Skip to main content
Top
Published in: Diabetologia 7/2018

Open Access 01-07-2018 | Article

Patterns of differential gene expression in a cellular model of human islet development, and relationship to type 2 diabetes predisposition

Authors: Marta Perez-Alcantara, Christian Honoré, Agata Wesolowska-Andersen, Anna L. Gloyn, Mark I. McCarthy, Mattias Hansson, Nicola L. Beer, Martijn van de Bunt

Published in: Diabetologia | Issue 7/2018

Login to get access

Abstract

Aims/hypothesis

Most type 2 diabetes-associated genetic variants identified via genome-wide association studies (GWASs) appear to act via the pancreatic islet. Observed defects in insulin secretion could result from an impact of these variants on islet development and/or the function of mature islets. Most functional studies have focused on the latter, given limitations regarding access to human fetal islet tissue. Capitalising upon advances in in vitro differentiation, we characterised the transcriptomes of human induced pluripotent stem cell (iPSC) lines differentiated along the pancreatic endocrine lineage, and explored the contribution of altered islet development to the pathogenesis of type 2 diabetes.

Methods

We performed whole-transcriptome RNA sequencing of human iPSC lines from three independent donors, at baseline and at seven subsequent stages during in vitro islet differentiation. Differentially expressed genes (q < 0.01, log2 fold change [FC] > 1) were assigned to the stages at which they were most markedly upregulated. We used these data to characterise upstream transcription factors directing different stages of development, and to explore the relationship between RNA expression profiles and genes mapping to type 2 diabetes GWAS signals.

Results

We identified 9409 differentially expressed genes across all stages, including many known markers of islet development. Integration of differential expression data with information on transcription factor motifs highlighted the potential contribution of REST to islet development. Over 70% of genes mapping within type 2 diabetes-associated credible intervals showed peak differential expression during islet development, and type 2 diabetes GWAS loci of largest effect (including TCF7L2; log2FC = 1.2; q = 8.5 × 10−10) were notably enriched in genes differentially expressed at the posterior foregut stage (q = 0.002), as calculated by gene set enrichment analyses. In a complementary analysis of enrichment, genes differentially expressed in the final, beta-like cell stage of in vitro differentiation were significantly enriched (hypergeometric test, permuted p value <0.05) for genes within the credible intervals of type 2 diabetes GWAS loci.

Conclusions/interpretation

The present study characterises RNA expression profiles during human islet differentiation, identifies potential transcriptional regulators of the differentiation process, and suggests that the inherited predisposition to type 2 diabetes is partly mediated through modulation of islet development.

Data availability

Sequence data for this study has been deposited at the European Genome-phenome Archive (EGA), under accession number EGAS00001002721.
Appendix
Available only for authorised users
Literature
2.
go back to reference Benner C, van der Meulen T, Cacéres E, Tigyi K, Donaldson CJ, Huising MO (2014) The transcriptional landscape of mouse beta cells compared to human beta cells reveals notable species differences in long non-coding RNA and protein-coding gene expression. BMC Genomics 15:620CrossRefPubMedPubMedCentral Benner C, van der Meulen T, Cacéres E, Tigyi K, Donaldson CJ, Huising MO (2014) The transcriptional landscape of mouse beta cells compared to human beta cells reveals notable species differences in long non-coding RNA and protein-coding gene expression. BMC Genomics 15:620CrossRefPubMedPubMedCentral
3.
go back to reference van De Bunt M, Manning Fox JE, Dai X et al (2015) Transcript expression data from human islets links regulatory signals from genome-wide association studies for type 2 diabetes and glycemic traits to their downstream effectors. PLoS Genet 11:e1005694CrossRefPubMedPubMedCentral van De Bunt M, Manning Fox JE, Dai X et al (2015) Transcript expression data from human islets links regulatory signals from genome-wide association studies for type 2 diabetes and glycemic traits to their downstream effectors. PLoS Genet 11:e1005694CrossRefPubMedPubMedCentral
4.
go back to reference Travers ME, Mackay DJG, Nitert MD et al (2013) Insights into the molecular mechanism for type 2 diabetes susceptibility at the KCNQ1 locus from temporal changes in imprinting status in human islets. Diabetes 62:987–992CrossRefPubMedPubMedCentral Travers ME, Mackay DJG, Nitert MD et al (2013) Insights into the molecular mechanism for type 2 diabetes susceptibility at the KCNQ1 locus from temporal changes in imprinting status in human islets. Diabetes 62:987–992CrossRefPubMedPubMedCentral
6.
go back to reference Jennings RE, Berry AA, Strutt JP et al (2015) Human pancreas development. Development 142:3126–3137CrossRefPubMed Jennings RE, Berry AA, Strutt JP et al (2015) Human pancreas development. Development 142:3126–3137CrossRefPubMed
7.
go back to reference Bruin JE, Erener S, Vela J et al (2014) Characterization of polyhormonal insulin-producing cells derived in vitro from human embryonic stem cells. Stem Cell Res 12:194–208CrossRefPubMed Bruin JE, Erener S, Vela J et al (2014) Characterization of polyhormonal insulin-producing cells derived in vitro from human embryonic stem cells. Stem Cell Res 12:194–208CrossRefPubMed
9.
go back to reference Rezania A, Bruin JE, Arora P et al (2014) Reversal of diabetes with insulin-producing cells derived in vitro from human pluripotent stem cells. Nat Biotechnol 32:1121–1133CrossRefPubMed Rezania A, Bruin JE, Arora P et al (2014) Reversal of diabetes with insulin-producing cells derived in vitro from human pluripotent stem cells. Nat Biotechnol 32:1121–1133CrossRefPubMed
10.
go back to reference van de Bunt M, Lako M, Barrett A et al (2016) Insights into islet development and biology through characterization of a human iPSC-derived endocrine pancreas model. Islets 8:83–95CrossRefPubMedPubMedCentral van de Bunt M, Lako M, Barrett A et al (2016) Insights into islet development and biology through characterization of a human iPSC-derived endocrine pancreas model. Islets 8:83–95CrossRefPubMedPubMedCentral
11.
go back to reference Yang C, Xu Y, Yu M et al (2017) Induced pluripotent stem cell modelling of HLHS underlines the contribution of dysfunctional NOTCH signalling to impaired cardiogenesis. Hum Mol Genet 26:3031–3045CrossRefPubMedPubMedCentral Yang C, Xu Y, Yu M et al (2017) Induced pluripotent stem cell modelling of HLHS underlines the contribution of dysfunctional NOTCH signalling to impaired cardiogenesis. Hum Mol Genet 26:3031–3045CrossRefPubMedPubMedCentral
12.
go back to reference Dobin A, Gingeras TR (2015) Mapping RNA-seq reads with STAR. Curr Protoc Bioinformatics 51:11.14.1–11.14.19CrossRef Dobin A, Gingeras TR (2015) Mapping RNA-seq reads with STAR. Curr Protoc Bioinformatics 51:11.14.1–11.14.19CrossRef
13.
go back to reference Liao Y, Smyth GK, Shi W (2014) featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30:923–930CrossRefPubMed Liao Y, Smyth GK, Shi W (2014) featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30:923–930CrossRefPubMed
14.
go back to reference Xie R, Everett LJ, Lim H-W et al (2013) Dynamic chromatin remodeling mediated by Polycomb proteins orchestrates pancreatic differentiation of human embryonic stem cells. Cell Stem Cell 12:224–237CrossRefPubMedPubMedCentral Xie R, Everett LJ, Lim H-W et al (2013) Dynamic chromatin remodeling mediated by Polycomb proteins orchestrates pancreatic differentiation of human embryonic stem cells. Cell Stem Cell 12:224–237CrossRefPubMedPubMedCentral
17.
go back to reference Ritchie ME, Phipson B, Wu D et al (2015) limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res 43:e47CrossRefPubMedPubMedCentral Ritchie ME, Phipson B, Wu D et al (2015) limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res 43:e47CrossRefPubMedPubMedCentral
18.
go back to reference Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. Source J R Stat Soc Ser B 57:289–300 Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. Source J R Stat Soc Ser B 57:289–300
19.
go back to reference Falcon S, Gentleman R (2007) Using GOstats to test gene lists for GO term association. Bioinformatics 23:257–258CrossRefPubMed Falcon S, Gentleman R (2007) Using GOstats to test gene lists for GO term association. Bioinformatics 23:257–258CrossRefPubMed
20.
go back to reference Verfaillie A, Imrichová H, Van de Sande B et al (2014) iRegulon: from a gene list to a gene regulatory network using large motif and track collections. PLoS Comput Biol 10:e1003731CrossRefPubMedPubMedCentral Verfaillie A, Imrichová H, Van de Sande B et al (2014) iRegulon: from a gene list to a gene regulatory network using large motif and track collections. PLoS Comput Biol 10:e1003731CrossRefPubMedPubMedCentral
21.
go back to reference Segrè AV, Groop L, Mootha VK et al (2010) Common inherited variation in mitochondrial genes is not enriched for associations with type 2 diabetes or related glycemic traits. PLoS Genet 6:e1001058CrossRefPubMedPubMedCentral Segrè AV, Groop L, Mootha VK et al (2010) Common inherited variation in mitochondrial genes is not enriched for associations with type 2 diabetes or related glycemic traits. PLoS Genet 6:e1001058CrossRefPubMedPubMedCentral
22.
go back to reference Subramanian A, Tamayo P, Mootha VK et al (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A 102:15545–15550CrossRefPubMedPubMedCentral Subramanian A, Tamayo P, Mootha VK et al (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A 102:15545–15550CrossRefPubMedPubMedCentral
23.
go back to reference Mootha VK, Lindgren CM, Eriksson K-F et al (2003) PGC-1α-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat Genet 34:267–273CrossRefPubMed Mootha VK, Lindgren CM, Eriksson K-F et al (2003) PGC-1α-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat Genet 34:267–273CrossRefPubMed
24.
25.
26.
go back to reference Horikoshi M, Mӓgi R, van de Bunt M et al (2015) Discovery and fine-mapping of glycaemic and obesity-related trait loci using high-density imputation. PLoS Genet 11:e1005230CrossRefPubMedPubMedCentral Horikoshi M, Mӓgi R, van de Bunt M et al (2015) Discovery and fine-mapping of glycaemic and obesity-related trait loci using high-density imputation. PLoS Genet 11:e1005230CrossRefPubMedPubMedCentral
27.
go back to reference Dimas AS, Lagou V, Barker A et al (2014) Impact of type 2 diabetes susceptibility variants on quantitative glycemic traits reveals mechanistic heterogeneity. Diabetes 63:2158–2171CrossRefPubMedPubMedCentral Dimas AS, Lagou V, Barker A et al (2014) Impact of type 2 diabetes susceptibility variants on quantitative glycemic traits reveals mechanistic heterogeneity. Diabetes 63:2158–2171CrossRefPubMedPubMedCentral
28.
go back to reference Wood AR, Jonsson A, Jackson AU et al (2017) A genome-wide association study of IVGTT-based measures of first phase insulin secretion refines the underlying physiology of type 2 diabetes variants. Diabetes 66:2296–2309CrossRefPubMedPubMedCentral Wood AR, Jonsson A, Jackson AU et al (2017) A genome-wide association study of IVGTT-based measures of first phase insulin secretion refines the underlying physiology of type 2 diabetes variants. Diabetes 66:2296–2309CrossRefPubMedPubMedCentral
29.
go back to reference Lango Allen H, Flanagan SE, Shaw-Smith C et al (2011) GATA6 haploinsufficiency causes pancreatic agenesis in humans. Nat Genet 44:20–22CrossRef Lango Allen H, Flanagan SE, Shaw-Smith C et al (2011) GATA6 haploinsufficiency causes pancreatic agenesis in humans. Nat Genet 44:20–22CrossRef
30.
go back to reference Shaw-Smith C, De Franco E, Lango Allen H et al (2014) GATA4 mutations are a cause of neonatal and childhood-onset diabetes. Diabetes 63:2888–2894CrossRefPubMed Shaw-Smith C, De Franco E, Lango Allen H et al (2014) GATA4 mutations are a cause of neonatal and childhood-onset diabetes. Diabetes 63:2888–2894CrossRefPubMed
32.
go back to reference Boschmann J, Engeli JM, Engeli S et al (2010) LMNA mutations, skeletal muscle lipid metabolism, and insulin resistance. J Clin Endocrinol Metab 95:1634–1643CrossRefPubMedPubMedCentral Boschmann J, Engeli JM, Engeli S et al (2010) LMNA mutations, skeletal muscle lipid metabolism, and insulin resistance. J Clin Endocrinol Metab 95:1634–1643CrossRefPubMedPubMedCentral
33.
go back to reference Kowluru A (2000) Evidence for the carboxyl methylation of nuclear lamin-B in the pancreatic beta cell. Biochem Biophys Res Commun 268:249–254CrossRefPubMed Kowluru A (2000) Evidence for the carboxyl methylation of nuclear lamin-B in the pancreatic beta cell. Biochem Biophys Res Commun 268:249–254CrossRefPubMed
34.
go back to reference Smart NG, Apelqvist SA, Gu X et al (2006) Conditional expression of Smad7 in pancreatic beta cells disrupts TGF-beta signaling and induces reversible diabetes mellitus. PLoS Biol 4:e39CrossRefPubMedPubMedCentral Smart NG, Apelqvist SA, Gu X et al (2006) Conditional expression of Smad7 in pancreatic beta cells disrupts TGF-beta signaling and induces reversible diabetes mellitus. PLoS Biol 4:e39CrossRefPubMedPubMedCentral
35.
go back to reference Hua H, Zhang Y-Q, Dabernat S et al (2006) BMP4 regulates pancreatic progenitor cell expansion through Id2. J Biol Chem 281:13574–13580CrossRefPubMed Hua H, Zhang Y-Q, Dabernat S et al (2006) BMP4 regulates pancreatic progenitor cell expansion through Id2. J Biol Chem 281:13574–13580CrossRefPubMed
36.
37.
go back to reference Mosedale M, Egodage S, Calma RC, Chi N-W, Chessler SD (2012) Neurexin-1α contributes to insulin-containing secretory granule docking. J Biol Chem 287:6350–6361CrossRefPubMedPubMedCentral Mosedale M, Egodage S, Calma RC, Chi N-W, Chessler SD (2012) Neurexin-1α contributes to insulin-containing secretory granule docking. J Biol Chem 287:6350–6361CrossRefPubMedPubMedCentral
38.
go back to reference Wu Z-Y, Zhu L-J, Zou N et al (2012) AMPA receptors regulate exocytosis and insulin release in pancreatic β cells. Traffic 13:1124–1139CrossRefPubMed Wu Z-Y, Zhu L-J, Zou N et al (2012) AMPA receptors regulate exocytosis and insulin release in pancreatic β cells. Traffic 13:1124–1139CrossRefPubMed
40.
go back to reference Atouf F, Czernichow P, Scharfmann R (1997) Expression of neuronal traits in pancreatic beta cells. J Biol Chem 272:1929CrossRefPubMed Atouf F, Czernichow P, Scharfmann R (1997) Expression of neuronal traits in pancreatic beta cells. J Biol Chem 272:1929CrossRefPubMed
41.
go back to reference Martin D, Kim Y-H, Sever D, Mao C-A, Haefliger J-A, Grapin-Botton A (2015) REST represses a subset of the pancreatic endocrine differentiation program. Dev Biol 405:316–327CrossRefPubMedPubMedCentral Martin D, Kim Y-H, Sever D, Mao C-A, Haefliger J-A, Grapin-Botton A (2015) REST represses a subset of the pancreatic endocrine differentiation program. Dev Biol 405:316–327CrossRefPubMedPubMedCentral
42.
go back to reference Solimena M, Schulte AM, Marselli L et al (2018) Systems biology of the IMIDIA biobank from organ donors and pancreatectomised patients defines a novel transcriptomic signature of islets from individuals with type 2 diabetes. Diabetologia 61:641–657CrossRefPubMed Solimena M, Schulte AM, Marselli L et al (2018) Systems biology of the IMIDIA biobank from organ donors and pancreatectomised patients defines a novel transcriptomic signature of islets from individuals with type 2 diabetes. Diabetologia 61:641–657CrossRefPubMed
43.
go back to reference Morris A, Voight B, Teslovich T (2012) Large-scale association analysis provides insights into the genetic architecture and pathophysiology of type 2 diabetes. Nat Genet 44:981–990CrossRefPubMedPubMedCentral Morris A, Voight B, Teslovich T (2012) Large-scale association analysis provides insights into the genetic architecture and pathophysiology of type 2 diabetes. Nat Genet 44:981–990CrossRefPubMedPubMedCentral
44.
45.
go back to reference Gittes GK (2009) Developmental biology of the pancreas: a comprehensive review. Dev Biol 326:4–35CrossRefPubMed Gittes GK (2009) Developmental biology of the pancreas: a comprehensive review. Dev Biol 326:4–35CrossRefPubMed
46.
go back to reference Le Bacquer O, Shu L, Marchand M et al (2011) TCF7L2 splice variants have distinct effects on β-cell turnover and function. Hum Mol Genet 20:1906–1915CrossRefPubMed Le Bacquer O, Shu L, Marchand M et al (2011) TCF7L2 splice variants have distinct effects on β-cell turnover and function. Hum Mol Genet 20:1906–1915CrossRefPubMed
47.
go back to reference Sakhneny L, Rachi E, Epshtein A et al (2018) Pancreatic pericytes support beta-cell function in a Tcf7l2-dependent manner. Diabetes 67:437–447CrossRefPubMed Sakhneny L, Rachi E, Epshtein A et al (2018) Pancreatic pericytes support beta-cell function in a Tcf7l2-dependent manner. Diabetes 67:437–447CrossRefPubMed
48.
go back to reference Boj SF, Van Es JH, Huch M et al (2012) Diabetes risk gene and Wnt effector Tcf7l2/TCF4 controls hepatic response to perinatal and adult metabolic demand. Cell 151:1595–1607CrossRefPubMed Boj SF, Van Es JH, Huch M et al (2012) Diabetes risk gene and Wnt effector Tcf7l2/TCF4 controls hepatic response to perinatal and adult metabolic demand. Cell 151:1595–1607CrossRefPubMed
49.
50.
go back to reference Gaulton KJ, Ferreira T, Lee Y et al (2015) Genetic fine mapping and genomic annotation defines causal mechanisms at type 2 diabetes susceptibility loci. Nat Genet 47:1415–1425CrossRefPubMedPubMedCentral Gaulton KJ, Ferreira T, Lee Y et al (2015) Genetic fine mapping and genomic annotation defines causal mechanisms at type 2 diabetes susceptibility loci. Nat Genet 47:1415–1425CrossRefPubMedPubMedCentral
51.
go back to reference Beer NL, Gloyn AL (2016) Genome-edited human stem cell-derived beta cells: a powerful tool for drilling down on type 2 diabetes GWAS biology. F1000Res 5:F1000 Faculty Rev-1711 Beer NL, Gloyn AL (2016) Genome-edited human stem cell-derived beta cells: a powerful tool for drilling down on type 2 diabetes GWAS biology. F1000Res 5:F1000 Faculty Rev-1711
Metadata
Title
Patterns of differential gene expression in a cellular model of human islet development, and relationship to type 2 diabetes predisposition
Authors
Marta Perez-Alcantara
Christian Honoré
Agata Wesolowska-Andersen
Anna L. Gloyn
Mark I. McCarthy
Mattias Hansson
Nicola L. Beer
Martijn van de Bunt
Publication date
01-07-2018
Publisher
Springer Berlin Heidelberg
Published in
Diabetologia / Issue 7/2018
Print ISSN: 0012-186X
Electronic ISSN: 1432-0428
DOI
https://doi.org/10.1007/s00125-018-4612-4

Other articles of this Issue 7/2018

Diabetologia 7/2018 Go to the issue