Skip to main content
Top
Published in: Diabetologia 11/2017

Open Access 01-11-2017 | Article

Evidence-based prioritisation and enrichment of genes interacting with metformin in type 2 diabetes

Authors: Adem Y. Dawed, Ashfaq Ali, Kaixin Zhou, Ewan R. Pearson, Paul W. Franks

Published in: Diabetologia | Issue 11/2017

Login to get access

Abstract

Aims/hypothesis

There is an extensive body of literature suggesting the involvement of multiple loci in regulating the action of metformin; most findings lack replication, without which distinguishing true-positive from false-positive findings is difficult. To address this, we undertook evidence-based, multiple data integration to determine the validity of published evidence.

Methods

We (1) built a database of published data on gene–metformin interactions using an automated text-mining approach (n = 5963 publications), (2) generated evidence scores for each reported locus, (3) from which a rank-ordered gene set was generated, and (4) determined the extent to which this gene set was enriched for glycaemic response through replication analyses in a well-powered independent genome-wide association study (GWAS) dataset from the Genetics of Diabetes and Audit Research Tayside Study (GoDARTS).

Results

From the literature search, seven genes were identified that are related to the clinical outcomes of metformin. Fifteen genes were linked with either metformin pharmacokinetics or pharmacodynamics, and the expression profiles of a further 51 genes were found to be responsive to metformin. Gene-set enrichment analysis consisting of the three sets and two more composite sets derived from the above three showed no significant enrichment in four of the gene sets. However, we detected significant enrichment of genes in the least prioritised category (a gene set in which their expression is affected by metformin) with glycaemic response to metformin (p = 0.03). This gene set includes novel candidate genes such as SLC2A4 (p = 3.24 × 10−04) and G6PC (p = 4.77 × 10−04).

Conclusions/interpretation

We have described a semi-automated text-mining and evidence-scoring algorithm that facilitates the organisation and extraction of useful information about gene–drug interactions. We further validated the output of this algorithm in a drug-response GWAS dataset, providing novel candidate loci for gene–metformin interactions.
Appendix
Available only for authorised users
Literature
1.
go back to reference Inzucchi SE, Bergenstal RM, Buse JB et al (2012) Management of hyperglycaemia in type 2 diabetes: a patient-centered approach. Position statement of the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetologia 55:1577–1596CrossRefPubMed Inzucchi SE, Bergenstal RM, Buse JB et al (2012) Management of hyperglycaemia in type 2 diabetes: a patient-centered approach. Position statement of the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetologia 55:1577–1596CrossRefPubMed
2.
3.
go back to reference Cleasby ME, Dzamko N, Hegarty BD, Cooney GJ, Kraegen EW, Ye JM (2004) Metformin prevents the development of acute lipid-induced insulin resistance in the rat through altered hepatic signaling mechanisms. Diabetes 53:3258–3266CrossRefPubMed Cleasby ME, Dzamko N, Hegarty BD, Cooney GJ, Kraegen EW, Ye JM (2004) Metformin prevents the development of acute lipid-induced insulin resistance in the rat through altered hepatic signaling mechanisms. Diabetes 53:3258–3266CrossRefPubMed
4.
go back to reference Knowler WC, Barrett-Connor E, Fowler SE, Hamman RF, Lachin JM, Walker EA (2002) Diabetes prevention program research group. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med 346:393–403CrossRefPubMed Knowler WC, Barrett-Connor E, Fowler SE, Hamman RF, Lachin JM, Walker EA (2002) Diabetes prevention program research group. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med 346:393–403CrossRefPubMed
5.
go back to reference Pernicova I, Korbonits M (2014) Metformin-mode of action and clinical implications for diabetes and cancer. Nat Rev Endocrinol 10:143–156CrossRefPubMed Pernicova I, Korbonits M (2014) Metformin-mode of action and clinical implications for diabetes and cancer. Nat Rev Endocrinol 10:143–156CrossRefPubMed
6.
go back to reference Foretz M, Hébrard S, Leclerc J et al (2010) Metformin inhibits hepatic gluconeogenesis in mice independently of the LKB1/AMPK pathway via a decrease in hepatic energy state. J Clin Invest 120:2355–2369CrossRefPubMedPubMedCentral Foretz M, Hébrard S, Leclerc J et al (2010) Metformin inhibits hepatic gluconeogenesis in mice independently of the LKB1/AMPK pathway via a decrease in hepatic energy state. J Clin Invest 120:2355–2369CrossRefPubMedPubMedCentral
7.
go back to reference Madiraju AK, Erion DM, Rahimi Y et al (2014) Metformin suppresses gluconeogenesis by inhibiting mitochondrial glycerophosphate dehydrogenase. Nature 510:542–546CrossRefPubMedPubMedCentral Madiraju AK, Erion DM, Rahimi Y et al (2014) Metformin suppresses gluconeogenesis by inhibiting mitochondrial glycerophosphate dehydrogenase. Nature 510:542–546CrossRefPubMedPubMedCentral
8.
go back to reference Miller RA, Chu Q, Xie J, Foretz M, Viollet B, Birnbaum MJ (2013) Biguanides suppress hepatic glucagon signalling by decreasing production of cyclic AMP. Nature 494:256–260CrossRefPubMedPubMedCentral Miller RA, Chu Q, Xie J, Foretz M, Viollet B, Birnbaum MJ (2013) Biguanides suppress hepatic glucagon signalling by decreasing production of cyclic AMP. Nature 494:256–260CrossRefPubMedPubMedCentral
9.
go back to reference Wu L, Zhou B, Oshiro-Rapley N et al (2016) An ancient, unified mechanism for metformin growth inhibition in C. elegans and cancer. Cell 167:1705–1718CrossRefPubMed Wu L, Zhou B, Oshiro-Rapley N et al (2016) An ancient, unified mechanism for metformin growth inhibition in C. elegans and cancer. Cell 167:1705–1718CrossRefPubMed
10.
go back to reference Dawed AY, Zhou K, Pearson ER (2016) Pharmacogenetics in type 2 diabetes: influence on response to oral hypoglycemic agents. Pharmacogenomics Pers Med 9:17–29 Dawed AY, Zhou K, Pearson ER (2016) Pharmacogenetics in type 2 diabetes: influence on response to oral hypoglycemic agents. Pharmacogenomics Pers Med 9:17–29
11.
go back to reference Garber AJ, Duncan TG, Goodman AM, Mills DJ, Rohlf JL (1997) Efficacy of metformin in type II diabetes: results of a double-blind, placebo controlled, dose-response trial. Am J Med 103:491–497CrossRefPubMed Garber AJ, Duncan TG, Goodman AM, Mills DJ, Rohlf JL (1997) Efficacy of metformin in type II diabetes: results of a double-blind, placebo controlled, dose-response trial. Am J Med 103:491–497CrossRefPubMed
12.
go back to reference Zhou K, Donnelly L, Yang J et al (2014) Heritability of variation in glycaemic response to metformin: a genome-wide complex trait analysis. Lancet Diabetes Endocrinol 2:481–487CrossRefPubMedPubMedCentral Zhou K, Donnelly L, Yang J et al (2014) Heritability of variation in glycaemic response to metformin: a genome-wide complex trait analysis. Lancet Diabetes Endocrinol 2:481–487CrossRefPubMedPubMedCentral
13.
go back to reference Zhou K, Bellenguez C, Spencer CC et al (2011) Common variants near ATM are associated with glycemic response to metformin in type 2 diabetes. Nat Genet 43:117–120CrossRefPubMed Zhou K, Bellenguez C, Spencer CC et al (2011) Common variants near ATM are associated with glycemic response to metformin in type 2 diabetes. Nat Genet 43:117–120CrossRefPubMed
15.
go back to reference Zhou K, Yee S, Seiser E et al (2016) Variation in the glucose transporter gene SLC2A2 is associated with glycemic response to metformin. Nat Genet 48:1055–1059CrossRefPubMedPubMedCentral Zhou K, Yee S, Seiser E et al (2016) Variation in the glucose transporter gene SLC2A2 is associated with glycemic response to metformin. Nat Genet 48:1055–1059CrossRefPubMedPubMedCentral
16.
go back to reference Bosker F, Hartman C, Nolte I et al (2011) Poor replication of candidate genes for major depressive disorder using genome-wide association data. Mol Psychiatry 216:516–532CrossRef Bosker F, Hartman C, Nolte I et al (2011) Poor replication of candidate genes for major depressive disorder using genome-wide association data. Mol Psychiatry 216:516–532CrossRef
17.
go back to reference Gharani N, Keller MA, Stack CB et al (2013) The Coriell personalized medicine collaborative pharmacogenomics appraisal, evidence scoring and interpretation system. Genome Med 5:1–19CrossRef Gharani N, Keller MA, Stack CB et al (2013) The Coriell personalized medicine collaborative pharmacogenomics appraisal, evidence scoring and interpretation system. Genome Med 5:1–19CrossRef
18.
go back to reference Sun J, Jia P, Fanous AH et al (2009) A multi-dimensional evidence-based candidate gene prioritization approach for complex diseases-schizophrenia as a case. Bioinformatics 25:2595–2602CrossRefPubMedPubMedCentral Sun J, Jia P, Fanous AH et al (2009) A multi-dimensional evidence-based candidate gene prioritization approach for complex diseases-schizophrenia as a case. Bioinformatics 25:2595–2602CrossRefPubMedPubMedCentral
20.
go back to reference Discovery Through Integration and Extraction of Genomic and Clinical Knowledge (DIEGO) lab. Biomedical informatics research lab at Arizona state university. Available from http://diego.asu.edu/. Accessed 15 Aug 2014 Discovery Through Integration and Extraction of Genomic and Clinical Knowledge (DIEGO) lab. Biomedical informatics research lab at Arizona state university. Available from http://​diego.​asu.​edu/​. Accessed 15 Aug 2014
21.
go back to reference Morris AP, Voight BF, Teslovich TM et al (2012) Large-scale association analysis provides insights into the genetic architecture and pathophysiology of type 2 diabetes. Nat Genet 44:981–990CrossRefPubMedPubMedCentral Morris AP, Voight BF, Teslovich TM et al (2012) Large-scale association analysis provides insights into the genetic architecture and pathophysiology of type 2 diabetes. Nat Genet 44:981–990CrossRefPubMedPubMedCentral
22.
go back to reference Marchini J, Howie B, Myers S, McVean G, Donnelly P (2007) A new multipoint method for genome-wide association studies by imputation of genotypes. Nat Genet 39:906–913CrossRefPubMed Marchini J, Howie B, Myers S, McVean G, Donnelly P (2007) A new multipoint method for genome-wide association studies by imputation of genotypes. Nat Genet 39:906–913CrossRefPubMed
23.
go back to reference Mägi R, Morris AP (2010) GWAMA: software for genome-wide association meta-analysis. BMC Bioinforma 11:288CrossRef Mägi R, Morris AP (2010) GWAMA: software for genome-wide association meta-analysis. BMC Bioinforma 11:288CrossRef
25.
go back to reference Shah PM, Perez-Iratxeta C, Bork P et al (2003) Information extraction from full text scientific articles: where are the keywords? BMC Bioinforma 4:1–9CrossRef Shah PM, Perez-Iratxeta C, Bork P et al (2003) Information extraction from full text scientific articles: where are the keywords? BMC Bioinforma 4:1–9CrossRef
26.
go back to reference Han TH, Everett RS, Proctor WR et al (2013) Organic cation transporter 1 (OCT1/mOct1) is localized in the apical membrane of Caco-2 cell monolayers and enterocytes. Mol Pharmacol 84:182–189CrossRefPubMed Han TH, Everett RS, Proctor WR et al (2013) Organic cation transporter 1 (OCT1/mOct1) is localized in the apical membrane of Caco-2 cell monolayers and enterocytes. Mol Pharmacol 84:182–189CrossRefPubMed
27.
go back to reference Müller J, Lips KS, Metzner L, Neubert RH, Koepsell H, Brandsch M (2005) Drug specificity and intestinal membrane localization of human organic cation transporters (OCT). Biochem Pharmacol 70:1851–1860CrossRefPubMed Müller J, Lips KS, Metzner L, Neubert RH, Koepsell H, Brandsch M (2005) Drug specificity and intestinal membrane localization of human organic cation transporters (OCT). Biochem Pharmacol 70:1851–1860CrossRefPubMed
28.
go back to reference Kimura N, Masuda S, Tanihara Y et al (2005) Metformin is a superior substrate for renal organic cation transporter OCT2 rather than hepatic OCT1. Drug Metab Pharmacokinet 20:379–386CrossRefPubMed Kimura N, Masuda S, Tanihara Y et al (2005) Metformin is a superior substrate for renal organic cation transporter OCT2 rather than hepatic OCT1. Drug Metab Pharmacokinet 20:379–386CrossRefPubMed
29.
go back to reference Otsuka M, Matsumoto T, Morimoto R, Arioka S, Omote H, Moriyama Y (2005) A human transporter protein that mediates the final excretion step for toxic organic cations. Proc Natl Acad Sci U S A 102:17923–17928CrossRefPubMedPubMedCentral Otsuka M, Matsumoto T, Morimoto R, Arioka S, Omote H, Moriyama Y (2005) A human transporter protein that mediates the final excretion step for toxic organic cations. Proc Natl Acad Sci U S A 102:17923–17928CrossRefPubMedPubMedCentral
30.
go back to reference Schneider JG, Finck BN, Ren J et al (2006) ATM-dependent suppression of stress signaling reduces vascular disease in metabolic syndrome. Cell Metab 4:377–389CrossRefPubMed Schneider JG, Finck BN, Ren J et al (2006) ATM-dependent suppression of stress signaling reduces vascular disease in metabolic syndrome. Cell Metab 4:377–389CrossRefPubMed
31.
go back to reference Ding EL, Song Y, Manson JE et al (2008) Single nucleotide polymorphisms in genes encoding LKB1 (STK11), TORC2 (CRTC2) and AMPK alpha2-subunit (PRKAA2) and risk of type 2 diabetes. Mol Genet Metab 93:200–209CrossRef Ding EL, Song Y, Manson JE et al (2008) Single nucleotide polymorphisms in genes encoding LKB1 (STK11), TORC2 (CRTC2) and AMPK alpha2-subunit (PRKAA2) and risk of type 2 diabetes. Mol Genet Metab 93:200–209CrossRef
34.
go back to reference Chen C, Smothers J, Lange A, Nestler JE, Strauss III JF, Wickham Iii EP (2010) Sex hormone-binding globulin genetic variation: associations with type 2 diabetes mellitus and polycystic ovary syndrome. Minerva Endocrinol 35:271–280PubMedPubMedCentral Chen C, Smothers J, Lange A, Nestler JE, Strauss III JF, Wickham Iii EP (2010) Sex hormone-binding globulin genetic variation: associations with type 2 diabetes mellitus and polycystic ovary syndrome. Minerva Endocrinol 35:271–280PubMedPubMedCentral
35.
36.
go back to reference Becker ML, Pearson ER, Tkáč I (2013) Pharmacogenetics of oral antidiabetic drugs. Int J Endocrinol 2013:1–10CrossRef Becker ML, Pearson ER, Tkáč I (2013) Pharmacogenetics of oral antidiabetic drugs. Int J Endocrinol 2013:1–10CrossRef
37.
go back to reference Stocker SL, Morrissey KM, Yee SW et al (2013) The effect of novel promoter variants in MATE1 and MATE2 on the pharmacokinetics and pharmacodynamics of metformin. Clin Pharmacol Ther 93:186–194CrossRefPubMed Stocker SL, Morrissey KM, Yee SW et al (2013) The effect of novel promoter variants in MATE1 and MATE2 on the pharmacokinetics and pharmacodynamics of metformin. Clin Pharmacol Ther 93:186–194CrossRefPubMed
38.
go back to reference Nies AT, Koepsell H, Winter S et al (2009) Expression of organic cation transporters OCT1 (SLC22A1) and OCT3 (SLC22A3) is affected by genetic factors and cholestasis in human liver. Hepatology 50:1227–1240CrossRefPubMed Nies AT, Koepsell H, Winter S et al (2009) Expression of organic cation transporters OCT1 (SLC22A1) and OCT3 (SLC22A3) is affected by genetic factors and cholestasis in human liver. Hepatology 50:1227–1240CrossRefPubMed
39.
go back to reference Chen L, Pawlikowski B, Schlessinger A et al (2010) Role of organic cation transporter 3 (SLC22A3) and its missense variants in the pharmacologic action of metformin. Pharmacogenet Genomics 20:687–699CrossRefPubMedPubMedCentral Chen L, Pawlikowski B, Schlessinger A et al (2010) Role of organic cation transporter 3 (SLC22A3) and its missense variants in the pharmacologic action of metformin. Pharmacogenet Genomics 20:687–699CrossRefPubMedPubMedCentral
40.
go back to reference Zhou M, Xia L, Wang J (2007) Metformin transport by a newly cloned proton-stimulated organic cation transporter (plasma membrane monoamine transporter) expressed in human intestine. Drug Metab Dispos 35:1956–1962CrossRefPubMedPubMedCentral Zhou M, Xia L, Wang J (2007) Metformin transport by a newly cloned proton-stimulated organic cation transporter (plasma membrane monoamine transporter) expressed in human intestine. Drug Metab Dispos 35:1956–1962CrossRefPubMedPubMedCentral
41.
go back to reference Martono DP, Lub R, Heerspink HJ et al (2015) Systematic review or meta-analysis predictors of response in initial users of metformin and sulphonylurea derivatives: a systematic review. Diabet Med 32:853–864CrossRefPubMed Martono DP, Lub R, Heerspink HJ et al (2015) Systematic review or meta-analysis predictors of response in initial users of metformin and sulphonylurea derivatives: a systematic review. Diabet Med 32:853–864CrossRefPubMed
43.
go back to reference Meuillet EJ, Wiernsperger N, Mania-Farnell B, Hubert P, Cremel G (1999) Metformin modulates insulin receptor signaling in normal and cholesterol-treated human hepatoma cells (HepG2). Eur J Pharmacol 377:241–252CrossRefPubMed Meuillet EJ, Wiernsperger N, Mania-Farnell B, Hubert P, Cremel G (1999) Metformin modulates insulin receptor signaling in normal and cholesterol-treated human hepatoma cells (HepG2). Eur J Pharmacol 377:241–252CrossRefPubMed
44.
go back to reference Ota S, Horigome K, Ishii T et al (2009) Metformin suppresses glucose-6-phosphatase expression by a complex I inhibition and AMPK activation-independent mechanism. Biochem Biophys Res Commun 388:311–316CrossRefPubMed Ota S, Horigome K, Ishii T et al (2009) Metformin suppresses glucose-6-phosphatase expression by a complex I inhibition and AMPK activation-independent mechanism. Biochem Biophys Res Commun 388:311–316CrossRefPubMed
45.
go back to reference Dujic T, Zhou K, Yee SW et al (2016) Variants in pharmacokinetic transporters and glycaemic response to metformin: a MetGen meta-analysis. Clin Pharmacol Ther. doi:10.1002/cpt.567 Dujic T, Zhou K, Yee SW et al (2016) Variants in pharmacokinetic transporters and glycaemic response to metformin: a MetGen meta-analysis. Clin Pharmacol Ther. doi:10.​1002/​cpt.​567
Metadata
Title
Evidence-based prioritisation and enrichment of genes interacting with metformin in type 2 diabetes
Authors
Adem Y. Dawed
Ashfaq Ali
Kaixin Zhou
Ewan R. Pearson
Paul W. Franks
Publication date
01-11-2017
Publisher
Springer Berlin Heidelberg
Published in
Diabetologia / Issue 11/2017
Print ISSN: 0012-186X
Electronic ISSN: 1432-0428
DOI
https://doi.org/10.1007/s00125-017-4404-2

Other articles of this Issue 11/2017

Diabetologia 11/2017 Go to the issue

Up front

Up front