Skip to main content
Top
Published in: Diabetologia 3/2018

Open Access 01-03-2018 | Article

Systems biology of the IMIDIA biobank from organ donors and pancreatectomised patients defines a novel transcriptomic signature of islets from individuals with type 2 diabetes

Authors: Michele Solimena, Anke M. Schulte, Lorella Marselli, Florian Ehehalt, Daniela Richter, Manuela Kleeberg, Hassan Mziaut, Klaus-Peter Knoch, Julia Parnis, Marco Bugliani, Afshan Siddiq, Anne Jörns, Frédéric Burdet, Robin Liechti, Mara Suleiman, Daniel Margerie, Farooq Syed, Marius Distler, Robert Grützmann, Enrico Petretto, Aida Moreno-Moral, Carolin Wegbrod, Anke Sönmez, Katja Pfriem, Anne Friedrich, Jörn Meinel, Claes B. Wollheim, Gustavo B. Baretton, Raphael Scharfmann, Everson Nogoceke, Ezio Bonifacio, Dorothée Sturm, Birgit Meyer-Puttlitz, Ugo Boggi, Hans-Detlev Saeger, Franco Filipponi, Mathias Lesche, Paolo Meda, Andreas Dahl, Leonore Wigger, Ioannis Xenarios, Mario Falchi, Bernard Thorens, Jürgen Weitz, Krister Bokvist, Sigurd Lenzen, Guy A. Rutter, Philippe Froguel, Manon von Bülow, Mark Ibberson, Piero Marchetti

Published in: Diabetologia | Issue 3/2018

Login to get access

Abstract

Aims/hypothesis

Pancreatic islet beta cell failure causes type 2 diabetes in humans. To identify transcriptomic changes in type 2 diabetic islets, the Innovative Medicines Initiative for Diabetes: Improving beta-cell function and identification of diagnostic biomarkers for treatment monitoring in Diabetes (IMIDIA) consortium (www.​imidia.​org) established a comprehensive, unique multicentre biobank of human islets and pancreas tissues from organ donors and metabolically phenotyped pancreatectomised patients (PPP).

Methods

Affymetrix microarrays were used to assess the islet transcriptome of islets isolated either by enzymatic digestion from 103 organ donors (OD), including 84 non-diabetic and 19 type 2 diabetic individuals, or by laser capture microdissection (LCM) from surgical specimens of 103 PPP, including 32 non-diabetic, 36 with type 2 diabetes, 15 with impaired glucose tolerance (IGT) and 20 with recent-onset diabetes (<1 year), conceivably secondary to the pancreatic disorder leading to surgery (type 3c diabetes). Bioinformatics tools were used to (1) compare the islet transcriptome of type 2 diabetic vs non-diabetic OD and PPP as well as vs IGT and type 3c diabetes within the PPP group; and (2) identify transcription factors driving gene co-expression modules correlated with insulin secretion ex vivo and glucose tolerance in vivo. Selected genes of interest were validated for their expression and function in beta cells.

Results

Comparative transcriptomic analysis identified 19 genes differentially expressed (false discovery rate ≤0.05, fold change ≥1.5) in type 2 diabetic vs non-diabetic islets from OD and PPP. Nine out of these 19 dysregulated genes were not previously reported to be dysregulated in type 2 diabetic islets. Signature genes included TMEM37, which inhibited Ca2+-influx and insulin secretion in beta cells, and ARG2 and PPP1R1A, which promoted insulin secretion. Systems biology approaches identified HNF1A, PDX1 and REST as drivers of gene co-expression modules correlated with impaired insulin secretion or glucose tolerance, and 14 out of 19 differentially expressed type 2 diabetic islet signature genes were enriched in these modules. None of these signature genes was significantly dysregulated in islets of PPP with impaired glucose tolerance or type 3c diabetes.

Conclusions/interpretation

These studies enabled the stringent definition of a novel transcriptomic signature of type 2 diabetic islets, regardless of islet source and isolation procedure. Lack of this signature in islets from PPP with IGT or type 3c diabetes indicates differences possibly due to peculiarities of these hyperglycaemic conditions and/or a role for duration and severity of hyperglycaemia. Alternatively, these transcriptomic changes capture, but may not precede, beta cell failure.
Appendix
Available only for authorised users
Literature
2.
go back to reference Halban PA, Polonsky KS, Bowden DW et al (2014) β-cell failure in type 2 diabetes: postulated mechanisms and prospects for prevention and treatment. Diabetes Care 37:1751–1758CrossRefPubMedPubMedCentral Halban PA, Polonsky KS, Bowden DW et al (2014) β-cell failure in type 2 diabetes: postulated mechanisms and prospects for prevention and treatment. Diabetes Care 37:1751–1758CrossRefPubMedPubMedCentral
3.
go back to reference Kahn SE (2003) The relative contributions of insulin resistance and beta-cell dysfunction to the pathophysiology of type 2 diabetes. Diabetologia 46:3–19CrossRefPubMed Kahn SE (2003) The relative contributions of insulin resistance and beta-cell dysfunction to the pathophysiology of type 2 diabetes. Diabetologia 46:3–19CrossRefPubMed
4.
go back to reference Rahier J, Guiot Y, Goebbels RM, Sempoux C, Henquin JC (2008) Pancreatic beta-cell mass in European subjects with type 2 diabetes. Diabetes Obes Metab 10(Suppl 4):32–42CrossRefPubMed Rahier J, Guiot Y, Goebbels RM, Sempoux C, Henquin JC (2008) Pancreatic beta-cell mass in European subjects with type 2 diabetes. Diabetes Obes Metab 10(Suppl 4):32–42CrossRefPubMed
5.
go back to reference Marselli L, Suleiman M, Masini M et al (2014) Are we overestimating the loss of beta cells in type 2 diabetes? Diabetologia 57:362–365CrossRefPubMed Marselli L, Suleiman M, Masini M et al (2014) Are we overestimating the loss of beta cells in type 2 diabetes? Diabetologia 57:362–365CrossRefPubMed
6.
go back to reference Mingrone G, Panunzi S, De Gaetano A et al (2012) Bariatric surgery versus conventional medical therapy for type 2 diabetes. N Engl J Med 366:1577–1585CrossRefPubMed Mingrone G, Panunzi S, De Gaetano A et al (2012) Bariatric surgery versus conventional medical therapy for type 2 diabetes. N Engl J Med 366:1577–1585CrossRefPubMed
7.
go back to reference Ehehalt F, Sturm D, Rosler M et al (2015) Blood glucose homeostasis in the course of partial pancreatectomy—evidence for surgically reversible diabetes induced by cholestasis. PLoS One 10:e0134140CrossRefPubMedPubMedCentral Ehehalt F, Sturm D, Rosler M et al (2015) Blood glucose homeostasis in the course of partial pancreatectomy—evidence for surgically reversible diabetes induced by cholestasis. PLoS One 10:e0134140CrossRefPubMedPubMedCentral
8.
go back to reference Steven S, Hollingsworth KG, Al-Mrabeh A et al (2016) Very low-calorie diet and 6 months of weight stability in type 2 diabetes: pathophysiological changes in responders and nonresponders. Diabetes Care 39:808–815CrossRefPubMed Steven S, Hollingsworth KG, Al-Mrabeh A et al (2016) Very low-calorie diet and 6 months of weight stability in type 2 diabetes: pathophysiological changes in responders and nonresponders. Diabetes Care 39:808–815CrossRefPubMed
9.
go back to reference Cinti F, Bouchi R, Kim-Muller JY et al (2016) Evidence of β-cell dedifferentiation in human type 2 diabetes. J Clin Endocrinol Metab 101:1044–1054CrossRefPubMed Cinti F, Bouchi R, Kim-Muller JY et al (2016) Evidence of β-cell dedifferentiation in human type 2 diabetes. J Clin Endocrinol Metab 101:1044–1054CrossRefPubMed
10.
11.
go back to reference Gunton JE, Kulkarni RN, Yim S et al (2005) Loss of ARNT/HIF1β mediates altered gene expression and pancreatic-islet dysfunction in human type 2 diabetes. Cell 122:337–349CrossRefPubMed Gunton JE, Kulkarni RN, Yim S et al (2005) Loss of ARNT/HIF1β mediates altered gene expression and pancreatic-islet dysfunction in human type 2 diabetes. Cell 122:337–349CrossRefPubMed
12.
go back to reference MacDonald MJ, Longacre MJ, Langberg EC et al (2009) Decreased levels of metabolic enzymes in pancreatic islets of patients with type 2 diabetes. Diabetologia 52:1087–1091CrossRefPubMedPubMedCentral MacDonald MJ, Longacre MJ, Langberg EC et al (2009) Decreased levels of metabolic enzymes in pancreatic islets of patients with type 2 diabetes. Diabetologia 52:1087–1091CrossRefPubMedPubMedCentral
13.
go back to reference Ostenson CG, Gaisano H, Sheu L, Tibell A, Bartfai T (2006) Impaired gene and protein expression of exocytotic soluble N-ethylmaleimide attachment protein receptor complex proteins in pancreatic islets of type 2 diabetic patients. Diabetes 55:435–440CrossRefPubMed Ostenson CG, Gaisano H, Sheu L, Tibell A, Bartfai T (2006) Impaired gene and protein expression of exocytotic soluble N-ethylmaleimide attachment protein receptor complex proteins in pancreatic islets of type 2 diabetic patients. Diabetes 55:435–440CrossRefPubMed
14.
go back to reference Bugliani M, Liechti R, Cheon H et al (2013) Microarray analysis of isolated human islet transcriptome in type 2 diabetes and the role of the ubiquitin-proteasome system in pancreatic beta cell dysfunction. Mol Cell Endocrinol 367:1–10CrossRefPubMed Bugliani M, Liechti R, Cheon H et al (2013) Microarray analysis of isolated human islet transcriptome in type 2 diabetes and the role of the ubiquitin-proteasome system in pancreatic beta cell dysfunction. Mol Cell Endocrinol 367:1–10CrossRefPubMed
15.
go back to reference Taneera J, Lang S, Sharma A et al (2012) A systems genetics approach identifies genes and pathways for type 2 diabetes in human islets. Cell Metab 16:122–134CrossRefPubMed Taneera J, Lang S, Sharma A et al (2012) A systems genetics approach identifies genes and pathways for type 2 diabetes in human islets. Cell Metab 16:122–134CrossRefPubMed
16.
go back to reference Fadista J, Vikman P, Laakso EO et al (2014) Global genomic and transcriptomic analysis of human pancreatic islets reveals novel genes influencing glucose metabolism. Proc Natl Acad Sci U S A 111:13924–13929CrossRefPubMedPubMedCentral Fadista J, Vikman P, Laakso EO et al (2014) Global genomic and transcriptomic analysis of human pancreatic islets reveals novel genes influencing glucose metabolism. Proc Natl Acad Sci U S A 111:13924–13929CrossRefPubMedPubMedCentral
17.
go back to reference Taneera J, Fadista J, Ahlqvist E (2015) Identification of novel genes for glucose metabolism based upon expression pattern in human islets and effect on insulin secretion and glycemia. Hum Mol Genet 24:1945–1955CrossRefPubMed Taneera J, Fadista J, Ahlqvist E (2015) Identification of novel genes for glucose metabolism based upon expression pattern in human islets and effect on insulin secretion and glycemia. Hum Mol Genet 24:1945–1955CrossRefPubMed
18.
go back to reference Andersson SA, Olsson AH, Esguerra JL et al (2012) Reduced insulin secretion correlates with decreased expression of exocytotic genes in pancreatic islets from patients with type 2 diabetes. Mol Cell Endocrinol 364:36–45CrossRefPubMed Andersson SA, Olsson AH, Esguerra JL et al (2012) Reduced insulin secretion correlates with decreased expression of exocytotic genes in pancreatic islets from patients with type 2 diabetes. Mol Cell Endocrinol 364:36–45CrossRefPubMed
19.
go back to reference Taneera J, Fadista J, Ahlqvist E et al (2013) Expression profiling of cell cycle genes in human pancreatic islets with and without type 2 diabetes. Mol Cell Endocrinol 375:35–42CrossRefPubMed Taneera J, Fadista J, Ahlqvist E et al (2013) Expression profiling of cell cycle genes in human pancreatic islets with and without type 2 diabetes. Mol Cell Endocrinol 375:35–42CrossRefPubMed
20.
go back to reference Mahdi T, Hanzelmann S, Salehi A et al (2012) Secreted frizzled-related protein 4 reduces insulin secretion and is overexpressed in type 2 diabetes. Cell Metab 16:625–633CrossRefPubMed Mahdi T, Hanzelmann S, Salehi A et al (2012) Secreted frizzled-related protein 4 reduces insulin secretion and is overexpressed in type 2 diabetes. Cell Metab 16:625–633CrossRefPubMed
21.
go back to reference Xin Y, Kim J, Okamoto H et al (2016) RNA sequencing of single human islet cells reveals type 2 diabetes genes. Cell Metab 24:608–615CrossRefPubMed Xin Y, Kim J, Okamoto H et al (2016) RNA sequencing of single human islet cells reveals type 2 diabetes genes. Cell Metab 24:608–615CrossRefPubMed
22.
go back to reference Segerstolpe A, Palasantza A, Eliasson P et al (2016) Single-cell transcriptome profiling of human pancreatic islets in health and type 2 diabetes. Cell Metab 24:593–607CrossRefPubMedPubMedCentral Segerstolpe A, Palasantza A, Eliasson P et al (2016) Single-cell transcriptome profiling of human pancreatic islets in health and type 2 diabetes. Cell Metab 24:593–607CrossRefPubMedPubMedCentral
23.
go back to reference Marselli L, Thorne J, Dahiya S et al (2010) Gene expression profiles of beta-cell enriched tissue obtained by laser capture microdissection from subjects with type 2 diabetes. PLoS One 5:e11499CrossRefPubMedPubMedCentral Marselli L, Thorne J, Dahiya S et al (2010) Gene expression profiles of beta-cell enriched tissue obtained by laser capture microdissection from subjects with type 2 diabetes. PLoS One 5:e11499CrossRefPubMedPubMedCentral
24.
go back to reference Del Guerra S, Lupi R, Marselli L et al (2005) Functional and molecular defects of pancreatic islets in human type 2 diabetes. Diabetes 54:727–735CrossRefPubMed Del Guerra S, Lupi R, Marselli L et al (2005) Functional and molecular defects of pancreatic islets in human type 2 diabetes. Diabetes 54:727–735CrossRefPubMed
25.
go back to reference Sturm D, Marselli L, Ehehalt F et al (2013) Improved protocol for laser microdissection of human pancreatic islets from surgical specimens. J Vis Exp 71:50231 Sturm D, Marselli L, Ehehalt F et al (2013) Improved protocol for laser microdissection of human pancreatic islets from surgical specimens. J Vis Exp 71:50231
26.
go back to reference Kirkpatrick CL, Marchetti P, Purrello F et al (2010) Type 2 diabetes susceptibility gene expression in normal or diabetic sorted human alpha and beta cells: correlations with age or BMI of islet donors. PLoS One 5:e11053CrossRefPubMedPubMedCentral Kirkpatrick CL, Marchetti P, Purrello F et al (2010) Type 2 diabetes susceptibility gene expression in normal or diabetic sorted human alpha and beta cells: correlations with age or BMI of islet donors. PLoS One 5:e11053CrossRefPubMedPubMedCentral
27.
go back to reference Ewald N, Kaufmann C, Raspe A, Kloer HU, Bretzel RG, Hardt PD (2012) Prevalence of diabetes mellitus secondary to pancreatic diseases (type 3c). Diabetes Metab Res Rev 28:338–342CrossRefPubMed Ewald N, Kaufmann C, Raspe A, Kloer HU, Bretzel RG, Hardt PD (2012) Prevalence of diabetes mellitus secondary to pancreatic diseases (type 3c). Diabetes Metab Res Rev 28:338–342CrossRefPubMed
28.
go back to reference Bailey P, Chang DK, Nones K et al (2016) Genomic analyses identify molecular subtypes of pancreatic cancer. Nature 531:47–52CrossRefPubMed Bailey P, Chang DK, Nones K et al (2016) Genomic analyses identify molecular subtypes of pancreatic cancer. Nature 531:47–52CrossRefPubMed
29.
go back to reference Blodgett DM, Nowosielska A, Afik S et al (2015) Novel observations from next-generation RNA sequencing of highly purified human adult and fetal islet cell subsets. Diabetes 64:3172–3181CrossRefPubMedPubMedCentral Blodgett DM, Nowosielska A, Afik S et al (2015) Novel observations from next-generation RNA sequencing of highly purified human adult and fetal islet cell subsets. Diabetes 64:3172–3181CrossRefPubMedPubMedCentral
30.
go back to reference Chu PJ, Robertson HM, Best PM (2001) Calcium channel gamma subunits provide insights into the evolution of this gene family. Gene 280:37–48CrossRefPubMed Chu PJ, Robertson HM, Best PM (2001) Calcium channel gamma subunits provide insights into the evolution of this gene family. Gene 280:37–48CrossRefPubMed
31.
go back to reference Kramer A, Green J, Pollard J Jr, Tugendreich S (2014) Causal analysis approaches in ingenuity pathway analysis. Bioinformatics 30:523–530CrossRefPubMed Kramer A, Green J, Pollard J Jr, Tugendreich S (2014) Causal analysis approaches in ingenuity pathway analysis. Bioinformatics 30:523–530CrossRefPubMed
32.
go back to reference Atouf F, Czernichow P, Scharfmann R (1997) Expression of neuronal traits in pancreatic beta cells. Implication of neuron-restrictive silencing factor/repressor element silencing transcription factor, a neuron-restrictive silencer. J Biol Chem 272:1929–1934CrossRefPubMed Atouf F, Czernichow P, Scharfmann R (1997) Expression of neuronal traits in pancreatic beta cells. Implication of neuron-restrictive silencing factor/repressor element silencing transcription factor, a neuron-restrictive silencer. J Biol Chem 272:1929–1934CrossRefPubMed
33.
go back to reference Talchai C, Xuan S, Lin HV, Sussel L, Accili D (2012) Pancreatic beta cell dedifferentiation as a mechanism of diabetic beta cell failure. Cell 150:1223–1234CrossRefPubMedPubMedCentral Talchai C, Xuan S, Lin HV, Sussel L, Accili D (2012) Pancreatic beta cell dedifferentiation as a mechanism of diabetic beta cell failure. Cell 150:1223–1234CrossRefPubMedPubMedCentral
34.
go back to reference Kwon AT, Arenillas DJ, Worsley Hunt R, Wasserman WW (2012) oPOSSUM-3: advanced analysis of regulatory motif over-representation across genes or ChIP-Seq datasets. G3 (Bethesda) 2:987–1002CrossRef Kwon AT, Arenillas DJ, Worsley Hunt R, Wasserman WW (2012) oPOSSUM-3: advanced analysis of regulatory motif over-representation across genes or ChIP-Seq datasets. G3 (Bethesda) 2:987–1002CrossRef
35.
go back to reference Ravassard P, Hazhouz Y, Pechberty S et al (2011) A genetically engineered human pancreatic beta cell line exhibiting glucose-inducible insulin secretion. J Clin Invest 121:3589–3597CrossRefPubMedPubMedCentral Ravassard P, Hazhouz Y, Pechberty S et al (2011) A genetically engineered human pancreatic beta cell line exhibiting glucose-inducible insulin secretion. J Clin Invest 121:3589–3597CrossRefPubMedPubMedCentral
36.
go back to reference Párrizas M, Maestro MA, Boj SF et al (2001) Hepatic nuclear factor 1-alpha directs nucleosomal hyperacetylation to its tissue-specific transcriptional targets. Mol Cell Biol 21:3234–3243CrossRefPubMedPubMedCentral Párrizas M, Maestro MA, Boj SF et al (2001) Hepatic nuclear factor 1-alpha directs nucleosomal hyperacetylation to its tissue-specific transcriptional targets. Mol Cell Biol 21:3234–3243CrossRefPubMedPubMedCentral
37.
go back to reference Holmkvist J, Cervin C, Lyssenko V et al (2006) Common variants in HNF-1 alpha and risk of type 2 diabetes. Diabetologia 49:2882–2891CrossRefPubMed Holmkvist J, Cervin C, Lyssenko V et al (2006) Common variants in HNF-1 alpha and risk of type 2 diabetes. Diabetologia 49:2882–2891CrossRefPubMed
38.
go back to reference In’t Veld P, De Munck N, Van Belle K et al (2010) Beta-cell replication is increased in donor organs from young patients after prolonged life support. Diabetes 59:1702–1708CrossRefPubMed In’t Veld P, De Munck N, Van Belle K et al (2010) Beta-cell replication is increased in donor organs from young patients after prolonged life support. Diabetes 59:1702–1708CrossRefPubMed
39.
go back to reference Toyama H, Takada M, Suzuki Y, Kuroda Y (2003) Activation of macrophage-associated molecules after brain death in islets. Cell Transplant 12:27–32CrossRefPubMed Toyama H, Takada M, Suzuki Y, Kuroda Y (2003) Activation of macrophage-associated molecules after brain death in islets. Cell Transplant 12:27–32CrossRefPubMed
40.
go back to reference Ebrahimi A, Jung MH, Dreyfuss JM et al (2017) Evidence of stress in β cells obtained with laser capture microdissection from pancreases of brain dead donors. Islets 9:19–29CrossRefPubMed Ebrahimi A, Jung MH, Dreyfuss JM et al (2017) Evidence of stress in β cells obtained with laser capture microdissection from pancreases of brain dead donors. Islets 9:19–29CrossRefPubMed
41.
go back to reference Gullo L, Pezzilli R, Morselli-Labate AM (1994) Diabetes and the risk of pancreatic cancer. N Engl J Med 331:81–84CrossRefPubMed Gullo L, Pezzilli R, Morselli-Labate AM (1994) Diabetes and the risk of pancreatic cancer. N Engl J Med 331:81–84CrossRefPubMed
42.
go back to reference Soneson C, Matthes KL, Nowicka M, Law CW, Robinson MD (2016) Isoform prefiltering improves performance of count-based methods for analysis of differential transcript usage. Genome Biol 17:12CrossRefPubMedPubMedCentral Soneson C, Matthes KL, Nowicka M, Law CW, Robinson MD (2016) Isoform prefiltering improves performance of count-based methods for analysis of differential transcript usage. Genome Biol 17:12CrossRefPubMedPubMedCentral
43.
go back to reference Permert J, Larsson J, Westermark GT et al (1994) Islet amyloid polypeptide in patients with pancreatic cancer and diabetes. N Engl J Med 330:313–318CrossRefPubMed Permert J, Larsson J, Westermark GT et al (1994) Islet amyloid polypeptide in patients with pancreatic cancer and diabetes. N Engl J Med 330:313–318CrossRefPubMed
44.
go back to reference Kang MJ, Jung HS, Jang JY et al (2016) Metabolic effect of pancreatoduodenectomy: resolution of diabetes mellitus after surgery. Pancreatology 16:272–277CrossRefPubMed Kang MJ, Jung HS, Jang JY et al (2016) Metabolic effect of pancreatoduodenectomy: resolution of diabetes mellitus after surgery. Pancreatology 16:272–277CrossRefPubMed
45.
go back to reference Franks PW, Pearson E, Florez JC (2013) Gene-environment and gene-treatment interactions in type 2 diabetes: progress, pitfalls, and prospects. Diabetes Care 36:1413–1421CrossRefPubMedPubMedCentral Franks PW, Pearson E, Florez JC (2013) Gene-environment and gene-treatment interactions in type 2 diabetes: progress, pitfalls, and prospects. Diabetes Care 36:1413–1421CrossRefPubMedPubMedCentral
46.
go back to reference O’Brien RM (2013) Moving on from GWAS: functional studies on the G6PC2 gene implicated in the regulation of fasting blood glucose. Curr Diab Rep 13:768–777CrossRefPubMedPubMedCentral O’Brien RM (2013) Moving on from GWAS: functional studies on the G6PC2 gene implicated in the regulation of fasting blood glucose. Curr Diab Rep 13:768–777CrossRefPubMedPubMedCentral
47.
go back to reference Wessel J, Chu AY, Willems SM et al (2015) Low-frequency and rare exome chip variants associate with fasting glucose and type 2 diabetes susceptibility. Nat Commun 6:5897CrossRefPubMedPubMedCentral Wessel J, Chu AY, Willems SM et al (2015) Low-frequency and rare exome chip variants associate with fasting glucose and type 2 diabetes susceptibility. Nat Commun 6:5897CrossRefPubMedPubMedCentral
49.
50.
go back to reference Jiang L, Brackeva B, Ling Z et al (2013) Potential of protein phosphatase inhibitor 1 as biomarker of pancreatic beta-cell injury in vitro and in vivo. Diabetes 62:2683–2688CrossRefPubMedPubMedCentral Jiang L, Brackeva B, Ling Z et al (2013) Potential of protein phosphatase inhibitor 1 as biomarker of pancreatic beta-cell injury in vitro and in vivo. Diabetes 62:2683–2688CrossRefPubMedPubMedCentral
51.
go back to reference Ikeda K, Emoto N, Matsuo M, Yokoyama M (2003) Molecular identification and characterization of a novel nuclear protein whose expression is up-regulated in insulin-resistant animals. J Biol Chem 278:3514–3520CrossRefPubMed Ikeda K, Emoto N, Matsuo M, Yokoyama M (2003) Molecular identification and characterization of a novel nuclear protein whose expression is up-regulated in insulin-resistant animals. J Biol Chem 278:3514–3520CrossRefPubMed
52.
go back to reference Shimoda Y, Matsuo K, Kitamura Y et al (2015) Diabetes-related ankyrin repeat protein (DARP/Ankrd23) modifies glucose homeostasis by modulating AMPK activity in skeletal muscle. PLoS One 10:e0138624CrossRefPubMedPubMedCentral Shimoda Y, Matsuo K, Kitamura Y et al (2015) Diabetes-related ankyrin repeat protein (DARP/Ankrd23) modifies glucose homeostasis by modulating AMPK activity in skeletal muscle. PLoS One 10:e0138624CrossRefPubMedPubMedCentral
53.
go back to reference Negi S, Jetha A, Aikin R, Hasilo C, Sladek R, Paraskevas S (2012) Analysis of beta-cell gene expression reveals inflammatory signaling and evidence of dedifferentiation following human islet isolation and culture. PLoS One 7:e30415CrossRefPubMedPubMedCentral Negi S, Jetha A, Aikin R, Hasilo C, Sladek R, Paraskevas S (2012) Analysis of beta-cell gene expression reveals inflammatory signaling and evidence of dedifferentiation following human islet isolation and culture. PLoS One 7:e30415CrossRefPubMedPubMedCentral
54.
go back to reference Marquard J, Otter S, Welters A et al (2015) Characterization of pancreatic NMDA receptors as possible drug targets for diabetes treatment. Nat Med 21:363–372CrossRefPubMed Marquard J, Otter S, Welters A et al (2015) Characterization of pancreatic NMDA receptors as possible drug targets for diabetes treatment. Nat Med 21:363–372CrossRefPubMed
55.
go back to reference Takemoto M, Hattori Y, Zhao H et al (2011) Laminar and areal expression of unc5d and its role in cortical cell survival. Cereb Cortex 21:1925–1934CrossRefPubMed Takemoto M, Hattori Y, Zhao H et al (2011) Laminar and areal expression of unc5d and its role in cortical cell survival. Cereb Cortex 21:1925–1934CrossRefPubMed
57.
go back to reference Savinov AY, Strongin AY (2007) Defining the roles of T cell membrane proteinase and CD44 in type 1 diabetes. IUBMB Life 59:6–13CrossRefPubMed Savinov AY, Strongin AY (2007) Defining the roles of T cell membrane proteinase and CD44 in type 1 diabetes. IUBMB Life 59:6–13CrossRefPubMed
58.
go back to reference Kodama K, Toda K, Morinaga S, Yamada S, Butte AJ (2015) Anti-CD44 antibody treatment lowers hyperglycemia and improves insulin resistance, adipose inflammation, and hepatic steatosis in diet-induced obese mice. Diabetes 64:867–875CrossRefPubMed Kodama K, Toda K, Morinaga S, Yamada S, Butte AJ (2015) Anti-CD44 antibody treatment lowers hyperglycemia and improves insulin resistance, adipose inflammation, and hepatic steatosis in diet-induced obese mice. Diabetes 64:867–875CrossRefPubMed
59.
go back to reference Pullen TJ, Khan AM, Barton G, Butcher SA, Sun G, Rutter GA (2010) Identification of genes selectively disallowed in the pancreatic islet. Islets 2:89–95CrossRefPubMed Pullen TJ, Khan AM, Barton G, Butcher SA, Sun G, Rutter GA (2010) Identification of genes selectively disallowed in the pancreatic islet. Islets 2:89–95CrossRefPubMed
Metadata
Title
Systems biology of the IMIDIA biobank from organ donors and pancreatectomised patients defines a novel transcriptomic signature of islets from individuals with type 2 diabetes
Authors
Michele Solimena
Anke M. Schulte
Lorella Marselli
Florian Ehehalt
Daniela Richter
Manuela Kleeberg
Hassan Mziaut
Klaus-Peter Knoch
Julia Parnis
Marco Bugliani
Afshan Siddiq
Anne Jörns
Frédéric Burdet
Robin Liechti
Mara Suleiman
Daniel Margerie
Farooq Syed
Marius Distler
Robert Grützmann
Enrico Petretto
Aida Moreno-Moral
Carolin Wegbrod
Anke Sönmez
Katja Pfriem
Anne Friedrich
Jörn Meinel
Claes B. Wollheim
Gustavo B. Baretton
Raphael Scharfmann
Everson Nogoceke
Ezio Bonifacio
Dorothée Sturm
Birgit Meyer-Puttlitz
Ugo Boggi
Hans-Detlev Saeger
Franco Filipponi
Mathias Lesche
Paolo Meda
Andreas Dahl
Leonore Wigger
Ioannis Xenarios
Mario Falchi
Bernard Thorens
Jürgen Weitz
Krister Bokvist
Sigurd Lenzen
Guy A. Rutter
Philippe Froguel
Manon von Bülow
Mark Ibberson
Piero Marchetti
Publication date
01-03-2018
Publisher
Springer Berlin Heidelberg
Published in
Diabetologia / Issue 3/2018
Print ISSN: 0012-186X
Electronic ISSN: 1432-0428
DOI
https://doi.org/10.1007/s00125-017-4500-3

Other articles of this Issue 3/2018

Diabetologia 3/2018 Go to the issue