Skip to main content
Top
Published in: Diabetologia 2/2018

Open Access 01-02-2018 | Article

Annexin A1 attenuates microvascular complications through restoration of Akt signalling in a murine model of type 1 diabetes

Authors: Gareth S. D. Purvis, Fausto Chiazza, Jianmin Chen, Rodrigo Azevedo-Loiola, Lukas Martin, Dennis H. M. Kusters, Chris Reutelingsperger, Nikolaos Fountoulakis, Luigi Gnudi, Muhammed M. Yaqoob, Massimo Collino, Christoph Thiemermann, Egle Solito

Published in: Diabetologia | Issue 2/2018

Login to get access

Abstract

Aims/hypothesis

Microvascular complications in the heart and kidney are strongly associated with an overall rise in inflammation. Annexin A1 (ANXA1) is an endogenous anti-inflammatory molecule that limits and resolves inflammation. In this study, we have used a bedside to bench approach to investigate: (1) ANXA1 levels in individuals with type 1 diabetes; (2) the role of endogenous ANXA1 in nephropathy and cardiomyopathy in experimental type 1 diabetes; and (3) whether treatment with human recombinant ANXA1 attenuates nephropathy and cardiomyopathy in a murine model of type 1 diabetes.

Methods

ANXA1 was measured in plasma from individuals with type 1 diabetes with or without nephropathy and healthy donors. Experimental type 1 diabetes was induced in mice by injection of streptozotocin (STZ; 45 mg/kg i.v. per day for 5 consecutive days) in C57BL/6 or Anxa1 −/− mice. Diabetic mice were treated with human recombinant (hr)ANXA1 (1 μg, 100 μl, 50 mmol/l HEPES; 140 mmol/l NaCl; pH 7.4, i.p.) or vehicle (100 μl, 50 mmol/l HEPES; 140 mmol/l NaCl; pH 7.4, i.p.).

Results

Plasma levels of ANXA1 were elevated in individuals with type 1 diabetes with/without nephropathy compared with healthy individuals (66.0 ± 4.2/64.0 ± 4 ng/ml vs 35.9 ± 2.3 ng/ml; p < 0.05). Compared with diabetic wild-type (WT) mice, diabetic Anxa1 −/− mice exhibited a worse diabetic phenotype and developed more severe cardiac (ejection fraction; 76.1 ± 1.6% vs 49.9 ± 0.9%) and renal dysfunction (proteinuria; 89.3 ± 5.0 μg/mg vs 113.3 ± 5.5 μg/mg). Mechanistically, compared with non-diabetic WT mice, the degree of the phosphorylation of mitogen-activated protein kinases (MAPKs) p38, c-Jun N-terminal kinase (JNK) and extracellular signal-regulated kinase (ERK) was significantly higher in non-diabetic Anxa1 −/− mice in both the heart and kidney, and was further enhanced after STZ-induced type 1 diabetes. Prophylactic treatment with hrANXA1 (weeks 1–13) attenuated both cardiac (ejection fraction; 54.0 ± 1.6% vs 72.4 ± 1.0%) and renal (proteinuria; 89.3 ± 5.0 μg/mg vs 53.1 ± 3.4 μg/mg) dysfunction associated with STZ-induced diabetes, while therapeutic administration of hrANXA1 (weeks 8–13), after significant cardiac and renal dysfunction had already developed, halted the further functional decline in cardiac and renal function seen in diabetic mice administered vehicle. In addition, administration of hrANXA1 attenuated the increase in phosphorylation of p38, JNK and ERK, and restored phosphorylation of Akt in diabetic mice.

Conclusions/interpretation

Overall, these results demonstrate that ANXA1 plasma levels are elevated in individuals with type 1 diabetes independent of a significant impairment in renal function. Furthermore, in mouse models with STZ-induced type 1 diabetes, ANXA1 protects against cardiac and renal dysfunction by returning MAPK signalling to baseline and activating pro-survival pathways (Akt). We propose ANXA1 to be a potential therapeutic option for the control of comorbidities in type 1 diabetes.
Appendix
Available only for authorised users
Literature
2.
go back to reference Papadopoulou-Marketou N, Chrousos GP, Kanaka-Gantenbein C (2016) Diabetic nephropathy in type 1 diabetes: a review of early natural history, pathogenesis, and diagnosis. Diabetes Metab Res Rev 33:e2841CrossRef Papadopoulou-Marketou N, Chrousos GP, Kanaka-Gantenbein C (2016) Diabetic nephropathy in type 1 diabetes: a review of early natural history, pathogenesis, and diagnosis. Diabetes Metab Res Rev 33:e2841CrossRef
5.
go back to reference Martín-Timón I, Sevillano-Collantes C, Segura-Galindo A, del Cañizo-Gómez FJ (2014) Type 2 diabetes and cardiovascular disease: have all risk factors the same strength? World J Diabetes 5:444–470CrossRefPubMedPubMedCentral Martín-Timón I, Sevillano-Collantes C, Segura-Galindo A, del Cañizo-Gómez FJ (2014) Type 2 diabetes and cardiovascular disease: have all risk factors the same strength? World J Diabetes 5:444–470CrossRefPubMedPubMedCentral
6.
go back to reference Bhattacharjee N, Barma S, Konwar N et al (2016) Mechanistic insight of diabetic nephropathy and its pharmacotherapeutic targets: an update. Eur J Pharmacol 791:8–24CrossRefPubMed Bhattacharjee N, Barma S, Konwar N et al (2016) Mechanistic insight of diabetic nephropathy and its pharmacotherapeutic targets: an update. Eur J Pharmacol 791:8–24CrossRefPubMed
7.
go back to reference Niemann M, Herrmann S, Ertl G, Weidemann F (2013) Echocardiography in diabetic cardiomyopathy. Herz 38:42–47CrossRefPubMed Niemann M, Herrmann S, Ertl G, Weidemann F (2013) Echocardiography in diabetic cardiomyopathy. Herz 38:42–47CrossRefPubMed
9.
go back to reference Shi Y, Vanhoutte PM (2017) Macro- and microvascular endothelial dysfunction in diabetes. J Diabetes 9:434–449CrossRefPubMed Shi Y, Vanhoutte PM (2017) Macro- and microvascular endothelial dysfunction in diabetes. J Diabetes 9:434–449CrossRefPubMed
10.
go back to reference Flower RJ, Blackwell GJ (1979) Anti-inflammatory steroids induce biosynthesis of a phospholipase A2 inhibitor which prevents prostaglandin generation. Nature 278:456–469CrossRefPubMed Flower RJ, Blackwell GJ (1979) Anti-inflammatory steroids induce biosynthesis of a phospholipase A2 inhibitor which prevents prostaglandin generation. Nature 278:456–469CrossRefPubMed
11.
go back to reference Rosengarth A, Gerke V, Luecke H (2001) X-ray structure of full-length annexin 1 and implications for membrane aggregation. J Mol Biol 306:489–498CrossRefPubMed Rosengarth A, Gerke V, Luecke H (2001) X-ray structure of full-length annexin 1 and implications for membrane aggregation. J Mol Biol 306:489–498CrossRefPubMed
12.
go back to reference Perretti M, D’Acquisto F (2009) Annexin A1 and glucocorticoids as effectors of the resolution of inflammation. Nat Rev Immunol 9:62–70CrossRefPubMed Perretti M, D’Acquisto F (2009) Annexin A1 and glucocorticoids as effectors of the resolution of inflammation. Nat Rev Immunol 9:62–70CrossRefPubMed
13.
go back to reference Shen D, Nooraie F, Elshimali Y et al (2006) Decreased expression of annexin A1 is correlated with breast cancer development and progression as determined by a tissue microarray analysis. Hum Pathol 37:1583–1591CrossRefPubMed Shen D, Nooraie F, Elshimali Y et al (2006) Decreased expression of annexin A1 is correlated with breast cancer development and progression as determined by a tissue microarray analysis. Hum Pathol 37:1583–1591CrossRefPubMed
14.
go back to reference Cristante E, McArthur S, Mauro C et al (2013) Identification of an essential endogenous regulator of blood-brain barrier integrity, and its pathological and therapeutic implications. Proc Natl Acad Sci U S A 110:832–841CrossRefPubMed Cristante E, McArthur S, Mauro C et al (2013) Identification of an essential endogenous regulator of blood-brain barrier integrity, and its pathological and therapeutic implications. Proc Natl Acad Sci U S A 110:832–841CrossRefPubMed
15.
go back to reference Bensalem N, Ventura AP, Vallée B et al (2005) Down-regulation of the anti-inflammatory protein annexin A1 in cystic fibrosis knock-out mice and patients. Mol Cell Proteomics 4:1591–1601CrossRefPubMed Bensalem N, Ventura AP, Vallée B et al (2005) Down-regulation of the anti-inflammatory protein annexin A1 in cystic fibrosis knock-out mice and patients. Mol Cell Proteomics 4:1591–1601CrossRefPubMed
16.
go back to reference Kosicka A, Cunliffe AD, Mackenzie R et al (2013) Attenuation of plasma annexin A1 in human obesity. FASEB J 27:368–378CrossRefPubMed Kosicka A, Cunliffe AD, Mackenzie R et al (2013) Attenuation of plasma annexin A1 in human obesity. FASEB J 27:368–378CrossRefPubMed
17.
18.
go back to reference Kusters DHM, Chatrou ML, Willems BAG et al (2015) Pharmacological treatment with annexin A1 reduces atherosclerotic plaque burden in LDLR-/- mice on western type diet. PLoS One 10:e0130484CrossRefPubMedPubMedCentral Kusters DHM, Chatrou ML, Willems BAG et al (2015) Pharmacological treatment with annexin A1 reduces atherosclerotic plaque burden in LDLR-/- mice on western type diet. PLoS One 10:e0130484CrossRefPubMedPubMedCentral
19.
go back to reference Locatelli I, Sutti S, Jindal A et al (2014) Endogenous annexin A1 is a novel protective determinant in nonalcoholic steatohepatitis in mice. Hepatology 60:531–544CrossRefPubMedPubMedCentral Locatelli I, Sutti S, Jindal A et al (2014) Endogenous annexin A1 is a novel protective determinant in nonalcoholic steatohepatitis in mice. Hepatology 60:531–544CrossRefPubMedPubMedCentral
20.
go back to reference Chen J, Kieswich JE, Chiazza F et al (2017) IκB kinase inhibitor attenuates sepsis-induced cardiac dysfunction in CKD. J Am Soc Nephrol 28:94–105CrossRefPubMed Chen J, Kieswich JE, Chiazza F et al (2017) IκB kinase inhibitor attenuates sepsis-induced cardiac dysfunction in CKD. J Am Soc Nephrol 28:94–105CrossRefPubMed
21.
go back to reference Smith SF, Goulding NJ, Godolphin JL et al (1990) An assay for the assessment of lipocortin 1 levels in human lung lavage fluid. J Immunol Methods 131:119–125CrossRefPubMed Smith SF, Goulding NJ, Godolphin JL et al (1990) An assay for the assessment of lipocortin 1 levels in human lung lavage fluid. J Immunol Methods 131:119–125CrossRefPubMed
22.
go back to reference Yang YH, Morand EF, Getting SJ et al (2004) Modulation of inflammation and response to dexamethasone by Annexin 1 in antigen-induced arthritis. Arthritis Rheum 50:976–984CrossRefPubMed Yang YH, Morand EF, Getting SJ et al (2004) Modulation of inflammation and response to dexamethasone by Annexin 1 in antigen-induced arthritis. Arthritis Rheum 50:976–984CrossRefPubMed
23.
go back to reference McArthur S, Cristante E, Paterno M et al (2010) Annexin A1: a central player in the anti-inflammatory and neuroprotective role of microglia. J Immunol 185:6317–6328CrossRefPubMedPubMedCentral McArthur S, Cristante E, Paterno M et al (2010) Annexin A1: a central player in the anti-inflammatory and neuroprotective role of microglia. J Immunol 185:6317–6328CrossRefPubMedPubMedCentral
24.
go back to reference Johnson FL, Patel NSA, Purvis GSD et al (2017) Inhibition of IκB kinase at 24 hours after acute kidney injury improves recovery of renal function and attenuates fibrosis. J Am Heart Assoc 6:e005092CrossRefPubMedPubMedCentral Johnson FL, Patel NSA, Purvis GSD et al (2017) Inhibition of IκB kinase at 24 hours after acute kidney injury improves recovery of renal function and attenuates fibrosis. J Am Heart Assoc 6:e005092CrossRefPubMedPubMedCentral
26.
go back to reference Gavins FNE, Hickey MJ (2012) Annexin A1 and the regulation of innate and adaptive immunity. Front Immunol 3(354):1–11 Gavins FNE, Hickey MJ (2012) Annexin A1 and the regulation of innate and adaptive immunity. Front Immunol 3(354):1–11
27.
go back to reference Dalli J, Consalvo AP, Ray V et al (2013) Proresolving and tissue-protective actions of annexin A1-based cleavage-resistant peptides are mediated by formyl peptide receptor 2/lipoxin A4 receptor. J Immunol 190:6478–6487CrossRefPubMed Dalli J, Consalvo AP, Ray V et al (2013) Proresolving and tissue-protective actions of annexin A1-based cleavage-resistant peptides are mediated by formyl peptide receptor 2/lipoxin A4 receptor. J Immunol 190:6478–6487CrossRefPubMed
29.
go back to reference Szkudelski T (2001) The mechanism of alloxan and streptozotocin action in B cells of the rat pancreas. Physiol Res 50:536–546 Szkudelski T (2001) The mechanism of alloxan and streptozotocin action in B cells of the rat pancreas. Physiol Res 50:536–546
31.
go back to reference Way KJ, Isshiki K, Suzuma K et al (2002) Expression of connective tissue growth factor is increased in injured myocardium associated with protein kinase C β2 activation and diabetes. Diabetes 51:2709–2718CrossRefPubMed Way KJ, Isshiki K, Suzuma K et al (2002) Expression of connective tissue growth factor is increased in injured myocardium associated with protein kinase C β2 activation and diabetes. Diabetes 51:2709–2718CrossRefPubMed
32.
go back to reference Diwan A, Dorn GW (2007) Decompensation of cardiac hypertrophy: cellular mechanisms and novel therapeutic targets. Physiology 22:56–64CrossRefPubMed Diwan A, Dorn GW (2007) Decompensation of cardiac hypertrophy: cellular mechanisms and novel therapeutic targets. Physiology 22:56–64CrossRefPubMed
33.
go back to reference Festa A, Haffner SM (2005) Inflammation and cardiovascular disease in patients with diabetes: lessons from the Diabetes Control and Complications Trial. Circulation 111:2414–2425CrossRefPubMed Festa A, Haffner SM (2005) Inflammation and cardiovascular disease in patients with diabetes: lessons from the Diabetes Control and Complications Trial. Circulation 111:2414–2425CrossRefPubMed
35.
go back to reference Helal I, Fick-Brosnahan GM, Reed-Gitomer B, Schrier RW (2012) Glomerular hyperfiltration: definitions, mechanisms and clinical implications. Nat Rev Nephrol 8:293–300CrossRefPubMed Helal I, Fick-Brosnahan GM, Reed-Gitomer B, Schrier RW (2012) Glomerular hyperfiltration: definitions, mechanisms and clinical implications. Nat Rev Nephrol 8:293–300CrossRefPubMed
36.
go back to reference Solito E, Romero IA, Marullo S et al (2000) Annexin 1 binds to U937 monocytic cells and inhibits their adhesion to microvascular endothelium: involvement of the 4 1 integrin. J Immunol 165:1573–1581CrossRefPubMed Solito E, Romero IA, Marullo S et al (2000) Annexin 1 binds to U937 monocytic cells and inhibits their adhesion to microvascular endothelium: involvement of the 4 1 integrin. J Immunol 165:1573–1581CrossRefPubMed
37.
go back to reference Rodrigues-Lisoni FC, Mehemet DK, Peitl P et al (2006) In vitro and in vivo studies on CCR10 regulation by annexin A1. FEBS Lett 580:1431–1438CrossRefPubMed Rodrigues-Lisoni FC, Mehemet DK, Peitl P et al (2006) In vitro and in vivo studies on CCR10 regulation by annexin A1. FEBS Lett 580:1431–1438CrossRefPubMed
38.
go back to reference Naito Z, Takashi E, Xu G et al (2003) Different influences of hyperglycemic duration on phosphorylated extracellular signal-regulated kinase 1/2 in rat heart. Exp Mol Pathol 74:23–32CrossRefPubMed Naito Z, Takashi E, Xu G et al (2003) Different influences of hyperglycemic duration on phosphorylated extracellular signal-regulated kinase 1/2 in rat heart. Exp Mol Pathol 74:23–32CrossRefPubMed
39.
go back to reference Komers R, Lindsley JN, Oyama TT et al (2007) Renal p38 MAP kinase activity in experimental diabetes. Lab Investig 87:548–558CrossRefPubMed Komers R, Lindsley JN, Oyama TT et al (2007) Renal p38 MAP kinase activity in experimental diabetes. Lab Investig 87:548–558CrossRefPubMed
41.
go back to reference Du Y, Tang J, Li G et al (2010) Effects of p38 MAPK inhibition on early stages of diabetic retinopathy and sensory nerve function. Invest Ophthalmol Vis Sci 51:2158–2164CrossRefPubMedPubMedCentral Du Y, Tang J, Li G et al (2010) Effects of p38 MAPK inhibition on early stages of diabetic retinopathy and sensory nerve function. Invest Ophthalmol Vis Sci 51:2158–2164CrossRefPubMedPubMedCentral
42.
go back to reference Singh GB, Raut SK, Khanna S et al (2017) MicroRNA-200c modulates DUSP-1 expression in diabetes-induced cardiac hypertrophy. Mol Cell Biochem 424:1–11CrossRefPubMed Singh GB, Raut SK, Khanna S et al (2017) MicroRNA-200c modulates DUSP-1 expression in diabetes-induced cardiac hypertrophy. Mol Cell Biochem 424:1–11CrossRefPubMed
43.
45.
go back to reference Khan AI, Coldewey SM, Patel NSA et al (2013) Erythropoietin attenuates cardiac dysfunction in experimental sepsis in mice via activation of the β-common receptor. Dis Model Mech 6:1021–1030CrossRefPubMedPubMedCentral Khan AI, Coldewey SM, Patel NSA et al (2013) Erythropoietin attenuates cardiac dysfunction in experimental sepsis in mice via activation of the β-common receptor. Dis Model Mech 6:1021–1030CrossRefPubMedPubMedCentral
46.
go back to reference Sordi R, Nandra KK, Chiazza F et al (2017) Artesunate protects against the organ injury and dysfunction induced by severe hemorrhage and resuscitation. Ann Surg 265:408–417CrossRefPubMed Sordi R, Nandra KK, Chiazza F et al (2017) Artesunate protects against the organ injury and dysfunction induced by severe hemorrhage and resuscitation. Ann Surg 265:408–417CrossRefPubMed
47.
go back to reference Cai Z, Semenza GL (2004) Phosphatidylinositol-3-kinase signalling is required for erythropoietin-mediated acute protection against myocardial ischemia/reperfusion injury. Circulation 109:2050–2063CrossRefPubMed Cai Z, Semenza GL (2004) Phosphatidylinositol-3-kinase signalling is required for erythropoietin-mediated acute protection against myocardial ischemia/reperfusion injury. Circulation 109:2050–2063CrossRefPubMed
48.
go back to reference Chiazza F, Couturier-Maillard A, Benetti E et al (2015) Targeting the NLRP3 inflammasome to reduce diet-induced metabolic abnormalities in mice. Mol Med 21:1025–1037CrossRef Chiazza F, Couturier-Maillard A, Benetti E et al (2015) Targeting the NLRP3 inflammasome to reduce diet-induced metabolic abnormalities in mice. Mol Med 21:1025–1037CrossRef
49.
go back to reference Qin C, Buxton KD, Pepe S et al (2013) Reperfusion-induced myocardial dysfunction is prevented by endogenous annexin-A1 and its N-terminal-derived peptide Ac-ANX-A1 2-26. Br J Pharmacol 168:238–252CrossRefPubMed Qin C, Buxton KD, Pepe S et al (2013) Reperfusion-induced myocardial dysfunction is prevented by endogenous annexin-A1 and its N-terminal-derived peptide Ac-ANX-A1 2-26. Br J Pharmacol 168:238–252CrossRefPubMed
50.
go back to reference Facio FN, Sena AA, Araújo LP et al (2011) Annexin 1 mimetic peptide protects against renal ischemia/reperfusion injury in rats. J Mol Med 89:51–63CrossRefPubMed Facio FN, Sena AA, Araújo LP et al (2011) Annexin 1 mimetic peptide protects against renal ischemia/reperfusion injury in rats. J Mol Med 89:51–63CrossRefPubMed
Metadata
Title
Annexin A1 attenuates microvascular complications through restoration of Akt signalling in a murine model of type 1 diabetes
Authors
Gareth S. D. Purvis
Fausto Chiazza
Jianmin Chen
Rodrigo Azevedo-Loiola
Lukas Martin
Dennis H. M. Kusters
Chris Reutelingsperger
Nikolaos Fountoulakis
Luigi Gnudi
Muhammed M. Yaqoob
Massimo Collino
Christoph Thiemermann
Egle Solito
Publication date
01-02-2018
Publisher
Springer Berlin Heidelberg
Published in
Diabetologia / Issue 2/2018
Print ISSN: 0012-186X
Electronic ISSN: 1432-0428
DOI
https://doi.org/10.1007/s00125-017-4469-y

Other articles of this Issue 2/2018

Diabetologia 2/2018 Go to the issue