Skip to main content
Log in

MicroRNA-200c modulates DUSP-1 expression in diabetes-induced cardiac hypertrophy

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Mitogen-activated protein kinases (MAPKs) (ERK1/2, JNK, and p38) are upregulated in diabetic cardiomyopathy (DCM). Dual-specific phosphatase-1 (DUSP-1) has been reported to regulate the activity of MAPKs in cardiac hypertrophy; however, the role of DUSP-1 in regulating MAPKs activity in DCM is not known. MicroRNAs have been reported to regulate the expression of several genes in hypertrophied failing hearts. However, little is known about the microRNAs regulating DUSP-1 expression in diabetes-related cardiac hypertrophy. In the present study, we investigated the role of DUSP-1 and miR-200c in diabetes-induced cardiac hypertrophy. DCM was induced in Wistar rats by low-dose Streptozotocin high-fat diet for 12 weeks. Cardiac expression of ERK, p-38, JNK, DUSP-1, miR-200c, and hypertrophy markers (ANP and β-MHC) was studied in DCM in control rats and in high-glucose (HG)-treated rat neonatal cardiomyocytes. miR-200c inhibition was performed to validate DUSP-1 as target. A significant increase in phosphorylated ERK, p38, and JNK was observed in DCM model and in HG-treated cardiomyocytes (p < 0.05). Expression of DUSP-1 was significantly decreased in diabetes group and in HG-treated cardiomyocytes (p < 0.05). Increased expression of miR-200c was observed in DCM model and in HG-treated cardiomyocytes (p < 0.05). Inhibition of miR-200c induces the expression of the DUSP-1 causing decreased expression of phosphorylated ERK, p38, and JNK and attenuated cardiomyocyte hypertrophy in HG-treated cardiomyocytes. miR-200c plays a role in diabetes-associated cardiac hypertrophy by modulating expression of DUSP-1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Garcia MJ, McNamara PM, Gordon T, Kannel WB (1974) Morbidity and mortality in diabetics in the Framingham population. 16 year follow-up study. Diabetes 23(2):105–111. doi:10.2337/diab.23.2.105

    Article  CAS  PubMed  Google Scholar 

  2. Singh GB, Sharma R, Khullar M (2011) Epigenetics and diabetic cardiomyopathy. Diabetes Res Clin Pract 94(1):14–21. doi:10.1016/j.diabres.2011.05.033

    Article  CAS  PubMed  Google Scholar 

  3. Kim JY, Oh KN, Han EH, Kim DH, Jeong TC, Lee ES, Jeong HG (2005) Methoxychlor-induced inducible nitric oxide synthase and proinflammatory cytokines expression in macrophages via NF-kappa B, ERK, and p38 mitogen-activated protein kinases. Biochem Biophys Res Commun 333(4):1234–1240. doi:10.1016/j.bbrc.2005.06.038

    Article  CAS  PubMed  Google Scholar 

  4. Chang SH, Liu CJ, Kuo CH, Chen H, Lin WY, Teng KY, Chang SW, Tsai CH, Tsai FJ, Huang CY, Tzang BS, Kuo WW (2011) Garlic oil alleviates MAPKs- and IL-6-mediated diabetes-related cardiac hypertrophy in STZ-induced DM rats. Evid-Based Complement Altern Med 2011:950150. doi:10.1093/ecam/neq075

    Google Scholar 

  5. Shen E, Diao X, Wang X, Chen R, Hu B (2011) MicroRNAs involved in the mitogen-activated protein kinase cascades pathway during glucose-induced cardiomyocyte hypertrophy. Am J Pathol 179(2):639–650. doi:10.1016/j.ajpath.2011.04.034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Choukroun G, Hajjar R, Kyriakis JM, Bonventre JV, Rosenzweig A, Force T (1998) Role of the stress-activated protein kinases in endothelin-induced cardiomyocyte hypertrophy. J Clin Invest 102(7):1311–1320. doi:10.1172/JCI3512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ramirez MT, Zhao XL, Schulman H, Brown JH (1997) The nuclear deltaB isoform of Ca2+/calmodulin-dependent protein kinase II regulates atrial natriuretic factor gene expression in ventricular myocytes. J Biol Chem 272(49):31203–31208. doi:10.1074/jbc.272.49.31203

    Article  CAS  PubMed  Google Scholar 

  8. Kang S, Chemaly ER, Hajjar RJ, Lebeche D (2011) Resistin promotes cardiac hypertrophy via the AMP-activated protein kinase/mammalian target of rapamycin (AMPK/mTOR) and c-Jun N-terminal kinase/insulin receptor substrate 1 (JNK/IRS1) pathways. J Biol Chem 286(21):18465–18473. doi:10.1074/jbc.M110.200022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Marshall CJ (1995) Specificity of receptor tyrosine kinase signaling: transient versus sustained extracellular signal-regulated kinase activation. Cell 80(2):179–185. doi:10.1016/0092-8674(95)90401-8

    Article  CAS  PubMed  Google Scholar 

  10. Garrington TP, Johnson GL (1999) Organization and regulation of mitogen-activated protein kinase signaling pathways. Curr Opin Cell Biol 11(2):211–218. doi:10.1016/S0955-0674(99)80028-3

    Article  CAS  PubMed  Google Scholar 

  11. Haneda M, Sugimoto T, Kikkawa R (1999) Mitogen-activated protein kinase phosphatase: a negative regulator of the mitogen-activated protein kinase cascade. Eur J Pharmacol 365(1):1–7. doi:10.1016/S0014-2999(98)00857-7

    Article  CAS  PubMed  Google Scholar 

  12. Wu JJ, Roth RJ, Anderson EJ, Hong EG, Lee MK, Choi CS, Neufer PD, Shulman GI, Kim JK, Bennett AM (2006) Mice lacking MAP kinase phosphatase-1 have enhanced MAP kinase activity and resistance to diet-induced obesity. Cell Metab 4(1):61–73. doi:10.1016/j.cmet.2006.05.010

    Article  CAS  PubMed  Google Scholar 

  13. Bueno OF, De Windt LJ, Lim HW, Tymitz KM, Witt SA, Kimball TR, Molkentin JD (2001) The dual-specificity phosphatase MKP-1 limits the cardiac hypertrophic response in vitro and in vivo. Circ Res 88(1):88–96. doi:10.1161/01.RES.88.1.88

    Article  CAS  PubMed  Google Scholar 

  14. Auger-Messier M, Accornero F, Goonasekera SA, Bueno OF, Lorenz JN, van Berlo JH, Willette RN, Molkentin JD (2013) Unrestrained p38 MAPK activation in Dusp1/4 double-null mice induces cardiomyopathy. Circ Res 112(1):48–56. doi:10.1161/CIRCRESAHA.112.272963

    Article  CAS  PubMed  Google Scholar 

  15. Weng Y, Shen F, Li J, Shen Y, Zhang X (2007) Expression changes of mitogen-activated protein kinase phosphatase-1 (MKP-1) in myocardium of streptozotocin-induced diabetic rats. Exp Clin Endocrinol Diabetes 115(7):455–460. doi:10.1055/s-2007-973060

    Article  CAS  PubMed  Google Scholar 

  16. Duisters RF, Tijsen AJ, Schroen B, Leenders JJ, Lentink V, van der Made I, Herias V, van Leeuwen RE, Schellings MW, Barenbrug P, Maessen JG, Heymans S, Pinto YM, Creemers EE (2009) miR-133 and miR-30 regulate connective tissue growth factor: implications for a role of microRNAs in myocardial matrix remodeling. Circ Res 104(2):170–178. doi:10.1161/CIRCRESAHA.108.182535

    Article  CAS  PubMed  Google Scholar 

  17. Katare R, Caporali A, Zentilin L, Avolio E, Sala-Newby G, Oikawa A, Cesselli D, Beltrami AP, Giacca M, Emanueli C, Madeddu P (2011) Intravenous gene therapy with PIM-1 via a cardiotropic viral vector halts the progression of diabetic cardiomyopathy through promotion of prosurvival signaling. Circ Res 108(10):1238–1251. doi:10.1161/CIRCRESAHA.110.239111

    Article  CAS  PubMed  Google Scholar 

  18. Feng HJ, Ouyang W, Liu JH, Sun YG, Hu R, Huang LH, Xian JL, Jing CF, Zhou MJ (2014) Global microRNA profiles and signaling pathways in the development of cardiac hypertrophy. Braz J Med Biol Res Rev 47(5):361–368. doi:10.1590/1414-431X20142937

    Article  CAS  Google Scholar 

  19. Zhang M, Lv X-Y, Li J, Xu Z-G, Chen L (2008) The characterization of high-fat diet and multiple low-dose streptozotocin induced type 2 diabetes rat model. Exp Diabetes 2008:704045. doi:10.1155/2008/704045

    Google Scholar 

  20. Chatterjee A, Mir SA, Dutta D, Mitra A, Pathak K, Sarkar S (2011) Analysis of p53 and NF-κB signaling in modulating the cardiomyocyte fate during hypertrophy. J Cell Physiol 226(10):2543–2554. doi:10.1002/jcp.22599

    Article  CAS  PubMed  Google Scholar 

  21. Feng B, Chen S, George B, Feng Q, Chakrabarti S (2010) miR133a regulates cardiomyocyte hypertrophy in diabetes. Diabetes Metab Res Rev 26(1):40–49. doi:10.1002/dmrr.1054

    Article  CAS  PubMed  Google Scholar 

  22. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2 (Delta Delta CT) method. Methods San Diego Calif 25(4):402–408. doi:10.1006/meth.2001.1262

    Article  CAS  Google Scholar 

  23. John B, Sander C, Marks DS (2006) Prediction of human microRNA targets. Methods Mol Biol Clifton NJ 342:101–113. doi:10.1385/1-59745-123-1:101

    CAS  Google Scholar 

  24. Raut SK, Kumar A, Singh GB, Nahar U, Sharma V, Mittal A, Sharma R, Khullar M (2015) miR-30c mediates upregulation of Cdc42 and Pak1 in diabetic cardiomyopathy. Cardiovasc Ther 33(3):89–97. doi:10.1111/1755-5922.12113

    Article  CAS  PubMed  Google Scholar 

  25. Xiao J, Tang J, Chen Q, Tang D, Liu M, Luo M, Wang Y, Wang J, Zhao Z, Tang C, Wang D, Mo Z (2015) miR-429 regulates alveolar macrophage inflammatory cytokine production and is involved in LPS-induced acute lung injury. Biochem J 471(2):281–291. doi:10.1042/BJ20131510

    Article  CAS  PubMed  Google Scholar 

  26. Begum N, Ragolia L (2000) High glucose and insulin inhibit VSMC MKP-1 expression by blocking iNOS via p38 MAPK activation. Am J Physiol Cell Physiol 278(1):C81–C91

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Gurinder Bir Singh is a PhD student in Department of Experimental Medicine and Biotechnology, PGIMER, and fellowship was provided by Department of Biotechnology (DBT-JRF/09-10/295), New Delhi, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Madhu Khullar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1379 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, G.B., Raut, S.K., Khanna, S. et al. MicroRNA-200c modulates DUSP-1 expression in diabetes-induced cardiac hypertrophy. Mol Cell Biochem 424, 1–11 (2017). https://doi.org/10.1007/s11010-016-2838-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-016-2838-3

Keywords

Navigation