Skip to main content
Top
Published in: Diabetologia 7/2018

01-07-2018 | Article

Spousal cardiometabolic risk factors and incidence of type 2 diabetes: a prospective analysis from the English Longitudinal Study of Ageing

Authors: Jannie Nielsen, Adam Hulman, Daniel R. Witte

Published in: Diabetologia | Issue 7/2018

Login to get access

Abstract

Aims/hypothesis

In the UK, more than one million people have undiagnosed diabetes and an additional five million are at high risk of developing the disease. Given that early identification of these people is key for both primary and secondary prevention, new screening approaches are needed. Since spouses resemble each other in cardiometabolic risk factors related to type 2 diabetes, we aimed to investigate whether diabetes and cardiometabolic risk factors in one spouse can be used as an indicator of incident type 2 diabetes in the other spouse.

Methods

We analysed data from 3649 men and 3478 women from the English Longitudinal Study of Ageing with information on their own and their spouse’s diabetes status and cardiometabolic risk factors. We modelled incidence rates and incidence rate ratios with Poisson regression, using spousal diabetes status or cardiometabolic risk factors (i.e. BMI, waist circumference, systolic and diastolic BP, HDL- and LDL-cholesterol and triacylglycerols) as exposures and type 2 diabetes incidence in the index individual as the outcome. Models were adjusted for two nested sets of covariates.

Results

Spousal BMI and waist circumference were associated with incident type 2 diabetes, but with different patterns for men and women. A man’s risk of type 2 diabetes increased more steeply with his wife’s obesity level, and the association remained statistically significant even after adjustment for the man’s own obesity level. Having a wife with a 5 kg/m2 higher BMI (30 kg/m2 vs 25 kg/m2) was associated with a 21% (95% CI 11%, 33%) increased risk of type 2 diabetes. In contrast, the association between incident type 2 diabetes in a woman and her husband’s BMI was attenuated after adjusting for the woman’s own obesity level. Findings for waist circumference were similar to those for BMI. Regarding other risk factors, we found a statistically significant association only between the risk of type 2 diabetes in women and their husbands’ triacylglycerol levels.

Conclusions/interpretation

The main finding of this study is the sex-specific effect of spousal obesity on the risk of type 2 diabetes. Having an obese spouse increases an individual’s risk of type 2 diabetes over and above the effect of the individual’s own obesity level among men, but not among women. Our results suggest that a couples-focused approach may be beneficial for the early detection of type 2 diabetes and individuals at high risk of developing type 2 diabetes, especially in men, who are less likely than women to attend health checks.

Data availability

Data were accessed via the UK Data Service under the data-sharing agreement no. 91400 (https://​discover.​ukdataservice.​ac.​uk/​catalogue/​?​sn=​5050&​type=​Data%20​catalogue).
Appendix
Available only for authorised users
Literature
1.
go back to reference Knowler WC, Fowler SE, Hamman RF et al (2009) 10-year follow-up of diabetes incidence and weight loss in the Diabetes Prevention Program Outcomes Study. Lancet 374:1677–1686CrossRefPubMed Knowler WC, Fowler SE, Hamman RF et al (2009) 10-year follow-up of diabetes incidence and weight loss in the Diabetes Prevention Program Outcomes Study. Lancet 374:1677–1686CrossRefPubMed
2.
go back to reference Lindstrom J, Ilanne-Parikka P, Peltonen M et al (2006) Sustained reduction in the incidence of type 2 diabetes by lifestyle intervention: follow-up of the Finnish Diabetes Prevention Study. Lancet 368:1673–1679CrossRefPubMed Lindstrom J, Ilanne-Parikka P, Peltonen M et al (2006) Sustained reduction in the incidence of type 2 diabetes by lifestyle intervention: follow-up of the Finnish Diabetes Prevention Study. Lancet 368:1673–1679CrossRefPubMed
3.
go back to reference Holman RR, Paul SK, Bethel MA, Matthews DR, Neil HA (2008) 10-year follow-up of intensive glucose control in type 2 diabetes. N Engl J Med 359:1577–1589CrossRefPubMed Holman RR, Paul SK, Bethel MA, Matthews DR, Neil HA (2008) 10-year follow-up of intensive glucose control in type 2 diabetes. N Engl J Med 359:1577–1589CrossRefPubMed
4.
go back to reference Holman RR, Paul SK, Bethel MA, Neil HA, Matthews DR (2008) Long-term follow-up after tight control of blood pressure in type 2 diabetes. N Engl J Med 359:1565–1576CrossRefPubMed Holman RR, Paul SK, Bethel MA, Neil HA, Matthews DR (2008) Long-term follow-up after tight control of blood pressure in type 2 diabetes. N Engl J Med 359:1565–1576CrossRefPubMed
5.
go back to reference Kearney PM, Blackwell L, Collins R et al (2008) Efficacy of cholesterol-lowering therapy in 18,686 people with diabetes in 14 randomised trials of statins: a meta-analysis. Lancet 371:117–125CrossRefPubMed Kearney PM, Blackwell L, Collins R et al (2008) Efficacy of cholesterol-lowering therapy in 18,686 people with diabetes in 14 randomised trials of statins: a meta-analysis. Lancet 371:117–125CrossRefPubMed
6.
go back to reference National Cardiovascular Intelligence Network (NCVIN) (2015) NHS Diabetes Prevention Programme (NHS DPP) non-diabetic hyperglycaemia. Public Health England, London National Cardiovascular Intelligence Network (NCVIN) (2015) NHS Diabetes Prevention Programme (NHS DPP) non-diabetic hyperglycaemia. Public Health England, London
7.
go back to reference Mainous AG 3rd, Tanner RJ, Baker R, Zayas CE, Harle CA (2014) Prevalence of prediabetes in England from 2003 to 2011: population-based, cross-sectional study. BMJ Open 4:e005002CrossRefPubMedPubMedCentral Mainous AG 3rd, Tanner RJ, Baker R, Zayas CE, Harle CA (2014) Prevalence of prediabetes in England from 2003 to 2011: population-based, cross-sectional study. BMJ Open 4:e005002CrossRefPubMedPubMedCentral
8.
go back to reference Geiss LS, James C, Gregg EW, Albright A, Williamson DF, Cowie CC (2010) Diabetes risk reduction behaviors among U.S. adults with prediabetes. Am J Prev Med 38:403–409CrossRefPubMed Geiss LS, James C, Gregg EW, Albright A, Williamson DF, Cowie CC (2010) Diabetes risk reduction behaviors among U.S. adults with prediabetes. Am J Prev Med 38:403–409CrossRefPubMed
11.
go back to reference Sargeant LA, Simmons RK, Barling RS et al (2010) Who attends a UK diabetes screening programme? Findings from the ADDITION-Cambridge study. Diabet Med 27:995–1003CrossRefPubMedPubMedCentral Sargeant LA, Simmons RK, Barling RS et al (2010) Who attends a UK diabetes screening programme? Findings from the ADDITION-Cambridge study. Diabet Med 27:995–1003CrossRefPubMedPubMedCentral
12.
go back to reference Cook EJ, Sharp C, Randhawa G, Guppy A, Gangotra R, Cox J (2016) Who uses NHS health checks? Investigating the impact of ethnicity and gender and method of invitation on uptake of NHS health checks. Int J Equity Health 15:13CrossRefPubMedPubMedCentral Cook EJ, Sharp C, Randhawa G, Guppy A, Gangotra R, Cox J (2016) Who uses NHS health checks? Investigating the impact of ethnicity and gender and method of invitation on uptake of NHS health checks. Int J Equity Health 15:13CrossRefPubMedPubMedCentral
13.
go back to reference Bender AM, Jorgensen T, Pisinger C (2015) Is self-selection the main driver of positive interpretations of general health checks? The Inter99 randomized trial. Prev Med 81:42–48CrossRefPubMed Bender AM, Jorgensen T, Pisinger C (2015) Is self-selection the main driver of positive interpretations of general health checks? The Inter99 randomized trial. Prev Med 81:42–48CrossRefPubMed
14.
go back to reference Barrett-Connor E, Suarez L (1982) Spouse concordance for fasting plasma glucose in non-diabetics. Am J Epidemiol 116:475–481CrossRefPubMed Barrett-Connor E, Suarez L (1982) Spouse concordance for fasting plasma glucose in non-diabetics. Am J Epidemiol 116:475–481CrossRefPubMed
15.
16.
go back to reference Jurj AL, Wen W, Li HL et al (2006) Spousal correlations for lifestyle factors and selected diseases in Chinese couples. Ann Epidemiol 16:285–291CrossRefPubMed Jurj AL, Wen W, Li HL et al (2006) Spousal correlations for lifestyle factors and selected diseases in Chinese couples. Ann Epidemiol 16:285–291CrossRefPubMed
17.
go back to reference Christakis NA, Fowler JH (2007) The spread of obesity in a large social network over 32 years. N Engl J Med 357:370–379CrossRefPubMed Christakis NA, Fowler JH (2007) The spread of obesity in a large social network over 32 years. N Engl J Med 357:370–379CrossRefPubMed
18.
go back to reference Chen HJ, Liu Y, Wang Y (2014) Socioeconomic and demographic factors for spousal resemblance in obesity status and habitual physical activity in the United States. J Obes 2014:703215CrossRefPubMedPubMedCentral Chen HJ, Liu Y, Wang Y (2014) Socioeconomic and demographic factors for spousal resemblance in obesity status and habitual physical activity in the United States. J Obes 2014:703215CrossRefPubMedPubMedCentral
19.
go back to reference Hemminki K, Li X, Sundquist K, Sundquist J (2010) Familial risks for type 2 diabetes in Sweden. Diabetes Care 33:293–297CrossRefPubMed Hemminki K, Li X, Sundquist K, Sundquist J (2010) Familial risks for type 2 diabetes in Sweden. Diabetes Care 33:293–297CrossRefPubMed
20.
go back to reference Raghavan S, Pachucki MC, Chang Y et al (2016) Incident type 2 diabetes risk is influenced by obesity and diabetes in social contacts: a social network analysis. J Gen Intern Med 31:1127–1133CrossRefPubMedPubMedCentral Raghavan S, Pachucki MC, Chang Y et al (2016) Incident type 2 diabetes risk is influenced by obesity and diabetes in social contacts: a social network analysis. J Gen Intern Med 31:1127–1133CrossRefPubMedPubMedCentral
22.
go back to reference Steptoe A, Breeze E, Banks J, Nazroo J (2013) Cohort profile: the English Longitudinal Study of Ageing. Int J Epidemiol 42:1640–1648CrossRefPubMed Steptoe A, Breeze E, Banks J, Nazroo J (2013) Cohort profile: the English Longitudinal Study of Ageing. Int J Epidemiol 42:1640–1648CrossRefPubMed
24.
26.
go back to reference Cunningham SA, Adams SR, Schmittdiel JA, Ali MK (2017) Incidence of diabetes after a partner’s diagnosis. Prev Med 105:52–57CrossRefPubMed Cunningham SA, Adams SR, Schmittdiel JA, Ali MK (2017) Incidence of diabetes after a partner’s diagnosis. Prev Med 105:52–57CrossRefPubMed
27.
go back to reference Khan A, Lasker SS, Chowdhury TA (2003) Are spouses of patients with type 2 diabetes at increased risk of developing diabetes? Diabetes Care 26:710–712CrossRefPubMed Khan A, Lasker SS, Chowdhury TA (2003) Are spouses of patients with type 2 diabetes at increased risk of developing diabetes? Diabetes Care 26:710–712CrossRefPubMed
28.
29.
go back to reference Ask H, Rognmo K, Torvik FA, Roysamb E, Tambs K (2012) Non-random mating and convergence over time for alcohol consumption, smoking, and exercise: the Nord-Trondelag Health Study. Behav Genet 42:354–365CrossRefPubMed Ask H, Rognmo K, Torvik FA, Roysamb E, Tambs K (2012) Non-random mating and convergence over time for alcohol consumption, smoking, and exercise: the Nord-Trondelag Health Study. Behav Genet 42:354–365CrossRefPubMed
30.
go back to reference Katzmarzyk PT, Perusse L, Rao DC, Bouchard C (1999) Spousal resemblance and risk of 7-year increases in obesity and central adiposity in the Canadian population. Obes Res 7:545–551CrossRefPubMed Katzmarzyk PT, Perusse L, Rao DC, Bouchard C (1999) Spousal resemblance and risk of 7-year increases in obesity and central adiposity in the Canadian population. Obes Res 7:545–551CrossRefPubMed
31.
go back to reference Cobb LK, McAdams-DeMarco MA, Gudzune KA et al (2016) Changes in body mass index and obesity risk in married couples over 25 years: the ARIC cohort study. Am J Epidemiol 183:435–443CrossRefPubMed Cobb LK, McAdams-DeMarco MA, Gudzune KA et al (2016) Changes in body mass index and obesity risk in married couples over 25 years: the ARIC cohort study. Am J Epidemiol 183:435–443CrossRefPubMed
32.
go back to reference Manson JE, Rimm EB, Stampfer MJ et al (1991) Physical activity and incidence of non-insulin-dependent diabetes mellitus in women. Lancet 338:774–778CrossRefPubMed Manson JE, Rimm EB, Stampfer MJ et al (1991) Physical activity and incidence of non-insulin-dependent diabetes mellitus in women. Lancet 338:774–778CrossRefPubMed
33.
go back to reference Wei M, Gibbons LW, Mitchell TL, Kampert JB, Lee CD, Blair SN (1999) The association between cardiorespiratory fitness and impaired fasting glucose and type 2 diabetes mellitus in men. Ann Intern Med 130:89–96CrossRefPubMed Wei M, Gibbons LW, Mitchell TL, Kampert JB, Lee CD, Blair SN (1999) The association between cardiorespiratory fitness and impaired fasting glucose and type 2 diabetes mellitus in men. Ann Intern Med 130:89–96CrossRefPubMed
34.
go back to reference Ekelund U, Franks PW, Sharp S, Brage S, Wareham NJ (2007) Increase in physical activity energy expenditure is associated with reduced metabolic risk independent of change in fatness and fitness. Diabetes Care 30:2101–2106CrossRefPubMed Ekelund U, Franks PW, Sharp S, Brage S, Wareham NJ (2007) Increase in physical activity energy expenditure is associated with reduced metabolic risk independent of change in fatness and fitness. Diabetes Care 30:2101–2106CrossRefPubMed
36.
go back to reference Flagg LA, Sen B, Kilgore M, Locher JL (2014) The influence of gender, age, education and household size on meal preparation and food shopping responsibilities. Public Health Nutr 17:2061–2070CrossRefPubMed Flagg LA, Sen B, Kilgore M, Locher JL (2014) The influence of gender, age, education and household size on meal preparation and food shopping responsibilities. Public Health Nutr 17:2061–2070CrossRefPubMed
37.
go back to reference White E, Hurlich M, Thompson RS et al (1991) Dietary changes among husbands of participants in a low-fat dietary intervention. Am J Prev Med 7:319–325CrossRefPubMed White E, Hurlich M, Thompson RS et al (1991) Dietary changes among husbands of participants in a low-fat dietary intervention. Am J Prev Med 7:319–325CrossRefPubMed
38.
go back to reference Gorin AA, Wing RR, Fava JL et al (2008) Weight loss treatment influences untreated spouses and the home environment: evidence of a ripple effect. Int J Obes 32:1678–1684CrossRef Gorin AA, Wing RR, Fava JL et al (2008) Weight loss treatment influences untreated spouses and the home environment: evidence of a ripple effect. Int J Obes 32:1678–1684CrossRef
39.
go back to reference Abbasi A, Sahlqvist AS, Lotta L et al (2016) A systematic review of biomarkers and risk of incident type 2 diabetes: an overview of epidemiological, prediction and aetiological research literature. PLoS One 11:e0163721CrossRefPubMedPubMedCentral Abbasi A, Sahlqvist AS, Lotta L et al (2016) A systematic review of biomarkers and risk of incident type 2 diabetes: an overview of epidemiological, prediction and aetiological research literature. PLoS One 11:e0163721CrossRefPubMedPubMedCentral
40.
go back to reference Kautzky-Willer A, Harreiter J, Pacini G (2016) Sex and gender differences in risk, pathophysiology and complications of type 2 diabetes mellitus. Endocr Rev 37:278–316CrossRefPubMedPubMedCentral Kautzky-Willer A, Harreiter J, Pacini G (2016) Sex and gender differences in risk, pathophysiology and complications of type 2 diabetes mellitus. Endocr Rev 37:278–316CrossRefPubMedPubMedCentral
Metadata
Title
Spousal cardiometabolic risk factors and incidence of type 2 diabetes: a prospective analysis from the English Longitudinal Study of Ageing
Authors
Jannie Nielsen
Adam Hulman
Daniel R. Witte
Publication date
01-07-2018
Publisher
Springer Berlin Heidelberg
Published in
Diabetologia / Issue 7/2018
Print ISSN: 0012-186X
Electronic ISSN: 1432-0428
DOI
https://doi.org/10.1007/s00125-018-4587-1

Other articles of this Issue 7/2018

Diabetologia 7/2018 Go to the issue

Up Front

Up front

Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discuss last year's major advances in heart failure and cardiomyopathies.