Skip to main content
Top
Published in: Diabetologia 10/2017

Open Access 01-10-2017 | Review

GLP-1/glucagon receptor co-agonism for treatment of obesity

Authors: Miguel A. Sánchez-Garrido, Sara J. Brandt, Christoffer Clemmensen, Timo D. Müller, Richard D. DiMarchi, Matthias H. Tschöp

Published in: Diabetologia | Issue 10/2017

Login to get access

Abstract

Over a relatively short period, obesity and type 2 diabetes have come to represent a large medical and economic burden to global societies. The epidemic rise in the prevalence of obesity has metabolic consequences and is paralleled by an increased occurrence of other diseases, such as diabetes, cancer and cardiovascular complications. Together, obesity and type 2 diabetes constitute one of the more preventable causes of premature death and the identification of novel, safe and effective anti-obesity drugs is of utmost importance. Pharmacological attempts to treat obesity have had limited success, with notable adverse effects, rendering bariatric surgery as the only current therapy for substantially improving body weight. Novel unimolecular, multifunctional peptides have emerged as one of the most promising medicinal approaches to enhance metabolic efficacy and restore normal body weight. In this review, we will mainly focus on the discovery and translational relevance of dual agonists that pharmacologically function at the receptors for glucagon and glucagon-like peptide-1. Such peptides have advanced to clinical evaluation and inspired the pursuit of multiple related approaches to achieving polypharmacy within single molecules.
Appendix
Available only for authorised users
Literature
3.
go back to reference Thompson D, Edelsberg J, Colditz GA, Bird AP, Oster G (1999) Lifetime health and economic consequences of obesity. Arch Intern Med 159:2177–2183CrossRefPubMed Thompson D, Edelsberg J, Colditz GA, Bird AP, Oster G (1999) Lifetime health and economic consequences of obesity. Arch Intern Med 159:2177–2183CrossRefPubMed
4.
go back to reference Roglic G, World Health Organization (2016) Global report on diabetes. World Health Organization, Geneva Roglic G, World Health Organization (2016) Global report on diabetes. World Health Organization, Geneva
5.
go back to reference Guariguata L, Whiting DR, Hambleton I, Beagley J, Linnenkamp U, Shaw JE (2014) Global estimates of diabetes prevalence for 2013 and projections for 2035. Diabetes Res Clin Pract 103:137–149CrossRefPubMed Guariguata L, Whiting DR, Hambleton I, Beagley J, Linnenkamp U, Shaw JE (2014) Global estimates of diabetes prevalence for 2013 and projections for 2035. Diabetes Res Clin Pract 103:137–149CrossRefPubMed
6.
go back to reference Kraschnewski JL, Boan J, Esposito J et al (2010) Long-term weight loss maintenance in the United States. Int J Obes 34:1644–1654CrossRef Kraschnewski JL, Boan J, Esposito J et al (2010) Long-term weight loss maintenance in the United States. Int J Obes 34:1644–1654CrossRef
7.
go back to reference Maggard-Gibbons M, Maglione M, Livhits M et al (2013) Bariatric surgery for weight loss and glycemic control in nonmorbidly obese adults with diabetes: a systematic review. JAMA 309:2250–2261CrossRefPubMed Maggard-Gibbons M, Maglione M, Livhits M et al (2013) Bariatric surgery for weight loss and glycemic control in nonmorbidly obese adults with diabetes: a systematic review. JAMA 309:2250–2261CrossRefPubMed
8.
go back to reference Chang SH, Stoll CR, Song J, Varela JE, Eagon CJ, Colditz GA (2014) The effectiveness and risks of bariatric surgery: an updated systematic review and meta-analysis, 2003-2012. JAMA Surg 149:275–287CrossRefPubMedPubMedCentral Chang SH, Stoll CR, Song J, Varela JE, Eagon CJ, Colditz GA (2014) The effectiveness and risks of bariatric surgery: an updated systematic review and meta-analysis, 2003-2012. JAMA Surg 149:275–287CrossRefPubMedPubMedCentral
9.
go back to reference (1992) Gastrointestinal surgery for severe obesity: National Institutes of Health Consensus Development Conference Statement March 25–27 1991. Am J Clin Nutr 55: 615S–619S (1992) Gastrointestinal surgery for severe obesity: National Institutes of Health Consensus Development Conference Statement March 25–27 1991. Am J Clin Nutr 55: 615S–619S
10.
go back to reference Apovian CM, Garvey WT, Ryan DH (2015) Challenging obesity: patient, provider, and expert perspectives on the roles of available and emerging nonsurgical therapies. Obesity 23:S1–S26CrossRefPubMedPubMedCentral Apovian CM, Garvey WT, Ryan DH (2015) Challenging obesity: patient, provider, and expert perspectives on the roles of available and emerging nonsurgical therapies. Obesity 23:S1–S26CrossRefPubMedPubMedCentral
11.
go back to reference Magkos F, Fraterrigo G, Yoshino J et al (2016) Effects of moderate and subsequent progressive weight loss on metabolic function and adipose tissue biology in humans with obesity. Cell Metab 23:591–601CrossRefPubMedPubMedCentral Magkos F, Fraterrigo G, Yoshino J et al (2016) Effects of moderate and subsequent progressive weight loss on metabolic function and adipose tissue biology in humans with obesity. Cell Metab 23:591–601CrossRefPubMedPubMedCentral
12.
go back to reference Apovian CM, Aronne LJ, Bessesen DH et al (2015) Pharmacological management of obesity: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab 100:342–362CrossRefPubMed Apovian CM, Aronne LJ, Bessesen DH et al (2015) Pharmacological management of obesity: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab 100:342–362CrossRefPubMed
13.
go back to reference Wellman PJ, Maher TJ (1999) Synergistic interactions between fenfluramine and phentermine. Int J Obes Relat Metab Disord 23:723–732CrossRefPubMed Wellman PJ, Maher TJ (1999) Synergistic interactions between fenfluramine and phentermine. Int J Obes Relat Metab Disord 23:723–732CrossRefPubMed
14.
15.
go back to reference Todd JF, Wilding JP, Edwards CM, Khan FA, Ghatei MA, Bloom SR (1997) Glucagon-like peptide-1 (GLP-1): a trial of treatment in non-insulin-dependent diabetes mellitus. Eur J Clin Investig 27:533–536CrossRef Todd JF, Wilding JP, Edwards CM, Khan FA, Ghatei MA, Bloom SR (1997) Glucagon-like peptide-1 (GLP-1): a trial of treatment in non-insulin-dependent diabetes mellitus. Eur J Clin Investig 27:533–536CrossRef
16.
go back to reference von Websky K, Reichetzeder C, Hocher B (2014) Physiology and pathophysiology of incretins in the kidney. Curr Opin Nephrol Hypertens 23:54–60CrossRef von Websky K, Reichetzeder C, Hocher B (2014) Physiology and pathophysiology of incretins in the kidney. Curr Opin Nephrol Hypertens 23:54–60CrossRef
17.
go back to reference Day JW, Ottaway N, Patterson JT et al (2009) A new glucagon and GLP-1 co-agonist eliminates obesity in rodents. Nat Chem Biol 5:749–757CrossRefPubMed Day JW, Ottaway N, Patterson JT et al (2009) A new glucagon and GLP-1 co-agonist eliminates obesity in rodents. Nat Chem Biol 5:749–757CrossRefPubMed
18.
go back to reference Finan B, Clemmensen C, Muller TD (2015) Emerging opportunities for the treatment of metabolic diseases: glucagon-like peptide-1 based multi-agonists. Mol Cell Endocrinol 418:42–54CrossRefPubMed Finan B, Clemmensen C, Muller TD (2015) Emerging opportunities for the treatment of metabolic diseases: glucagon-like peptide-1 based multi-agonists. Mol Cell Endocrinol 418:42–54CrossRefPubMed
19.
go back to reference Lorenz M, Evers A, Wagner M (2013) Recent progress and future options in the development of GLP-1 receptor agonists for the treatment of diabesity. Bioorg Med Chem Lett 23:4011–4018CrossRefPubMed Lorenz M, Evers A, Wagner M (2013) Recent progress and future options in the development of GLP-1 receptor agonists for the treatment of diabesity. Bioorg Med Chem Lett 23:4011–4018CrossRefPubMed
20.
go back to reference Cornell S (2012) Differentiating among incretin therapies: a multiple-target approach to type 2 diabetes. J Clin Pharm Ther 37:510–524CrossRefPubMed Cornell S (2012) Differentiating among incretin therapies: a multiple-target approach to type 2 diabetes. J Clin Pharm Ther 37:510–524CrossRefPubMed
21.
go back to reference Painter NA, Morello CM, Singh RF, McBane SE (2013) An evidence-based and practical approach to using Bydureon™ in patients with type 2 diabetes. J Am Board Fam Med 26:203–210CrossRefPubMed Painter NA, Morello CM, Singh RF, McBane SE (2013) An evidence-based and practical approach to using Bydureon™ in patients with type 2 diabetes. J Am Board Fam Med 26:203–210CrossRefPubMed
22.
go back to reference Meier JJ (2012) GLP-1 receptor agonists for individualized treatment of type 2 diabetes mellitus. Nat Rev Endocrinol 8:728–742CrossRefPubMed Meier JJ (2012) GLP-1 receptor agonists for individualized treatment of type 2 diabetes mellitus. Nat Rev Endocrinol 8:728–742CrossRefPubMed
23.
go back to reference Rosenstock J, Raccah D, Koranyi L et al (2013) Efficacy and safety of lixisenatide once daily versus exenatide twice daily in type 2 diabetes inadequately controlled on metformin: a 24-week, randomized, open-label, active-controlled study (GetGoal-X). Diabetes Care 36:2945–2951CrossRefPubMedPubMedCentral Rosenstock J, Raccah D, Koranyi L et al (2013) Efficacy and safety of lixisenatide once daily versus exenatide twice daily in type 2 diabetes inadequately controlled on metformin: a 24-week, randomized, open-label, active-controlled study (GetGoal-X). Diabetes Care 36:2945–2951CrossRefPubMedPubMedCentral
24.
go back to reference Fonseca VA, Alvarado-Ruiz R, Raccah D et al (2012) Efficacy and safety of the once-daily GLP-1 receptor agonist lixisenatide in monotherapy: a randomized, double-blind, placebo-controlled trial in patients with type 2 diabetes (GetGoal-Mono). Diabetes Care 35:1225–1231CrossRefPubMedPubMedCentral Fonseca VA, Alvarado-Ruiz R, Raccah D et al (2012) Efficacy and safety of the once-daily GLP-1 receptor agonist lixisenatide in monotherapy: a randomized, double-blind, placebo-controlled trial in patients with type 2 diabetes (GetGoal-Mono). Diabetes Care 35:1225–1231CrossRefPubMedPubMedCentral
25.
go back to reference Russell-Jones D, Cuddihy RM, Hanefeld M et al (2012) Efficacy and safety of exenatide once weekly versus metformin, pioglitazone, and sitagliptin used as monotherapy in drug-naive patients with type 2 diabetes (DURATION-4): a 26-week double-blind study. Diabetes Care 35:252–258CrossRefPubMedPubMedCentral Russell-Jones D, Cuddihy RM, Hanefeld M et al (2012) Efficacy and safety of exenatide once weekly versus metformin, pioglitazone, and sitagliptin used as monotherapy in drug-naive patients with type 2 diabetes (DURATION-4): a 26-week double-blind study. Diabetes Care 35:252–258CrossRefPubMedPubMedCentral
26.
go back to reference Knudsen LB, Nielsen PF, Huusfeldt PO et al (2000) Potent derivatives of glucagon-like peptide-1 with pharmacokinetic properties suitable for once daily administration. J Med Chem 43:1664–1669CrossRefPubMed Knudsen LB, Nielsen PF, Huusfeldt PO et al (2000) Potent derivatives of glucagon-like peptide-1 with pharmacokinetic properties suitable for once daily administration. J Med Chem 43:1664–1669CrossRefPubMed
27.
go back to reference Ostawal A, Mocevic E, Kragh N, Xu W (2016) Clinical effectiveness of liraglutide in type 2 diabetes treatment in the real-world setting: a systematic literature review. Diabetes Ther 7:411–438CrossRefPubMedPubMedCentral Ostawal A, Mocevic E, Kragh N, Xu W (2016) Clinical effectiveness of liraglutide in type 2 diabetes treatment in the real-world setting: a systematic literature review. Diabetes Ther 7:411–438CrossRefPubMedPubMedCentral
28.
go back to reference Lau J, Bloch P, Schaffer L et al (2015) Discovery of the once-weekly glucagon-like peptide-1 (GLP-1) analogue semaglutide. J Med Chem 58:7370–7380CrossRefPubMed Lau J, Bloch P, Schaffer L et al (2015) Discovery of the once-weekly glucagon-like peptide-1 (GLP-1) analogue semaglutide. J Med Chem 58:7370–7380CrossRefPubMed
29.
go back to reference Gotfredsen CF, Molck AM, Thorup I et al (2014) The human GLP-1 analogs liraglutide and semaglutide: absence of histopathological effects on the pancreas in nonhuman primates. Diabetes 63:2486–2497CrossRefPubMed Gotfredsen CF, Molck AM, Thorup I et al (2014) The human GLP-1 analogs liraglutide and semaglutide: absence of histopathological effects on the pancreas in nonhuman primates. Diabetes 63:2486–2497CrossRefPubMed
30.
go back to reference Nauck MA, Petrie JR, Sesti G et al (2016) A phase 2, randomized, dose-finding study of the novel once-weekly human GLP-1 analog, semaglutide, compared with placebo and open-label liraglutide in patients with type 2 diabetes. Diabetes Care 39:231–241CrossRefPubMed Nauck MA, Petrie JR, Sesti G et al (2016) A phase 2, randomized, dose-finding study of the novel once-weekly human GLP-1 analog, semaglutide, compared with placebo and open-label liraglutide in patients with type 2 diabetes. Diabetes Care 39:231–241CrossRefPubMed
31.
go back to reference Marso SP, Bain SC, Consoli A et al (2016) Semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N Engl J Med 375:1834–1844CrossRefPubMed Marso SP, Bain SC, Consoli A et al (2016) Semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N Engl J Med 375:1834–1844CrossRefPubMed
32.
go back to reference Thompson AM, Trujillo JM (2015) Dulaglutide: the newest GLP-1 receptor agonist for the management of type 2 diabetes. Ann Pharmacother 49:351–359CrossRefPubMed Thompson AM, Trujillo JM (2015) Dulaglutide: the newest GLP-1 receptor agonist for the management of type 2 diabetes. Ann Pharmacother 49:351–359CrossRefPubMed
33.
go back to reference Jendle J, Grunberger G, Blevins T, Giorgino F, Hietpas RT, Botros FT (2016) Efficacy and safety of dulaglutide in the treatment of type 2 diabetes: a comprehensive review of the dulaglutide clinical data focusing on the AWARD phase 3 clinical trial program. Diabetes Metab Res Rev 32:776–790CrossRefPubMed Jendle J, Grunberger G, Blevins T, Giorgino F, Hietpas RT, Botros FT (2016) Efficacy and safety of dulaglutide in the treatment of type 2 diabetes: a comprehensive review of the dulaglutide clinical data focusing on the AWARD phase 3 clinical trial program. Diabetes Metab Res Rev 32:776–790CrossRefPubMed
34.
go back to reference Rosenstock J, Reusch J, Bush M et al (2009) Potential of albiglutide, a long-acting GLP-1 receptor agonist, in type 2 diabetes: a randomized controlled trial exploring weekly, biweekly, and monthly dosing. Diabetes Care 32:1880–1886CrossRefPubMedPubMedCentral Rosenstock J, Reusch J, Bush M et al (2009) Potential of albiglutide, a long-acting GLP-1 receptor agonist, in type 2 diabetes: a randomized controlled trial exploring weekly, biweekly, and monthly dosing. Diabetes Care 32:1880–1886CrossRefPubMedPubMedCentral
36.
go back to reference Elashoff M, Matveyenko AV, Gier B, Elashoff R, Butler PC (2011) Pancreatitis, pancreatic, and thyroid cancer with glucagon-like peptide-1-based therapies. Gastroenterology 141:150–156CrossRefPubMedPubMedCentral Elashoff M, Matveyenko AV, Gier B, Elashoff R, Butler PC (2011) Pancreatitis, pancreatic, and thyroid cancer with glucagon-like peptide-1-based therapies. Gastroenterology 141:150–156CrossRefPubMedPubMedCentral
37.
go back to reference Gier B, Matveyenko AV, Kirakossian D, Dawson D, Dry SM, Butler PC (2012) Chronic GLP-1 receptor activation by exendin-4 induces expansion of pancreatic duct glands in rats and accelerates formation of dysplastic lesions and chronic pancreatitis in the Kras(G12D) mouse model. Diabetes 61:1250–1262CrossRefPubMedPubMedCentral Gier B, Matveyenko AV, Kirakossian D, Dawson D, Dry SM, Butler PC (2012) Chronic GLP-1 receptor activation by exendin-4 induces expansion of pancreatic duct glands in rats and accelerates formation of dysplastic lesions and chronic pancreatitis in the Kras(G12D) mouse model. Diabetes 61:1250–1262CrossRefPubMedPubMedCentral
38.
go back to reference Nachnani JS, Bulchandani DG, Nookala A et al (2010) Biochemical and histological effects of exendin-4 (exenatide) on the rat pancreas. Diabetologia 53:153–159CrossRefPubMed Nachnani JS, Bulchandani DG, Nookala A et al (2010) Biochemical and histological effects of exendin-4 (exenatide) on the rat pancreas. Diabetologia 53:153–159CrossRefPubMed
39.
go back to reference Nyborg NC, Molck AM, Madsen LW, Knudsen LB (2012) The human GLP-1 analog liraglutide and the pancreas: evidence for the absence of structural pancreatic changes in three species. Diabetes 61:1243–1249CrossRefPubMedPubMedCentral Nyborg NC, Molck AM, Madsen LW, Knudsen LB (2012) The human GLP-1 analog liraglutide and the pancreas: evidence for the absence of structural pancreatic changes in three species. Diabetes 61:1243–1249CrossRefPubMedPubMedCentral
40.
go back to reference Pfeffer MA, Claggett B, Diaz R et al (2015) Lixisenatide in patients with type 2 diabetes and acute coronary syndrome. N Engl J Med 373:2247–2257CrossRefPubMed Pfeffer MA, Claggett B, Diaz R et al (2015) Lixisenatide in patients with type 2 diabetes and acute coronary syndrome. N Engl J Med 373:2247–2257CrossRefPubMed
42.
go back to reference Drucker DJ (2005) Biologic actions and therapeutic potential of the proglucagon-derived peptides. Nat Clin Pract Endocrinol Metab 1:22–31CrossRefPubMed Drucker DJ (2005) Biologic actions and therapeutic potential of the proglucagon-derived peptides. Nat Clin Pract Endocrinol Metab 1:22–31CrossRefPubMed
43.
go back to reference Lee YH, Wang MY, Yu XX, Unger RH (2016) Glucagon is the key factor in the development of diabetes. Diabetologia 59:1372–1375CrossRefPubMed Lee YH, Wang MY, Yu XX, Unger RH (2016) Glucagon is the key factor in the development of diabetes. Diabetologia 59:1372–1375CrossRefPubMed
44.
go back to reference Liang Y, Osborne MC, Monia BP et al (2004) Reduction in glucagon receptor expression by an antisense oligonucleotide ameliorates diabetic syndrome in db/db mice. Diabetes 53:410–417CrossRefPubMed Liang Y, Osborne MC, Monia BP et al (2004) Reduction in glucagon receptor expression by an antisense oligonucleotide ameliorates diabetic syndrome in db/db mice. Diabetes 53:410–417CrossRefPubMed
45.
go back to reference Cryer PE (2012) Minireview: glucagon in the pathogenesis of hypoglycemia and hyperglycemia in diabetes. Endocrinology 153:1039–1048CrossRefPubMed Cryer PE (2012) Minireview: glucagon in the pathogenesis of hypoglycemia and hyperglycemia in diabetes. Endocrinology 153:1039–1048CrossRefPubMed
46.
go back to reference Wild D, von Maltzahn R, Brohan E, Christensen T, Clauson P, Gonder-Frederick L (2007) A critical review of the literature on fear of hypoglycemia in diabetes: implications for diabetes management and patient education. Patient Educ Couns 68:10–15CrossRefPubMed Wild D, von Maltzahn R, Brohan E, Christensen T, Clauson P, Gonder-Frederick L (2007) A critical review of the literature on fear of hypoglycemia in diabetes: implications for diabetes management and patient education. Patient Educ Couns 68:10–15CrossRefPubMed
47.
go back to reference Chabenne JR, DiMarchi MA, Gelfanov VM, DiMarchi RD (2010) Optimization of the native glucagon sequence for medicinal purposes. J Diabetes Sci Technol 4:1322–1331CrossRefPubMedPubMedCentral Chabenne JR, DiMarchi MA, Gelfanov VM, DiMarchi RD (2010) Optimization of the native glucagon sequence for medicinal purposes. J Diabetes Sci Technol 4:1322–1331CrossRefPubMedPubMedCentral
48.
go back to reference Gelling RW, Du XQ, Dichmann DS et al (2003) Lower blood glucose, hyperglucagonemia, and pancreatic alpha cell hyperplasia in glucagon receptor knockout mice. Proc Natl Acad Sci U S A 100:1438–1443CrossRefPubMedPubMedCentral Gelling RW, Du XQ, Dichmann DS et al (2003) Lower blood glucose, hyperglucagonemia, and pancreatic alpha cell hyperplasia in glucagon receptor knockout mice. Proc Natl Acad Sci U S A 100:1438–1443CrossRefPubMedPubMedCentral
49.
go back to reference Lee Y, Wang MY, Du XQ, Charron MJ, Unger RH (2011) Glucagon receptor knockout prevents insulin-deficient type 1 diabetes in mice. Diabetes 60:391–397CrossRefPubMedPubMedCentral Lee Y, Wang MY, Du XQ, Charron MJ, Unger RH (2011) Glucagon receptor knockout prevents insulin-deficient type 1 diabetes in mice. Diabetes 60:391–397CrossRefPubMedPubMedCentral
50.
go back to reference Qureshi SA, Rios Candelore M, Xie D et al (2004) A novel glucagon receptor antagonist inhibits glucagon-mediated biological effects. Diabetes 53:3267–3273CrossRefPubMed Qureshi SA, Rios Candelore M, Xie D et al (2004) A novel glucagon receptor antagonist inhibits glucagon-mediated biological effects. Diabetes 53:3267–3273CrossRefPubMed
51.
go back to reference Sloop KW, Cao JX, Siesky AM et al (2004) Hepatic and glucagon-like peptide-1-mediated reversal of diabetes by glucagon receptor antisense oligonucleotide inhibitors. J Clin Invest 113:1571–1581CrossRefPubMedPubMedCentral Sloop KW, Cao JX, Siesky AM et al (2004) Hepatic and glucagon-like peptide-1-mediated reversal of diabetes by glucagon receptor antisense oligonucleotide inhibitors. J Clin Invest 113:1571–1581CrossRefPubMedPubMedCentral
52.
go back to reference Johnson DG, Goebel CU, Hruby VJ, Bregman MD, Trivedi D (1982) Hyperglycemia of diabetic rats decreased by a glucagon receptor antagonist. Science 215:1115–1116CrossRefPubMed Johnson DG, Goebel CU, Hruby VJ, Bregman MD, Trivedi D (1982) Hyperglycemia of diabetic rats decreased by a glucagon receptor antagonist. Science 215:1115–1116CrossRefPubMed
53.
go back to reference Petersen KF, Sullivan JT (2001) Effects of a novel glucagon receptor antagonist (Bay 27-9955) on glucagon-stimulated glucose production in humans. Diabetologia 44:2018–2024CrossRefPubMed Petersen KF, Sullivan JT (2001) Effects of a novel glucagon receptor antagonist (Bay 27-9955) on glucagon-stimulated glucose production in humans. Diabetologia 44:2018–2024CrossRefPubMed
54.
go back to reference Kazda CM, Ding Y, Kelly RP et al (2016) Response to comment on Kazda et al. evaluation of efficacy and safety of the glucagon receptor antagonist LY2409021 in patients with type 2 diabetes: 12- and 24-week phase 2 studies. Diabetes Care 2016;39:1241-1249. Diabetes Care 39:e199–e200CrossRefPubMed Kazda CM, Ding Y, Kelly RP et al (2016) Response to comment on Kazda et al. evaluation of efficacy and safety of the glucagon receptor antagonist LY2409021 in patients with type 2 diabetes: 12- and 24-week phase 2 studies. Diabetes Care 2016;39:1241-1249. Diabetes Care 39:e199–e200CrossRefPubMed
55.
go back to reference Kelly RP, Garhyan P, Raddad E et al (2015) Short-term administration of the glucagon receptor antagonist LY2409021 lowers blood glucose in healthy people and in those with type 2 diabetes. Diabetes Obes Metab 17:414–422CrossRefPubMed Kelly RP, Garhyan P, Raddad E et al (2015) Short-term administration of the glucagon receptor antagonist LY2409021 lowers blood glucose in healthy people and in those with type 2 diabetes. Diabetes Obes Metab 17:414–422CrossRefPubMed
56.
go back to reference Habegger KM, Heppner KM, Geary N, Bartness TJ, DiMarchi R, Tschop MH (2010) The metabolic actions of glucagon revisited. Nat Rev Endocrinol 6:689–697CrossRefPubMedPubMedCentral Habegger KM, Heppner KM, Geary N, Bartness TJ, DiMarchi R, Tschop MH (2010) The metabolic actions of glucagon revisited. Nat Rev Endocrinol 6:689–697CrossRefPubMedPubMedCentral
57.
go back to reference Perea A, Clemente F, Martinell J, Villanueva-Penacarrillo ML, Valverde I (1995) Physiological effect of glucagon in human isolated adipocytes. Horm Metab Res 27:372–375CrossRefPubMed Perea A, Clemente F, Martinell J, Villanueva-Penacarrillo ML, Valverde I (1995) Physiological effect of glucagon in human isolated adipocytes. Horm Metab Res 27:372–375CrossRefPubMed
58.
go back to reference Slavin BG, Ong JM, Kern PA (1994) Hormonal regulation of hormone-sensitive lipase activity and mRNA levels in isolated rat adipocytes. J Lipid Res 35:1535–1541PubMed Slavin BG, Ong JM, Kern PA (1994) Hormonal regulation of hormone-sensitive lipase activity and mRNA levels in isolated rat adipocytes. J Lipid Res 35:1535–1541PubMed
59.
go back to reference Davidson IWF, Salter JM, Best CH (1960) The effect of glucagon on the metabolic rate of rats. Am J Clin Nutr 8:540–546 Davidson IWF, Salter JM, Best CH (1960) The effect of glucagon on the metabolic rate of rats. Am J Clin Nutr 8:540–546
60.
go back to reference Nair KS (1987) Hyperglucagonemia increases resting metabolic rate in man during insulin deficiency. J Clin Endocrinol Metab 64:896–901CrossRefPubMed Nair KS (1987) Hyperglucagonemia increases resting metabolic rate in man during insulin deficiency. J Clin Endocrinol Metab 64:896–901CrossRefPubMed
61.
go back to reference Joel CD (1966) Stimulation of metabolism of rat brown adipose tissue by addition of lipolytic hormones in vitro. J Biol Chem 241:814–821PubMed Joel CD (1966) Stimulation of metabolism of rat brown adipose tissue by addition of lipolytic hormones in vitro. J Biol Chem 241:814–821PubMed
62.
go back to reference Kuroshima A, Yahata T (1979) Thermogenic responses of brown adipocytes to noradrenaline and glucagon in heat-acclimated and cold-acclimated rats. Jpn J Physiol 29:683–690CrossRefPubMed Kuroshima A, Yahata T (1979) Thermogenic responses of brown adipocytes to noradrenaline and glucagon in heat-acclimated and cold-acclimated rats. Jpn J Physiol 29:683–690CrossRefPubMed
63.
go back to reference Doi K, Kuroshima A (1982) Modified metabolic responsiveness to glucagon in cold-acclimated and heat-acclimated rats. Life Sci 30:785–791CrossRefPubMed Doi K, Kuroshima A (1982) Modified metabolic responsiveness to glucagon in cold-acclimated and heat-acclimated rats. Life Sci 30:785–791CrossRefPubMed
64.
go back to reference Salem V, Izzi-Engbeaya C, Coello C et al (2016) Glucagon increases energy expenditure independently of brown adipose tissue activation in humans. Diabetes Obes Metab 18:72–81CrossRefPubMed Salem V, Izzi-Engbeaya C, Coello C et al (2016) Glucagon increases energy expenditure independently of brown adipose tissue activation in humans. Diabetes Obes Metab 18:72–81CrossRefPubMed
65.
66.
go back to reference Sammons MF, Lee EC (2015) Recent progress in the development of small-molecule glucagon receptor antagonists. Bioorg Med Chem Lett 25:4057–4064CrossRefPubMed Sammons MF, Lee EC (2015) Recent progress in the development of small-molecule glucagon receptor antagonists. Bioorg Med Chem Lett 25:4057–4064CrossRefPubMed
67.
go back to reference Kazda CM, Ding Y, Kelly RP et al (2016) Evaluation of efficacy and safety of the glucagon receptor antagonist LY2409021 in patients with type 2 diabetes: 12- and 24-week phase 2 studies. Diabetes Care 39:1241–1249CrossRefPubMed Kazda CM, Ding Y, Kelly RP et al (2016) Evaluation of efficacy and safety of the glucagon receptor antagonist LY2409021 in patients with type 2 diabetes: 12- and 24-week phase 2 studies. Diabetes Care 39:1241–1249CrossRefPubMed
68.
go back to reference Kazierad DJ, Bergman A, Tan B et al (2016) Effects of multiple ascending doses of the glucagon receptor antagonist PF-06291874 in patients with type 2 diabetes mellitus. Diabetes Obes Metab 18:795–802CrossRefPubMed Kazierad DJ, Bergman A, Tan B et al (2016) Effects of multiple ascending doses of the glucagon receptor antagonist PF-06291874 in patients with type 2 diabetes mellitus. Diabetes Obes Metab 18:795–802CrossRefPubMed
69.
go back to reference Tschop MH, Finan B, Clemmensen C et al (2016) Unimolecular polypharmacy for treatment of diabetes and obesity. Cell Metab 24:51–62CrossRefPubMed Tschop MH, Finan B, Clemmensen C et al (2016) Unimolecular polypharmacy for treatment of diabetes and obesity. Cell Metab 24:51–62CrossRefPubMed
70.
go back to reference Heppner KM, Perez-Tilve D (2015) GLP-1 based therapeutics: simultaneously combating T2DM and obesity. Front Neurosci 9:1–11CrossRef Heppner KM, Perez-Tilve D (2015) GLP-1 based therapeutics: simultaneously combating T2DM and obesity. Front Neurosci 9:1–11CrossRef
71.
go back to reference Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM (1994) Positional cloning of the mouse obese gene and its human homologue. Nature 372:425–432CrossRefPubMed Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM (1994) Positional cloning of the mouse obese gene and its human homologue. Nature 372:425–432CrossRefPubMed
72.
go back to reference Heymsfield SB, Greenberg AS, Fujioka K et al (1999) Recombinant leptin for weight loss in obese and lean adults: a randomized, controlled, dose-escalation trial. JAMA 282:1568–1575CrossRefPubMed Heymsfield SB, Greenberg AS, Fujioka K et al (1999) Recombinant leptin for weight loss in obese and lean adults: a randomized, controlled, dose-escalation trial. JAMA 282:1568–1575CrossRefPubMed
73.
go back to reference Clemmensen C, Chabenne J, Finan B et al (2014) GLP-1/glucagon coagonism restores leptin responsiveness in obese mice chronically maintained on an obesogenic diet. Diabetes 63:1422–1427CrossRefPubMed Clemmensen C, Chabenne J, Finan B et al (2014) GLP-1/glucagon coagonism restores leptin responsiveness in obese mice chronically maintained on an obesogenic diet. Diabetes 63:1422–1427CrossRefPubMed
74.
go back to reference Sandoval DA, D'Alessio DA (2015) Physiology of proglucagon peptides: role of glucagon and GLP-1 in health and disease. Physiol Rev 95:513–548CrossRefPubMed Sandoval DA, D'Alessio DA (2015) Physiology of proglucagon peptides: role of glucagon and GLP-1 in health and disease. Physiol Rev 95:513–548CrossRefPubMed
75.
go back to reference Sisley S, Gutierrez-Aguilar R, Scott M, D'Alessio DA, Sandoval DA, Seeley RJ (2014) Neuronal GLP1R mediates liraglutide’s anorectic but not glucose-lowering effect. J Clin Invest 124:2456–2463CrossRefPubMedPubMedCentral Sisley S, Gutierrez-Aguilar R, Scott M, D'Alessio DA, Sandoval DA, Seeley RJ (2014) Neuronal GLP1R mediates liraglutide’s anorectic but not glucose-lowering effect. J Clin Invest 124:2456–2463CrossRefPubMedPubMedCentral
77.
go back to reference Lao J, Hansen BC, Dimarchi R, Pocai A (2013) Effect of GLP1R/GCGR dual agonist in monkeys. Diabetes 62:A257–A257 Lao J, Hansen BC, Dimarchi R, Pocai A (2013) Effect of GLP1R/GCGR dual agonist in monkeys. Diabetes 62:A257–A257
78.
go back to reference Henderson SJ, Konkar A, Hornigold DC et al (2016) Robust anti-obesity and metabolic effects of a dual GLP-1/glucagon receptor peptide agonist in rodents and non-human primates. Diabetes Obes Metab 18:1176–1190CrossRefPubMedPubMedCentral Henderson SJ, Konkar A, Hornigold DC et al (2016) Robust anti-obesity and metabolic effects of a dual GLP-1/glucagon receptor peptide agonist in rodents and non-human primates. Diabetes Obes Metab 18:1176–1190CrossRefPubMedPubMedCentral
79.
80.
go back to reference Dakin CL, Gunn I, Small CJ et al (2001) Oxyntomodulin inhibits food intake in the rat. Endocrinology 142:4244–4250CrossRefPubMed Dakin CL, Gunn I, Small CJ et al (2001) Oxyntomodulin inhibits food intake in the rat. Endocrinology 142:4244–4250CrossRefPubMed
81.
go back to reference Dakin CL, Small CJ, Park AJ, Seth A, Ghatei MA, Bloom SR (2002) Repeated ICV administration of oxyntomodulin causes a greater reduction in body weight gain than in pair-fed rats. Am J Physiol Endocrinol Metab 283:E1173–E1177CrossRefPubMed Dakin CL, Small CJ, Park AJ, Seth A, Ghatei MA, Bloom SR (2002) Repeated ICV administration of oxyntomodulin causes a greater reduction in body weight gain than in pair-fed rats. Am J Physiol Endocrinol Metab 283:E1173–E1177CrossRefPubMed
82.
go back to reference Wynne K, Park AJ, Small CJ et al (2005) Subcutaneous oxyntomodulin reduces body weight in overweight and obese subjects: a double-blind, randomized, controlled trial. Diabetes 54:2390–2395CrossRefPubMed Wynne K, Park AJ, Small CJ et al (2005) Subcutaneous oxyntomodulin reduces body weight in overweight and obese subjects: a double-blind, randomized, controlled trial. Diabetes 54:2390–2395CrossRefPubMed
83.
go back to reference Wynne K, Park AJ, Small CJ et al (2006) Oxyntomodulin increases energy expenditure in addition to decreasing energy intake in overweight and obese humans: a randomised controlled trial. Int J Obes 30:1729–1736CrossRef Wynne K, Park AJ, Small CJ et al (2006) Oxyntomodulin increases energy expenditure in addition to decreasing energy intake in overweight and obese humans: a randomised controlled trial. Int J Obes 30:1729–1736CrossRef
84.
go back to reference Cohen MA, Ellis SM, Le Roux CW et al (2003) Oxyntomodulin suppresses appetite and reduces food intake in humans. J Clin Endocrinol Metab 88:4696–4701CrossRefPubMed Cohen MA, Ellis SM, Le Roux CW et al (2003) Oxyntomodulin suppresses appetite and reduces food intake in humans. J Clin Endocrinol Metab 88:4696–4701CrossRefPubMed
85.
go back to reference Santoprete A, Capito E, Carrington PE et al (2011) DPP-IV-resistant, long-acting oxyntomodulin derivatives. J Pept Sci 17:270–280CrossRefPubMed Santoprete A, Capito E, Carrington PE et al (2011) DPP-IV-resistant, long-acting oxyntomodulin derivatives. J Pept Sci 17:270–280CrossRefPubMed
86.
go back to reference Bianchi E, Carrington PE, Ingallinella P et al (2013) A PEGylated analog of the gut hormone oxyntomodulin with long-lasting antihyperglycemic, insulinotropic and anorexigenic activity. Bioorg Med Chem 21:7064–7073CrossRefPubMed Bianchi E, Carrington PE, Ingallinella P et al (2013) A PEGylated analog of the gut hormone oxyntomodulin with long-lasting antihyperglycemic, insulinotropic and anorexigenic activity. Bioorg Med Chem 21:7064–7073CrossRefPubMed
87.
go back to reference Druce MR, Minnion JS, Field BC et al (2009) Investigation of structure-activity relationships of Oxyntomodulin (Oxm) using Oxm analogs. Endocrinology 150:1712–1722CrossRefPubMed Druce MR, Minnion JS, Field BC et al (2009) Investigation of structure-activity relationships of Oxyntomodulin (Oxm) using Oxm analogs. Endocrinology 150:1712–1722CrossRefPubMed
88.
go back to reference Kerr BD, Flatt PR, Gault VA (2010) (D-nn2)Oxm[mPEG-PAL]: a novel chemically modified analogue of oxyntomodulin with antihyperglycaemic, insulinotropic and anorexigenic actions. Biochem Pharmacol 80:1727–1735CrossRefPubMed Kerr BD, Flatt PR, Gault VA (2010) (D-nn2)Oxm[mPEG-PAL]: a novel chemically modified analogue of oxyntomodulin with antihyperglycaemic, insulinotropic and anorexigenic actions. Biochem Pharmacol 80:1727–1735CrossRefPubMed
89.
go back to reference Tan TM, Field BC, McCullough KA et al (2013) Coadministration of glucagon-like peptide-1 during glucagon infusion in humans results in increased energy expenditure and amelioration of hyperglycemia. Diabetes 62:1131–1138CrossRefPubMedPubMedCentral Tan TM, Field BC, McCullough KA et al (2013) Coadministration of glucagon-like peptide-1 during glucagon infusion in humans results in increased energy expenditure and amelioration of hyperglycemia. Diabetes 62:1131–1138CrossRefPubMedPubMedCentral
90.
go back to reference Cegla J, Troke RC, Jones B et al (2014) Coinfusion of low-dose GLP-1 and glucagon in man results in a reduction in food intake. Diabetes 63:3711–3720CrossRefPubMed Cegla J, Troke RC, Jones B et al (2014) Coinfusion of low-dose GLP-1 and glucagon in man results in a reduction in food intake. Diabetes 63:3711–3720CrossRefPubMed
91.
go back to reference Finan B, Ma T, Ottaway N et al (2013) Unimolecular dual incretins maximize metabolic benefits in rodents, monkeys, and humans. Sci Transl Med 5:209ra151CrossRefPubMed Finan B, Ma T, Ottaway N et al (2013) Unimolecular dual incretins maximize metabolic benefits in rodents, monkeys, and humans. Sci Transl Med 5:209ra151CrossRefPubMed
92.
go back to reference Finan B, Yang B, Ottaway N et al (2015) A rationally designed monomeric peptide triagonist corrects obesity and diabetes in rodents. Nat Med 21:27–36CrossRefPubMed Finan B, Yang B, Ottaway N et al (2015) A rationally designed monomeric peptide triagonist corrects obesity and diabetes in rodents. Nat Med 21:27–36CrossRefPubMed
93.
go back to reference Wang Y, Du J, Zou H et al (2016) Multifunctional antibody agonists targeting glucagon-like peptide-1, glucagon, and glucose-dependent insulinotropic polypeptide receptors. Angew Chem Int Ed Eng 55:12475–12478CrossRef Wang Y, Du J, Zou H et al (2016) Multifunctional antibody agonists targeting glucagon-like peptide-1, glucagon, and glucose-dependent insulinotropic polypeptide receptors. Angew Chem Int Ed Eng 55:12475–12478CrossRef
94.
go back to reference Mauvais-Jarvis F (2011) Estrogen and androgen receptors: regulators of fuel homeostasis and emerging targets for diabetes and obesity. Trends Endocrinol Metab 22:24–33CrossRefPubMed Mauvais-Jarvis F (2011) Estrogen and androgen receptors: regulators of fuel homeostasis and emerging targets for diabetes and obesity. Trends Endocrinol Metab 22:24–33CrossRefPubMed
95.
go back to reference Tiano JP, Delghingaro-Augusto V, Le May C et al (2011) Estrogen receptor activation reduces lipid synthesis in pancreatic islets and prevents beta cell failure in rodent models of type 2 diabetes. J Clin Invest 121:3331–3342CrossRefPubMedPubMedCentral Tiano JP, Delghingaro-Augusto V, Le May C et al (2011) Estrogen receptor activation reduces lipid synthesis in pancreatic islets and prevents beta cell failure in rodent models of type 2 diabetes. J Clin Invest 121:3331–3342CrossRefPubMedPubMedCentral
97.
go back to reference Schwenk RW, Baumeier C, Finan B et al (2015) GLP-1-oestrogen attenuates hyperphagia and protects from beta cell failure in diabetes-prone New Zealand obese (NZO) mice. Diabetologia 58:604–614CrossRefPubMed Schwenk RW, Baumeier C, Finan B et al (2015) GLP-1-oestrogen attenuates hyperphagia and protects from beta cell failure in diabetes-prone New Zealand obese (NZO) mice. Diabetologia 58:604–614CrossRefPubMed
98.
go back to reference Finan B, Clemmensen C, Zhu Z et al (2016) Chemical hybridization of glucagon and thyroid hormone optimizes therapeutic impact for metabolic disease. Cell 167:843–857.e814CrossRefPubMed Finan B, Clemmensen C, Zhu Z et al (2016) Chemical hybridization of glucagon and thyroid hormone optimizes therapeutic impact for metabolic disease. Cell 167:843–857.e814CrossRefPubMed
Metadata
Title
GLP-1/glucagon receptor co-agonism for treatment of obesity
Authors
Miguel A. Sánchez-Garrido
Sara J. Brandt
Christoffer Clemmensen
Timo D. Müller
Richard D. DiMarchi
Matthias H. Tschöp
Publication date
01-10-2017
Publisher
Springer Berlin Heidelberg
Published in
Diabetologia / Issue 10/2017
Print ISSN: 0012-186X
Electronic ISSN: 1432-0428
DOI
https://doi.org/10.1007/s00125-017-4354-8

Other articles of this Issue 10/2017

Diabetologia 10/2017 Go to the issue