Skip to main content
Top
Published in: Diabetologia 6/2018

Open Access 01-06-2018 | Article

Loss of angiopoietin-like 4 (ANGPTL4) in mice with diet-induced obesity uncouples visceral obesity from glucose intolerance partly via the gut microbiota

Authors: Aafke W. F. Janssen, Saeed Katiraei, Barbara Bartosinska, Daniel Eberhard, Ko Willems van Dijk, Sander Kersten

Published in: Diabetologia | Issue 6/2018

Login to get access

Abstract

Aims/hypothesis

Angiopoietin-like 4 (ANGPTL4) is an important regulator of triacylglycerol metabolism, carrying out this role by inhibiting the enzymes lipoprotein lipase and pancreatic lipase. ANGPTL4 is a potential target for ameliorating cardiometabolic diseases. Although ANGPTL4 has been implicated in obesity, the study of the direct role of ANGPTL4 in diet-induced obesity and related metabolic dysfunction is hampered by the massive acute-phase response and development of lethal chylous ascites and peritonitis in Angptl4−/− mice fed a standard high-fat diet. The aim of this study was to better characterise the role of ANGPTL4 in glucose homeostasis and metabolic dysfunction during obesity.

Methods

We chronically fed wild-type (WT) and Angptl4−/− mice a diet rich in unsaturated fatty acids and cholesterol, combined with fructose in drinking water, and studied metabolic function. The role of the gut microbiota was investigated by orally administering a mixture of antibiotics (ampicillin, neomycin, metronidazole). Glucose homeostasis was assessed via i.p. glucose and insulin tolerance tests.

Results

Mice lacking ANGPTL4 displayed an increase in body weight gain, visceral adipose tissue mass, visceral adipose tissue lipoprotein lipase activity and visceral adipose tissue inflammation compared with WT mice. However, they also unexpectedly had markedly improved glucose tolerance, which was accompanied by elevated insulin levels. Loss of ANGPTL4 did not affect glucose-stimulated insulin secretion in isolated pancreatic islets. Since the gut microbiota have been suggested to influence insulin secretion, and because ANGPTL4 has been proposed to link the gut microbiota to host metabolism, we hypothesised a potential role of the gut microbiota. Gut microbiota composition was significantly different between Angptl4−/− mice and WT mice. Interestingly, suppression of the gut microbiota using antibiotics largely abolished the differences in glucose tolerance and insulin levels between WT and Angptl4−/− mice.

Conclusions/interpretation

Despite increasing visceral fat mass, inactivation of ANGPTL4 improves glucose tolerance, at least partly via a gut microbiota-dependent mechanism.
Appendix
Available only for authorised users
Literature
1.
go back to reference Redinger RN (2007) The pathophysiology of obesity and its clinical manifestations. Gastroenterol Hepatol 3:856–863 Redinger RN (2007) The pathophysiology of obesity and its clinical manifestations. Gastroenterol Hepatol 3:856–863
2.
go back to reference Voshol PJ, Rensen PCN, van Dijk KW et al (2009) Effect of plasma triglyceride metabolism on lipid storage in adipose tissue: studies using genetically engineered mouse models. Biochim Biophys Acta 1791:479–485CrossRefPubMed Voshol PJ, Rensen PCN, van Dijk KW et al (2009) Effect of plasma triglyceride metabolism on lipid storage in adipose tissue: studies using genetically engineered mouse models. Biochim Biophys Acta 1791:479–485CrossRefPubMed
3.
go back to reference Kersten S (2014) Physiological regulation of lipoprotein lipase. Biochim Biophys Acta 1841:919–933CrossRefPubMed Kersten S (2014) Physiological regulation of lipoprotein lipase. Biochim Biophys Acta 1841:919–933CrossRefPubMed
4.
5.
go back to reference Beigneux AP, Davies BSJ, Gin P et al (2007) Glycosylphosphatidylinositol-anchored high-density lipoprotein-binding protein 1 plays a critical role in the lipolytic processing of chylomicrons. Cell Metab 5:279–291CrossRefPubMedPubMedCentral Beigneux AP, Davies BSJ, Gin P et al (2007) Glycosylphosphatidylinositol-anchored high-density lipoprotein-binding protein 1 plays a critical role in the lipolytic processing of chylomicrons. Cell Metab 5:279–291CrossRefPubMedPubMedCentral
6.
go back to reference Dijk W, Kersten S (2016) Regulation of lipid metabolism by angiopoietin-like proteins. Curr Opin Lipidol 27:249–256CrossRefPubMed Dijk W, Kersten S (2016) Regulation of lipid metabolism by angiopoietin-like proteins. Curr Opin Lipidol 27:249–256CrossRefPubMed
7.
go back to reference Dijk W, Heine M, Vergnes L et al (2015) ANGPTL4 mediates shuttling of lipid fuel to brown adipose tissue during sustained cold exposure. elife 4:e08428CrossRefPubMedPubMedCentral Dijk W, Heine M, Vergnes L et al (2015) ANGPTL4 mediates shuttling of lipid fuel to brown adipose tissue during sustained cold exposure. elife 4:e08428CrossRefPubMedPubMedCentral
8.
go back to reference Catoire M, Alex S, Paraskevopulos N et al (2014) Fatty acid-inducible ANGPTL4 governs lipid metabolic response to exercise. Proc Natl Acad Sci U S A 111:E1043–E1052CrossRefPubMedPubMedCentral Catoire M, Alex S, Paraskevopulos N et al (2014) Fatty acid-inducible ANGPTL4 governs lipid metabolic response to exercise. Proc Natl Acad Sci U S A 111:E1043–E1052CrossRefPubMedPubMedCentral
9.
go back to reference Kroupa O, Vorrsjö E, Stienstra R et al (2012) Linking nutritional regulation of Angptl4, Gpihbp1, and Lmf1 to lipoprotein lipase activity in rodent adipose tissue. BMC Physiol 12:13CrossRefPubMedPubMedCentral Kroupa O, Vorrsjö E, Stienstra R et al (2012) Linking nutritional regulation of Angptl4, Gpihbp1, and Lmf1 to lipoprotein lipase activity in rodent adipose tissue. BMC Physiol 12:13CrossRefPubMedPubMedCentral
10.
go back to reference Mattijssen F, Alex S, Swarts HJ et al (2014) Angptl4 serves as an endogenous inhibitor of intestinal lipid digestion. Mol Metab 3:135–144CrossRefPubMed Mattijssen F, Alex S, Swarts HJ et al (2014) Angptl4 serves as an endogenous inhibitor of intestinal lipid digestion. Mol Metab 3:135–144CrossRefPubMed
11.
go back to reference Köster A, Chao YB, Mosior M et al (2005) Transgenic angiopoietin-like (angptl)4 overexpression and targeted disruption of angptl4 and angptl3: regulation of triglyceride metabolism. Endocrinology 146:4943–4950CrossRefPubMed Köster A, Chao YB, Mosior M et al (2005) Transgenic angiopoietin-like (angptl)4 overexpression and targeted disruption of angptl4 and angptl3: regulation of triglyceride metabolism. Endocrinology 146:4943–4950CrossRefPubMed
12.
go back to reference Xu A, Lam MC, Chan KW et al (2005) Angiopoietin-like protein 4 decreases blood glucose and improves glucose tolerance but induces hyperlipidemia and hepatic steatosis in mice. Proc Natl Acad Sci U S A 102:6086–6091CrossRefPubMedPubMedCentral Xu A, Lam MC, Chan KW et al (2005) Angiopoietin-like protein 4 decreases blood glucose and improves glucose tolerance but induces hyperlipidemia and hepatic steatosis in mice. Proc Natl Acad Sci U S A 102:6086–6091CrossRefPubMedPubMedCentral
13.
go back to reference Wang Y, Liu LM, Wei L et al (2016) Angiopoietin-like protein 4 improves glucose tolerance and insulin resistance but induces liver steatosis in high-fat-diet mice. Mol Med Rep 14:3293–3300CrossRefPubMed Wang Y, Liu LM, Wei L et al (2016) Angiopoietin-like protein 4 improves glucose tolerance and insulin resistance but induces liver steatosis in high-fat-diet mice. Mol Med Rep 14:3293–3300CrossRefPubMed
14.
go back to reference Mandard S, Zandbergen F, van Straten E et al (2006) The fasting-induced adipose factor/angiopoietin-like protein 4 is physically associated with lipoproteins and governs plasma lipid levels and adiposity. J Biol Chem 281:934–944CrossRefPubMed Mandard S, Zandbergen F, van Straten E et al (2006) The fasting-induced adipose factor/angiopoietin-like protein 4 is physically associated with lipoproteins and governs plasma lipid levels and adiposity. J Biol Chem 281:934–944CrossRefPubMed
15.
go back to reference Lichtenstein L, Berbée JFP, van Dijk SJ et al (2007) Angptl4 upregulates cholesterol synthesis in liver via inhibition of LPL- and HL-dependent hepatic cholesterol uptake. Arterioscler Thromb Vasc Biol 27:2420–2427CrossRefPubMed Lichtenstein L, Berbée JFP, van Dijk SJ et al (2007) Angptl4 upregulates cholesterol synthesis in liver via inhibition of LPL- and HL-dependent hepatic cholesterol uptake. Arterioscler Thromb Vasc Biol 27:2420–2427CrossRefPubMed
16.
go back to reference Lichtenstein L, Mattijssen F, de Wit NJ et al (2010) Angptl4 protects against severe proinflammatory effects of saturated fat by inhibiting fatty acid uptake into mesenteric lymph node macrophages. Cell Metab 12:580–592CrossRefPubMedPubMedCentral Lichtenstein L, Mattijssen F, de Wit NJ et al (2010) Angptl4 protects against severe proinflammatory effects of saturated fat by inhibiting fatty acid uptake into mesenteric lymph node macrophages. Cell Metab 12:580–592CrossRefPubMedPubMedCentral
17.
go back to reference Oteng A-B, Bhattacharya A, Brodesser S et al (2017) Feeding Angptl4 −/− mice trans fat promotes foam cell formation in mesenteric lymph nodes without leading to ascites. J Lipid Res 58:1100–1113CrossRefPubMed Oteng A-B, Bhattacharya A, Brodesser S et al (2017) Feeding Angptl4 −/− mice trans fat promotes foam cell formation in mesenteric lymph nodes without leading to ascites. J Lipid Res 58:1100–1113CrossRefPubMed
18.
go back to reference Janssen AWF, Houben T, Katiraei S et al (2017) Modulation of the gut microbiota impacts non-alcoholic fatty liver disease: a potential role for bile acids. J Lipid Res 58:1399–1416CrossRefPubMed Janssen AWF, Houben T, Katiraei S et al (2017) Modulation of the gut microbiota impacts non-alcoholic fatty liver disease: a potential role for bile acids. J Lipid Res 58:1399–1416CrossRefPubMed
19.
go back to reference Basciano H, Federico L, Adeli K (2005) Fructose, insulin resistance, and metabolic dyslipidemia. Nutr Metab 2:5CrossRef Basciano H, Federico L, Adeli K (2005) Fructose, insulin resistance, and metabolic dyslipidemia. Nutr Metab 2:5CrossRef
20.
go back to reference Chung S, Parks JS (2015) Dietary cholesterol effects on adipose tissue inflammation. Curr Opin Lipidol 27:19–25CrossRef Chung S, Parks JS (2015) Dietary cholesterol effects on adipose tissue inflammation. Curr Opin Lipidol 27:19–25CrossRef
21.
go back to reference Janssen AWF, Dijk W, Boekhorst J et al (2017) ANGPTL4 promotes bile acid absorption during taurocholic acid supplementation via a mechanism dependent on the gut microbiota. Biochim Biophys Acta Mol Cell Biol Lipids 1862:1056–1067CrossRef Janssen AWF, Dijk W, Boekhorst J et al (2017) ANGPTL4 promotes bile acid absorption during taurocholic acid supplementation via a mechanism dependent on the gut microbiota. Biochim Biophys Acta Mol Cell Biol Lipids 1862:1056–1067CrossRef
22.
go back to reference Ijssennagger N, Belzer C, Hooiveld GJ et al (2015) Gut microbiota facilitates dietary heme-induced epithelial hyperproliferation by opening the mucus barrier in colon. Proc Natl Acad Sci 112:10038–10043CrossRefPubMedPubMedCentral Ijssennagger N, Belzer C, Hooiveld GJ et al (2015) Gut microbiota facilitates dietary heme-induced epithelial hyperproliferation by opening the mucus barrier in colon. Proc Natl Acad Sci 112:10038–10043CrossRefPubMedPubMedCentral
23.
go back to reference Cruz WS, Kwon G, Marshall CA et al (2001) Glucose and insulin stimulate heparin-releasable lipoprotein lipase activity in mouse islets and INS-1 cells. A potential link between insulin resistance and beta-cell dysfunction. J Biol Chem 276:12162–12168CrossRefPubMed Cruz WS, Kwon G, Marshall CA et al (2001) Glucose and insulin stimulate heparin-releasable lipoprotein lipase activity in mouse islets and INS-1 cells. A potential link between insulin resistance and beta-cell dysfunction. J Biol Chem 276:12162–12168CrossRefPubMed
24.
go back to reference Pappan KL, Pan Z, Kwon G et al (2005) Pancreatic β-cell lipoprotein lipase independently regulates islet glucose metabolism and normal insulin secretion. J Biol Chem 280:9023–9029CrossRefPubMed Pappan KL, Pan Z, Kwon G et al (2005) Pancreatic β-cell lipoprotein lipase independently regulates islet glucose metabolism and normal insulin secretion. J Biol Chem 280:9023–9029CrossRefPubMed
25.
go back to reference Kreznar JH, Keller MP, Traeger LL et al (2017) Host genotype and gut microbiome modulate insulin secretion and diet-induced metabolic phenotypes. Cell Rep 18:1739–1750CrossRefPubMedPubMedCentral Kreznar JH, Keller MP, Traeger LL et al (2017) Host genotype and gut microbiome modulate insulin secretion and diet-induced metabolic phenotypes. Cell Rep 18:1739–1750CrossRefPubMedPubMedCentral
26.
go back to reference Simon MC, Strassburger K, Nowotny B et al (2015) Intake of Lactobacillus reuteri improves incretin and insulin secretion in glucose-tolerant humans: a proof of concept. Diabetes Care 38:1827–1834CrossRefPubMed Simon MC, Strassburger K, Nowotny B et al (2015) Intake of Lactobacillus reuteri improves incretin and insulin secretion in glucose-tolerant humans: a proof of concept. Diabetes Care 38:1827–1834CrossRefPubMed
27.
go back to reference Bäckhed F, Ding H, Wang T et al (2004) The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci U S A 101:15718–15723CrossRefPubMedPubMedCentral Bäckhed F, Ding H, Wang T et al (2004) The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci U S A 101:15718–15723CrossRefPubMedPubMedCentral
28.
go back to reference Bäckhed F, Manchester JK, Semenkovich CF, Gordon JI (2007) Mechanisms underlying the resistance to diet-induced obesity in germ-free mice. Proc Natl Acad Sci U S A 104:979–984CrossRefPubMedPubMedCentral Bäckhed F, Manchester JK, Semenkovich CF, Gordon JI (2007) Mechanisms underlying the resistance to diet-induced obesity in germ-free mice. Proc Natl Acad Sci U S A 104:979–984CrossRefPubMedPubMedCentral
29.
go back to reference Sukonina V, Lookene A, Olivecrona T, Olivecrona G (2006) Angiopoietin-like protein 4 converts lipoprotein lipase to inactive monomers and modulates lipase activity in adipose tissue. Proc Natl Acad Sci U S A 103:17450–17455CrossRefPubMedPubMedCentral Sukonina V, Lookene A, Olivecrona T, Olivecrona G (2006) Angiopoietin-like protein 4 converts lipoprotein lipase to inactive monomers and modulates lipase activity in adipose tissue. Proc Natl Acad Sci U S A 103:17450–17455CrossRefPubMedPubMedCentral
30.
go back to reference Lee E-C, Landes GM, Chung K, et al; Lexicon Pharmaceuticals, Inc, Monoclonal antibodies against ANGPTL4. US Patent 2006/0222645 A1. 6 Jan 2006 Lee E-C, Landes GM, Chung K, et al; Lexicon Pharmaceuticals, Inc, Monoclonal antibodies against ANGPTL4. US Patent 2006/0222645 A1. 6 Jan 2006
31.
go back to reference Mulder H, Yang S, So M et al (2004) Inhibition of lipase activity and lipolysis in rat islets reduces insulin secretion. Diabetes 53:122–128CrossRefPubMed Mulder H, Yang S, So M et al (2004) Inhibition of lipase activity and lipolysis in rat islets reduces insulin secretion. Diabetes 53:122–128CrossRefPubMed
32.
go back to reference Koyama K, Chen G, Wang MY et al (1997) Beta-cell function in normal rats made chronically hyperleptinemic by adenovirus-leptin gene therapy. Diabetes 46:1276–1280CrossRefPubMed Koyama K, Chen G, Wang MY et al (1997) Beta-cell function in normal rats made chronically hyperleptinemic by adenovirus-leptin gene therapy. Diabetes 46:1276–1280CrossRefPubMed
33.
go back to reference Nyrén R, Chang CL, Lindström P et al (2012) Localization of lipoprotein lipase and GPIHBP1 in mouse pancreas: effects of diet and leptin deficiency. BMC Physiol 12:14CrossRefPubMedPubMedCentral Nyrén R, Chang CL, Lindström P et al (2012) Localization of lipoprotein lipase and GPIHBP1 in mouse pancreas: effects of diet and leptin deficiency. BMC Physiol 12:14CrossRefPubMedPubMedCentral
34.
go back to reference Kim H-K, Kwon O, Park K-H et al (2017) Angiopoietin-like peptide 4 regulates insulin secretion and islet morphology. Biochem Biophys Res Commun 485:113–118CrossRefPubMed Kim H-K, Kwon O, Park K-H et al (2017) Angiopoietin-like peptide 4 regulates insulin secretion and islet morphology. Biochem Biophys Res Commun 485:113–118CrossRefPubMed
35.
go back to reference Mehta N, Qamar A, Qu L et al (2014) Differential association of plasma angiopoietin-like proteins 3 and 4 with lipid and metabolic traits. Arterioscler Thromb Vasc Biol 34:1057–1063CrossRefPubMedPubMedCentral Mehta N, Qamar A, Qu L et al (2014) Differential association of plasma angiopoietin-like proteins 3 and 4 with lipid and metabolic traits. Arterioscler Thromb Vasc Biol 34:1057–1063CrossRefPubMedPubMedCentral
36.
go back to reference Lotta LA, Gulati P, Day FR et al (2017) Integrative genomic analysis implicates limited peripheral adipose storage capacity in the pathogenesis of human insulin resistance. Nat Genet 49:17–26CrossRefPubMed Lotta LA, Gulati P, Day FR et al (2017) Integrative genomic analysis implicates limited peripheral adipose storage capacity in the pathogenesis of human insulin resistance. Nat Genet 49:17–26CrossRefPubMed
38.
go back to reference Caesar R, Reigstad CS, Bäckhed HK et al (2012) Gut-derived lipopolysaccharide augments adipose macrophage accumulation but is not essential for impaired glucose or insulin tolerance in mice. Gut 61:1701–1707CrossRefPubMedPubMedCentral Caesar R, Reigstad CS, Bäckhed HK et al (2012) Gut-derived lipopolysaccharide augments adipose macrophage accumulation but is not essential for impaired glucose or insulin tolerance in mice. Gut 61:1701–1707CrossRefPubMedPubMedCentral
39.
go back to reference Rabot S, Membrez M, Bruneau A et al (2010) Germ-free C57BL/6J mice are resistant to high-fat-diet-induced insulin resistance and have altered cholesterol metabolism. FASEB J 24:4948–4959CrossRefPubMed Rabot S, Membrez M, Bruneau A et al (2010) Germ-free C57BL/6J mice are resistant to high-fat-diet-induced insulin resistance and have altered cholesterol metabolism. FASEB J 24:4948–4959CrossRefPubMed
40.
go back to reference Hwang I, Park YJ, Kim YR et al (2015) Alteration of gut microbiota by vancomycin and bacitracin improves insulin resistance via glucagon-like peptide 1 in diet-induced obesity. FASEB J 29:2397–2411CrossRefPubMed Hwang I, Park YJ, Kim YR et al (2015) Alteration of gut microbiota by vancomycin and bacitracin improves insulin resistance via glucagon-like peptide 1 in diet-induced obesity. FASEB J 29:2397–2411CrossRefPubMed
41.
go back to reference Vrieze A, Van Nood E, Holleman F et al (2012) Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome. Gastroenterology 143:913–916CrossRefPubMed Vrieze A, Van Nood E, Holleman F et al (2012) Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome. Gastroenterology 143:913–916CrossRefPubMed
42.
go back to reference Ussar S, Griffin NW, Bezy O et al (2015) Interactions between gut microbiota, host genetics and diet modulate the predisposition to obesity and metabolic syndrome. Cell Metab 22:1–15CrossRef Ussar S, Griffin NW, Bezy O et al (2015) Interactions between gut microbiota, host genetics and diet modulate the predisposition to obesity and metabolic syndrome. Cell Metab 22:1–15CrossRef
43.
go back to reference Karlsson FH, Tremaroli V, Nookaew I et al (2013) Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature 498:99–103CrossRefPubMed Karlsson FH, Tremaroli V, Nookaew I et al (2013) Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature 498:99–103CrossRefPubMed
44.
go back to reference Priyadarshini M, Wicksteed B, Schiltz GE et al (2016) SCFA receptors in pancreatic β cells: novel diabetes targets? Trends Endocrinol Metab 27:653–664CrossRefPubMedPubMedCentral Priyadarshini M, Wicksteed B, Schiltz GE et al (2016) SCFA receptors in pancreatic β cells: novel diabetes targets? Trends Endocrinol Metab 27:653–664CrossRefPubMedPubMedCentral
45.
46.
47.
go back to reference Amyot J, Semache M, Ferdaoussi M et al (2012) Lipopolysaccharides impair insulin gene expression in isolated islets of langerhans via toll-like receptor-4 and NF-kB signalling. PLoS One 7:e36200CrossRefPubMedPubMedCentral Amyot J, Semache M, Ferdaoussi M et al (2012) Lipopolysaccharides impair insulin gene expression in isolated islets of langerhans via toll-like receptor-4 and NF-kB signalling. PLoS One 7:e36200CrossRefPubMedPubMedCentral
48.
go back to reference Nguyen AT, Mandard S, Dray C et al (2014) Lipopolysaccharides-mediated increase in glucose-stimulated insulin secretion: involvement of the GLP-1 pathway. Diabetes 63:471–482CrossRefPubMed Nguyen AT, Mandard S, Dray C et al (2014) Lipopolysaccharides-mediated increase in glucose-stimulated insulin secretion: involvement of the GLP-1 pathway. Diabetes 63:471–482CrossRefPubMed
49.
go back to reference Setchell KDR, Clerici C (2010) Equol: history, chemistry, and formation. J Nutr 3:1355–1362CrossRef Setchell KDR, Clerici C (2010) Equol: history, chemistry, and formation. J Nutr 3:1355–1362CrossRef
50.
go back to reference Cheong SH, Furuhashi K, Ito K et al (2014) Antihyperglycemic effect of equol, a daidzein derivative, in cultured L6 myocytes and ob/ob mice. Mol Nutr Food Res 58:267–277CrossRefPubMed Cheong SH, Furuhashi K, Ito K et al (2014) Antihyperglycemic effect of equol, a daidzein derivative, in cultured L6 myocytes and ob/ob mice. Mol Nutr Food Res 58:267–277CrossRefPubMed
Metadata
Title
Loss of angiopoietin-like 4 (ANGPTL4) in mice with diet-induced obesity uncouples visceral obesity from glucose intolerance partly via the gut microbiota
Authors
Aafke W. F. Janssen
Saeed Katiraei
Barbara Bartosinska
Daniel Eberhard
Ko Willems van Dijk
Sander Kersten
Publication date
01-06-2018
Publisher
Springer Berlin Heidelberg
Published in
Diabetologia / Issue 6/2018
Print ISSN: 0012-186X
Electronic ISSN: 1432-0428
DOI
https://doi.org/10.1007/s00125-018-4583-5

Other articles of this Issue 6/2018

Diabetologia 6/2018 Go to the issue

Up Front

Up front