Dai DL, Soukhatcheva G et al (2011) IL-1 blockade attenuates islet amyloid polypeptide-induced proinflammatory cytokine release and pancreatic islet graft dysfunction. J Immunol 187:2755–2765PubMedView Article
  6. Masters SL, Dunne A, Subramanian SL et al (2010) Activation of the NLRP3 inflammasome by islet amyloid polypeptide provides a mechanism for enhanced IL-1β in type 2 diabetes. Nat Immunol 11:897–904PubMed CentralPubMedView Article
  7. Westwell-Roper CY, Ehses JA, Verchere CB (2013) Resident macrophages mediate islet amyloid polypeptide-induced islet IL-1β production and beta cell dysfunction. Diabetes 63:1698–1711
  8. Hull RL, Andrikopoulos S, Verchere CB et al (2003) Increased dietary fat promotes islet amyloid formation and beta-cell secretory dysfunction in a transgenic mouse model of islet amyloid. Diabetes 52:372–379PubMedView Article
  9. Zraika S, Hull RL, Udayasankar J et al (2007) Identification of the amyloid-degrading enzyme neprilysin in mouse islets and potential role in islet amyloidogenesis. Diabetes 56:304–310PubMedView Article
Metadata
Title
Islet amyloid formation is an important determinant for inducing islet inflammation in high-fat-fed human IAPP transgenic mice
Authors
Daniel T. Meier
Mary Morcos
Thanya Samarasekera
Sakeneh Zraika
Rebecca L. Hull
Steven E. Kahn
Publication date
01-09-2014
Publisher
Springer Berlin Heidelberg
Published in
Diabetologia / Issue 9/2014
Print ISSN: 0012-186X
Electronic ISSN: 1432-0428
DOI
https://doi.org/10.1007/s00125-014-3304-y

Other articles of this Issue 9/2014

Diabetologia 9/2014 Go to the issue