Skip to main content
Top
Published in: Diabetologia 6/2018

01-06-2018 | Article

Altered mitochondrial bioenergetics and ultrastructure in the skeletal muscle of young adults with type 1 diabetes

Authors: Cynthia M. F. Monaco, Meghan C. Hughes, Sofhia V. Ramos, Nina E. Varah, Christian Lamberz, Fasih A. Rahman, Chris McGlory, Mark A. Tarnopolsky, Matthew P. Krause, Robert Laham, Thomas J. Hawke, Christopher G. R. Perry

Published in: Diabetologia | Issue 6/2018

Login to get access

Abstract

Aims/hypothesis

A comprehensive assessment of skeletal muscle ultrastructure and mitochondrial bioenergetics has not been undertaken in individuals with type 1 diabetes. This study aimed to systematically assess skeletal muscle mitochondrial phenotype in young adults with type 1 diabetes.

Methods

Physically active, young adults (men and women) with type 1 diabetes (HbA1c 63.0 ± 16.0 mmol/mol [7.9% ± 1.5%]) and without type 1 diabetes (control), matched for sex, age, BMI and level of physical activity, were recruited (n = 12/group) to undergo vastus lateralis muscle microbiopsies. Mitochondrial respiration (high-resolution respirometry), site-specific mitochondrial H2O2 emission and Ca2+ retention capacity (CRC) (spectrofluorometry) were assessed using permeabilised myofibre bundles. Electron microscopy and tomography were used to quantify mitochondrial content and investigate muscle ultrastructure. Skeletal muscle microvasculature was assessed by immunofluorescence.

Results

Mitochondrial oxidative capacity was significantly lower in participants with type 1 diabetes vs the control group, specifically at Complex II of the electron transport chain, without differences in mitochondrial content between groups. Muscles of those with type 1 diabetes also exhibited increased mitochondrial H2O2 emission at Complex III and decreased CRC relative to control individuals. Electron tomography revealed an increase in the size and number of autophagic remnants in the muscles of participants with type 1 diabetes. Despite this, levels of the autophagic regulatory protein, phosphorylated AMP-activated protein kinase (p-AMPKαThr172), and its downstream targets, phosphorylated Unc-51 like autophagy activating kinase 1 (p-ULK1Ser555) and p62, was similar between groups. In addition, no differences in muscle capillary density or platelet aggregation were observed between the groups.

Conclusions/interpretation

Alterations in mitochondrial ultrastructure and bioenergetics are evident within the skeletal muscle of active young adults with type 1 diabetes. It is yet to be elucidated whether more rigorous exercise may help to prevent skeletal muscle metabolic deficiencies in both active and inactive individuals with type 1 diabetes.
Appendix
Available only for authorised users
Literature
1.
go back to reference DeFronzo RA, Hendler R, Simonson D (1982) Insulin resistance is a prominent feature of insulin-dependent diabetes. Diabetes 31:795–801CrossRefPubMed DeFronzo RA, Hendler R, Simonson D (1982) Insulin resistance is a prominent feature of insulin-dependent diabetes. Diabetes 31:795–801CrossRefPubMed
2.
go back to reference Shulman GI, Rothman DL, Jue T et al (1990) Quantitation of muscle glycogen synthesis in normal subjects and subjects with non-insulin-dependent diabetes by 13Cnuclear magnetic resonance spectroscopy. N Engl J Med 322:223–228CrossRefPubMed Shulman GI, Rothman DL, Jue T et al (1990) Quantitation of muscle glycogen synthesis in normal subjects and subjects with non-insulin-dependent diabetes by 13Cnuclear magnetic resonance spectroscopy. N Engl J Med 322:223–228CrossRefPubMed
3.
go back to reference Jensen J, Aslesen R, Ivy JL, Brørs O (1997) Role of glycogen concentration and epinephrine on glucose uptake in rat epitrochlearis muscle. Am J Phys 272:E649–E655 Jensen J, Aslesen R, Ivy JL, Brørs O (1997) Role of glycogen concentration and epinephrine on glucose uptake in rat epitrochlearis muscle. Am J Phys 272:E649–E655
4.
go back to reference Højlund K, Beck-Nielsen H (2006) Impaired glycogen synthase activity and mitochondrial dysfunction in skeletal muscle: markers or mediators of insulin resistance in type 2 diabetes? Curr Diabetes Rev 2:375–395CrossRefPubMed Højlund K, Beck-Nielsen H (2006) Impaired glycogen synthase activity and mitochondrial dysfunction in skeletal muscle: markers or mediators of insulin resistance in type 2 diabetes? Curr Diabetes Rev 2:375–395CrossRefPubMed
5.
go back to reference The Diabetes Control and Complications Trial Research Group (1993) The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med 329:977–986CrossRef The Diabetes Control and Complications Trial Research Group (1993) The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med 329:977–986CrossRef
6.
go back to reference Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications Research Group, Lachin JM, Genuth S, Cleary P, David MD, Nathan DM (2000) Retinopathy and nephropathy in patients with type 1 diabetes four years after a trial of intensive therapy. N Engl J Med 342:381–389CrossRef Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications Research Group, Lachin JM, Genuth S, Cleary P, David MD, Nathan DM (2000) Retinopathy and nephropathy in patients with type 1 diabetes four years after a trial of intensive therapy. N Engl J Med 342:381–389CrossRef
7.
go back to reference Wong E, Backholer K, Gearon E et al (2013) Diabetes and risk of physical disability in adults: a systematic review and meta-analysis. Lancet Diabetes Endocrinol 1:106–114CrossRefPubMed Wong E, Backholer K, Gearon E et al (2013) Diabetes and risk of physical disability in adults: a systematic review and meta-analysis. Lancet Diabetes Endocrinol 1:106–114CrossRefPubMed
9.
go back to reference Cree-Green M, Newcomer BR, Brown MS et al (2015) Delayed skeletal muscle mitochondrial ADP recovery in youth with type 1 diabetes relates to muscle insulin resistance. Diabetes 64:383–392CrossRefPubMed Cree-Green M, Newcomer BR, Brown MS et al (2015) Delayed skeletal muscle mitochondrial ADP recovery in youth with type 1 diabetes relates to muscle insulin resistance. Diabetes 64:383–392CrossRefPubMed
10.
go back to reference Kacerovsky M, Brehm A, Chmelik M et al (2011) Impaired insulin stimulation of muscular ATP production in patients with type 1 diabetes. J Intern Med 269:189–199CrossRefPubMed Kacerovsky M, Brehm A, Chmelik M et al (2011) Impaired insulin stimulation of muscular ATP production in patients with type 1 diabetes. J Intern Med 269:189–199CrossRefPubMed
11.
go back to reference Crowther GJ, Milstein JM, Jubrias SA et al (2003) Altered energetic properties in skeletal muscle of men with well-controlled insulin-dependent (type 1) diabetes. Am J Physiol Endocrinol Metab 284:E655–E662CrossRefPubMed Crowther GJ, Milstein JM, Jubrias SA et al (2003) Altered energetic properties in skeletal muscle of men with well-controlled insulin-dependent (type 1) diabetes. Am J Physiol Endocrinol Metab 284:E655–E662CrossRefPubMed
12.
go back to reference Reske-Nielsen E, Harmsen A, Vorre P (1977) Ultrastructure of muscle biopsies in recent, short-term and long-term juvenile diabetes. Acta Neurol Scand 55:345–362CrossRefPubMed Reske-Nielsen E, Harmsen A, Vorre P (1977) Ultrastructure of muscle biopsies in recent, short-term and long-term juvenile diabetes. Acta Neurol Scand 55:345–362CrossRefPubMed
13.
go back to reference Hughes MC, Ramos SV, Turnbull PC et al (2015) Mitochondrial bioenergetics and fiber type assessments in microbiopsy vs. bergstrom percutaneous sampling of human skeletal muscle. Front Physiol 6:360CrossRefPubMedPubMedCentral Hughes MC, Ramos SV, Turnbull PC et al (2015) Mitochondrial bioenergetics and fiber type assessments in microbiopsy vs. bergstrom percutaneous sampling of human skeletal muscle. Front Physiol 6:360CrossRefPubMedPubMedCentral
14.
go back to reference D’Souza DM, Zhou S, Rebalka IA et al (2016) Decreased satellite cell number and function in humans and mice with type 1 diabetes is the result of altered notch signaling. Diabetes 65:3053–3061CrossRefPubMed D’Souza DM, Zhou S, Rebalka IA et al (2016) Decreased satellite cell number and function in humans and mice with type 1 diabetes is the result of altered notch signaling. Diabetes 65:3053–3061CrossRefPubMed
15.
go back to reference Gnaiger E, Kuznetsov AV, Schneeberger S et al (2000) Mitochondria in the cold. In: Heldmaier G, Klingenspor M (eds) Life in the cold. Springer, Berlin, pp 431–442CrossRef Gnaiger E, Kuznetsov AV, Schneeberger S et al (2000) Mitochondria in the cold. In: Heldmaier G, Klingenspor M (eds) Life in the cold. Springer, Berlin, pp 431–442CrossRef
16.
go back to reference Aliev M, Guzun R, Karu-Varikmaa M et al (2011) Molecular system bioenergics of the heart: experimental studies of metabolic compartmentation and energy fluxes versus computer modeling. Int J Mol Sci 12:9296–9331CrossRefPubMedPubMedCentral Aliev M, Guzun R, Karu-Varikmaa M et al (2011) Molecular system bioenergics of the heart: experimental studies of metabolic compartmentation and energy fluxes versus computer modeling. Int J Mol Sci 12:9296–9331CrossRefPubMedPubMedCentral
17.
go back to reference Perry CGR, Kane DA, Lin C-T et al (2011) Inhibiting myosin-ATPase reveals a dynamic range of mitochondrial respiratory control in skeletal muscle. Biochem J 437:215–222CrossRefPubMed Perry CGR, Kane DA, Lin C-T et al (2011) Inhibiting myosin-ATPase reveals a dynamic range of mitochondrial respiratory control in skeletal muscle. Biochem J 437:215–222CrossRefPubMed
19.
go back to reference Kuznetsov AV, Schneeberger S, Seiler R et al (2004) Mitochondrial defects and heterogeneous cytochrome c release after cardiac cold ischemia and reperfusion. Am J Physiol Heart Circ Physiol 286:H1633–H1641CrossRefPubMed Kuznetsov AV, Schneeberger S, Seiler R et al (2004) Mitochondrial defects and heterogeneous cytochrome c release after cardiac cold ischemia and reperfusion. Am J Physiol Heart Circ Physiol 286:H1633–H1641CrossRefPubMed
20.
go back to reference Fisher-Wellman KH, Lin C-T, Ryan TE et al (2015) Pyruvate dehydrogenase complex and nicotinamide nucleotide transhydrogenase constitute an energy-consuming redox circuit. Biochem J 467:271–280CrossRefPubMedPubMedCentral Fisher-Wellman KH, Lin C-T, Ryan TE et al (2015) Pyruvate dehydrogenase complex and nicotinamide nucleotide transhydrogenase constitute an energy-consuming redox circuit. Biochem J 467:271–280CrossRefPubMedPubMedCentral
21.
go back to reference Wong H-S, Dighe PA, Mezera V et al (2017) Production of superoxide and hydrogen peroxide from specific mitochondrial sites under different bioenergetic conditions. J Biol Chem 292:16804–16809CrossRefPubMed Wong H-S, Dighe PA, Mezera V et al (2017) Production of superoxide and hydrogen peroxide from specific mitochondrial sites under different bioenergetic conditions. J Biol Chem 292:16804–16809CrossRefPubMed
22.
go back to reference Fisher-Wellman KH, Gilliam LAA, Lin C-T et al (2013) Mitochondrial glutathione depletion reveals a novel role for the pyruvate dehydrogenase complex as a key H2O2 emitting source under conditions of nutrient overload. Free Radic Biol Med 65:1201–1208CrossRefPubMedPubMedCentral Fisher-Wellman KH, Gilliam LAA, Lin C-T et al (2013) Mitochondrial glutathione depletion reveals a novel role for the pyruvate dehydrogenase complex as a key H2O2 emitting source under conditions of nutrient overload. Free Radic Biol Med 65:1201–1208CrossRefPubMedPubMedCentral
23.
go back to reference Anderson EJ, Rodriguez E, Anderson CA et al (2011) Increased propensity for cell death in diabetic human heart is mediated by mitochondrial-dependent pathways. Am J Physiol Heart Circ Physiol 300:H118–H124CrossRefPubMed Anderson EJ, Rodriguez E, Anderson CA et al (2011) Increased propensity for cell death in diabetic human heart is mediated by mitochondrial-dependent pathways. Am J Physiol Heart Circ Physiol 300:H118–H124CrossRefPubMed
24.
go back to reference Nilsson MI, MacNeil LG, Kitaoka Y et al (2015) Combined aerobic exercise and enzyme replacement therapy rejuvenates the mitochondrial–lysosomal axis and alleviates autophagic blockage in Pompe disease. Free Radic Biol Med 87:98–112CrossRefPubMed Nilsson MI, MacNeil LG, Kitaoka Y et al (2015) Combined aerobic exercise and enzyme replacement therapy rejuvenates the mitochondrial–lysosomal axis and alleviates autophagic blockage in Pompe disease. Free Radic Biol Med 87:98–112CrossRefPubMed
25.
go back to reference Tarnopolsky MA, Rennie CD, Robertshaw HA et al (2007) Influence of endurance exercise training and sex on intramyocellular lipid and mitochondrial ultrastructure, substrate use, and mitochondrial enzyme activity. Am J Phys Regul Integr Comp Phys 292:R1271–R1278 Tarnopolsky MA, Rennie CD, Robertshaw HA et al (2007) Influence of endurance exercise training and sex on intramyocellular lipid and mitochondrial ultrastructure, substrate use, and mitochondrial enzyme activity. Am J Phys Regul Integr Comp Phys 292:R1271–R1278
26.
go back to reference Kremer JR, Mastronarde DN, McIntosh JR (1996) Computer visualization of three-dimensional image data using IMOD. J Struct Biol 116:71–76CrossRefPubMed Kremer JR, Mastronarde DN, McIntosh JR (1996) Computer visualization of three-dimensional image data using IMOD. J Struct Biol 116:71–76CrossRefPubMed
27.
go back to reference O’Neill HM, Holloway GP, Steinberg GR (2013) AMPK regulation of fatty acid metabolism and mitochondrial biogenesis: implications for obesity. Mol Cell Endocrinol 366:135–151CrossRefPubMed O’Neill HM, Holloway GP, Steinberg GR (2013) AMPK regulation of fatty acid metabolism and mitochondrial biogenesis: implications for obesity. Mol Cell Endocrinol 366:135–151CrossRefPubMed
28.
go back to reference Baines CP, Kaiser RA, Purcell NH et al (2005) Loss of cyclophilin D reveals a critical role for mitochondrial permeability transition in cell death. Nature 434:658–662CrossRefPubMed Baines CP, Kaiser RA, Purcell NH et al (2005) Loss of cyclophilin D reveals a critical role for mitochondrial permeability transition in cell death. Nature 434:658–662CrossRefPubMed
29.
go back to reference Joy NG, Hedrington MS, Briscoe VJ et al (2010) Effects of acute hypoglycemia on inflammatory and pro-atherothrombotic biomarkers in individuals with type 1 diabetes and healthy individuals. Diabetes Care 33:1529–1535CrossRef Joy NG, Hedrington MS, Briscoe VJ et al (2010) Effects of acute hypoglycemia on inflammatory and pro-atherothrombotic biomarkers in individuals with type 1 diabetes and healthy individuals. Diabetes Care 33:1529–1535CrossRef
30.
go back to reference Colberg SR, Sigal RJ, Yardley JE et al (2016) Physical activity/exercise and diabetes: a position statement of the American Diabetes Association. Diabetes Care 39:2065–2079CrossRefPubMed Colberg SR, Sigal RJ, Yardley JE et al (2016) Physical activity/exercise and diabetes: a position statement of the American Diabetes Association. Diabetes Care 39:2065–2079CrossRefPubMed
31.
go back to reference Sigal RJ, Armstrong MJ, Colby P et al (2013) Physical activity and diabetes. Can J Diabetes 37:S40–S44CrossRefPubMed Sigal RJ, Armstrong MJ, Colby P et al (2013) Physical activity and diabetes. Can J Diabetes 37:S40–S44CrossRefPubMed
32.
go back to reference Hargreaves M (2000) Skeletal muscle metabolism during exercise in humans. Clin Exp Pharmacol Physiol 27:225–228CrossRefPubMed Hargreaves M (2000) Skeletal muscle metabolism during exercise in humans. Clin Exp Pharmacol Physiol 27:225–228CrossRefPubMed
34.
go back to reference Kilpatrick ES, Rigby AS, Atkin SL (2007) Insulin resistance, the metabolic syndrome, and complication risk in type 1 diabetes: “double diabetes” in the Diabetes Control and Complications Trial. Diabetes Care 30:707–712CrossRefPubMed Kilpatrick ES, Rigby AS, Atkin SL (2007) Insulin resistance, the metabolic syndrome, and complication risk in type 1 diabetes: “double diabetes” in the Diabetes Control and Complications Trial. Diabetes Care 30:707–712CrossRefPubMed
35.
go back to reference Soedamah-Muthu SS, Fuller JH, Mulnier HE et al (2006) All-cause mortality rates in patients with type 1 diabetes mellitus compared with a non-diabetic population from the UK general practice research database, 1992-1999. Diabetologia 49:660–666CrossRefPubMed Soedamah-Muthu SS, Fuller JH, Mulnier HE et al (2006) All-cause mortality rates in patients with type 1 diabetes mellitus compared with a non-diabetic population from the UK general practice research database, 1992-1999. Diabetologia 49:660–666CrossRefPubMed
36.
go back to reference Kadar L, Albertsson M, Areberg J et al (2000) The prognostic value of body protein in patients with lung cancer. Ann N Y Acad Sci 904:584–591CrossRefPubMed Kadar L, Albertsson M, Areberg J et al (2000) The prognostic value of body protein in patients with lung cancer. Ann N Y Acad Sci 904:584–591CrossRefPubMed
38.
go back to reference Coleman SK, Rebalka IA, D'souza DM, Hawke TJ (2015) Skeletal muscle as a therapeutic target for delaying type 1 diabetic complications. World J Diabetes 6:1323–1336CrossRefPubMedPubMedCentral Coleman SK, Rebalka IA, D'souza DM, Hawke TJ (2015) Skeletal muscle as a therapeutic target for delaying type 1 diabetic complications. World J Diabetes 6:1323–1336CrossRefPubMedPubMedCentral
39.
go back to reference D’Souza DM, Al-Sajee D, Hawke TJ (2013) Diabetic myopathy: impact of diabetes mellitus on skeletal muscle progenitor cells. Front Physiol 4:379PubMedPubMedCentral D’Souza DM, Al-Sajee D, Hawke TJ (2013) Diabetic myopathy: impact of diabetes mellitus on skeletal muscle progenitor cells. Front Physiol 4:379PubMedPubMedCentral
40.
go back to reference Monaco CMF, Perry CGR, Hawke TJ (2017) Diabetic myopathy: current molecular understanding of this novel neuromuscular disorder. Curr Opin Neurol 30:545–552CrossRefPubMed Monaco CMF, Perry CGR, Hawke TJ (2017) Diabetic myopathy: current molecular understanding of this novel neuromuscular disorder. Curr Opin Neurol 30:545–552CrossRefPubMed
41.
go back to reference Item F, Heinzer-Schweizer S, Wyss M et al (2011) Mitochondrial capacity is affected by glycemic status in young untrained women with type 1 diabetes but is not impaired relative to healthy untrained women. Am J Phys Regul Integr Comp Phys 301:R60–R66 Item F, Heinzer-Schweizer S, Wyss M et al (2011) Mitochondrial capacity is affected by glycemic status in young untrained women with type 1 diabetes but is not impaired relative to healthy untrained women. Am J Phys Regul Integr Comp Phys 301:R60–R66
42.
go back to reference Khan F, Cohen RA, Ruderman NB et al (1996) Vasodilator responses in the forearm skin of patients with insulin-dependent diabetes mellitus. Vasc Med Lond Engl 1:187–193CrossRef Khan F, Cohen RA, Ruderman NB et al (1996) Vasodilator responses in the forearm skin of patients with insulin-dependent diabetes mellitus. Vasc Med Lond Engl 1:187–193CrossRef
43.
go back to reference Seifert EL, Estey C, Xuan JY, Harper M-E (2010) Electron transport chain-dependent and -independent mechanisms of mitochondrial H2O2 emission during long-chain fatty acid oxidation. J Biol Chem 285:5748–5758CrossRefPubMed Seifert EL, Estey C, Xuan JY, Harper M-E (2010) Electron transport chain-dependent and -independent mechanisms of mitochondrial H2O2 emission during long-chain fatty acid oxidation. J Biol Chem 285:5748–5758CrossRefPubMed
44.
go back to reference St-Pierre J, Buckingham JA, Roebuck SJ, Brand MD (2002) Topology of superoxide production from different sites in the mitochondrial electron transport chain. J Biol Chem 277:44784–44790CrossRefPubMed St-Pierre J, Buckingham JA, Roebuck SJ, Brand MD (2002) Topology of superoxide production from different sites in the mitochondrial electron transport chain. J Biol Chem 277:44784–44790CrossRefPubMed
45.
go back to reference Bleier L, Dröse S (2013) Superoxide generation by complex III: from mechanistic rationales to functional consequences. Biochim Biophys Acta BBA - Bioenerg 1827:1320–1331CrossRef Bleier L, Dröse S (2013) Superoxide generation by complex III: from mechanistic rationales to functional consequences. Biochim Biophys Acta BBA - Bioenerg 1827:1320–1331CrossRef
46.
47.
go back to reference Leloup C, Tourrel-Cuzin C, Magnan C et al (2009) Mitochondrial reactive oxygen species are obligatory signals for glucose-induced insulin secretion. Diabetes 58:673–681CrossRefPubMedPubMedCentral Leloup C, Tourrel-Cuzin C, Magnan C et al (2009) Mitochondrial reactive oxygen species are obligatory signals for glucose-induced insulin secretion. Diabetes 58:673–681CrossRefPubMedPubMedCentral
48.
go back to reference Munusamy S, MacMillan-Crow LA (2009) Mitochondrial superoxide plays a crucial role in the development of mitochondrial dysfunction during high glucose exposure in rat renal proximal tubular cells. Free Radic Biol Med 46:1149–1157CrossRefPubMed Munusamy S, MacMillan-Crow LA (2009) Mitochondrial superoxide plays a crucial role in the development of mitochondrial dysfunction during high glucose exposure in rat renal proximal tubular cells. Free Radic Biol Med 46:1149–1157CrossRefPubMed
49.
go back to reference Gregory JM, Kraft G, Scott MF et al (2015) Insulin delivery into the peripheral circulation: a key contributor to hypoglycemia in type 1 diabetes. Diabetes 64:3439–3451CrossRefPubMedPubMedCentral Gregory JM, Kraft G, Scott MF et al (2015) Insulin delivery into the peripheral circulation: a key contributor to hypoglycemia in type 1 diabetes. Diabetes 64:3439–3451CrossRefPubMedPubMedCentral
Metadata
Title
Altered mitochondrial bioenergetics and ultrastructure in the skeletal muscle of young adults with type 1 diabetes
Authors
Cynthia M. F. Monaco
Meghan C. Hughes
Sofhia V. Ramos
Nina E. Varah
Christian Lamberz
Fasih A. Rahman
Chris McGlory
Mark A. Tarnopolsky
Matthew P. Krause
Robert Laham
Thomas J. Hawke
Christopher G. R. Perry
Publication date
01-06-2018
Publisher
Springer Berlin Heidelberg
Published in
Diabetologia / Issue 6/2018
Print ISSN: 0012-186X
Electronic ISSN: 1432-0428
DOI
https://doi.org/10.1007/s00125-018-4602-6

Other articles of this Issue 6/2018

Diabetologia 6/2018 Go to the issue

Up Front

Up front