Skip to main content
Top
Published in: Diabetologia 7/2016

01-07-2016 | Mini-review

Glucagon action in the brain

Authors: Mona A. Abraham, Tony K. T. Lam

Published in: Diabetologia | Issue 7/2016

Login to get access

Abstract

In recent years, novel discoveries have reshaped our understanding of the biology of brain glucagon in the regulation of peripheral homeostasis. Here we compare and contrast brain glucagon action in feeding vs glucose regulation and depict the physiological relevance of brain glucagon by reviewing their actions in two key regions of the central nervous system: the mediobasal hypothalamus and the dorsal vagal complex. These novel findings pave the way to future therapeutic strategies aimed at enhancing brain glucagon action for the treatment of diabetes and obesity. This review summarises a presentation given at the ‘Novel data on glucagon’ symposium at the 2015 annual meeting of the EASD. It is accompanied by two other reviews on topics from this symposium (by Young Lee and colleagues, DOI: 10.​1007/​s00125-016-3965-9), and by Russell Miller and Morris Birnbaum, DOI: 10.​1007/​s00125-016-3955-y) and an overview by the Session Chair, Isabel Valverde (DOI: 10.​1007/​s00125-016-3946-z).
Literature
2.
go back to reference Banks WA, Kastin AJ (1985) Peptides and the blood-brain barrier: lipophilicity as a predictor of permeability. Brain Res Bull 15:287–292CrossRefPubMed Banks WA, Kastin AJ (1985) Peptides and the blood-brain barrier: lipophilicity as a predictor of permeability. Brain Res Bull 15:287–292CrossRefPubMed
3.
go back to reference Sasaki H, Ebitani I, Tominaga M, Yamatani K, Yawata Y, Hara M (1980) Glucagon-like substance in the canine brain. Endocrinol Jpn 27(Suppl 1):135–140CrossRefPubMed Sasaki H, Ebitani I, Tominaga M, Yamatani K, Yawata Y, Hara M (1980) Glucagon-like substance in the canine brain. Endocrinol Jpn 27(Suppl 1):135–140CrossRefPubMed
4.
go back to reference Wetsel WC, Eraly SA, Whyte DB, Mellon PL (1993) Regulation of gonadotropin-releasing hormone by protein kinase-A and -C in immortalized hypothalamic neurons. Endocrinology 132:2360–2370PubMed Wetsel WC, Eraly SA, Whyte DB, Mellon PL (1993) Regulation of gonadotropin-releasing hormone by protein kinase-A and -C in immortalized hypothalamic neurons. Endocrinology 132:2360–2370PubMed
5.
go back to reference Marubashi S, Tominaga M, Katagiri T et al (1985) Hyperglycaemic effect of glucagon administered intracerebroventricularly in the rat. Acta Endocrinol (Copenh) 108:6–10 Marubashi S, Tominaga M, Katagiri T et al (1985) Hyperglycaemic effect of glucagon administered intracerebroventricularly in the rat. Acta Endocrinol (Copenh) 108:6–10
6.
go back to reference Honda K, Kamisoyama H, Uemura T et al (2012) The mechanism underlying the central glucagon-induced hyperglycemia and anorexia in chicks. Comp Biochem Physiol A Mol Integr Physiol 163:260–264CrossRefPubMed Honda K, Kamisoyama H, Uemura T et al (2012) The mechanism underlying the central glucagon-induced hyperglycemia and anorexia in chicks. Comp Biochem Physiol A Mol Integr Physiol 163:260–264CrossRefPubMed
7.
go back to reference Amir S (1986) Central glucagon-induced hyperglycemia is mediated by combined activation of the adrenal medulla and sympathetic nerve endings. Physiol Behav 37:563–566CrossRefPubMed Amir S (1986) Central glucagon-induced hyperglycemia is mediated by combined activation of the adrenal medulla and sympathetic nerve endings. Physiol Behav 37:563–566CrossRefPubMed
8.
go back to reference Agarwala GC, Bapat SK (1977) Effect of centrally administered glucagon on blood glucose levels in dogs. Indian J Med Res 66:323–330PubMed Agarwala GC, Bapat SK (1977) Effect of centrally administered glucagon on blood glucose levels in dogs. Indian J Med Res 66:323–330PubMed
9.
go back to reference Agarwala GC, Mishra R, Jaiswal G, Bapat V (1989) Effect of centrally administered glucagon on liver glycogen & enzymes in anaesthetised dogs. Indian J Med Res 90:372–378PubMed Agarwala GC, Mishra R, Jaiswal G, Bapat V (1989) Effect of centrally administered glucagon on liver glycogen & enzymes in anaesthetised dogs. Indian J Med Res 90:372–378PubMed
10.
go back to reference Mighiu PI, Yue JT, Filippi BM et al (2013) Hypothalamic glucagon signaling inhibits hepatic glucose production. Nat Med 19:766–772CrossRefPubMed Mighiu PI, Yue JT, Filippi BM et al (2013) Hypothalamic glucagon signaling inhibits hepatic glucose production. Nat Med 19:766–772CrossRefPubMed
11.
go back to reference Abraham MA, Yue JT, LaPierre MP et al (2014) Hypothalamic glucagon signals through the KATP channels to regulate glucose production. Mol Metab 3:202–208CrossRefPubMed Abraham MA, Yue JT, LaPierre MP et al (2014) Hypothalamic glucagon signals through the KATP channels to regulate glucose production. Mol Metab 3:202–208CrossRefPubMed
12.
go back to reference Inokuchi A, Oomura Y, Nishimura H (1984) Effect of intracerebroventricularly infused glucagon on feeding behavior. Physiol Behav 33:397–400CrossRefPubMed Inokuchi A, Oomura Y, Nishimura H (1984) Effect of intracerebroventricularly infused glucagon on feeding behavior. Physiol Behav 33:397–400CrossRefPubMed
13.
go back to reference Honda K, Kamisoyama H, Saito N, Kurose Y, Sugahara K, Hasegawa S (2007) Central administration of glucagon suppresses food intake in chicks. Neurosci Lett 416:198–201CrossRefPubMed Honda K, Kamisoyama H, Saito N, Kurose Y, Sugahara K, Hasegawa S (2007) Central administration of glucagon suppresses food intake in chicks. Neurosci Lett 416:198–201CrossRefPubMed
14.
go back to reference Kurose Y, Kamisoyama H, Honda K et al (2009) Effects of central administration of glucagon on feed intake and endocrine responses in sheep. Anim Sci J 80:686–690CrossRefPubMed Kurose Y, Kamisoyama H, Honda K et al (2009) Effects of central administration of glucagon on feed intake and endocrine responses in sheep. Anim Sci J 80:686–690CrossRefPubMed
15.
go back to reference Quiñones M, Al-Massadi O, Gallego R et al (2015) Hypothalamic CaMKKβ mediates glucagon anorectic effect and its diet-induced resistance. Mol Metab 4:961–970 Quiñones M, Al-Massadi O, Gallego R et al (2015) Hypothalamic CaMKKβ mediates glucagon anorectic effect and its diet-induced resistance. Mol Metab 4:961–970
16.
go back to reference Könner AC, Janoschek R, Plum L et al (2007) Insulin action in AgRP-expressing neurons is required for suppression of hepatic glucose production. Cell Metab 5:438–449CrossRefPubMed Könner AC, Janoschek R, Plum L et al (2007) Insulin action in AgRP-expressing neurons is required for suppression of hepatic glucose production. Cell Metab 5:438–449CrossRefPubMed
17.
go back to reference Geary N, Kissileff HR, Pi-Sunyer FX, Hinton V (1992) Individual, but not simultaneous, glucagon and cholecystokinin infusions inhibit feeding in men. Am J Physiol 262:R975–R980PubMed Geary N, Kissileff HR, Pi-Sunyer FX, Hinton V (1992) Individual, but not simultaneous, glucagon and cholecystokinin infusions inhibit feeding in men. Am J Physiol 262:R975–R980PubMed
18.
go back to reference Bomboy JD Jr, Lewis SB, Lacy WW, Sinclair-Smith BC, Liljenquist JE (1977) Transient stimulatory effect of sustained hyperglucagonemia on splanchnic glucose production in normal and diabetic man. Diabetes 26:177–184CrossRefPubMed Bomboy JD Jr, Lewis SB, Lacy WW, Sinclair-Smith BC, Liljenquist JE (1977) Transient stimulatory effect of sustained hyperglucagonemia on splanchnic glucose production in normal and diabetic man. Diabetes 26:177–184CrossRefPubMed
19.
go back to reference Felig P, Wahren J, Hendler R (1976) Influence of physiologic hyperglucagonemia on basal and insulin-inhibited splanchnic glucose output in normal man. J Clin Invest 58:761–765CrossRefPubMedPubMedCentral Felig P, Wahren J, Hendler R (1976) Influence of physiologic hyperglucagonemia on basal and insulin-inhibited splanchnic glucose output in normal man. J Clin Invest 58:761–765CrossRefPubMedPubMedCentral
20.
go back to reference Eigler N, Sacca L, Sherwin RS (1979) Synergistic interactions of physiologic increments of glucagon, epinephrine, and cortisol in the dog: a model for stress-induced hyperglycemia. J Clin Invest 63:114–123CrossRefPubMedPubMedCentral Eigler N, Sacca L, Sherwin RS (1979) Synergistic interactions of physiologic increments of glucagon, epinephrine, and cortisol in the dog: a model for stress-induced hyperglycemia. J Clin Invest 63:114–123CrossRefPubMedPubMedCentral
21.
go back to reference Abraham MA, Filippi BM, Kang GM, Kim MS, Lam TK (2014) Insulin action in the hypothalamus and dorsal vagal complex. Exp Physiol 99:1104–1109CrossRefPubMed Abraham MA, Filippi BM, Kang GM, Kim MS, Lam TK (2014) Insulin action in the hypothalamus and dorsal vagal complex. Exp Physiol 99:1104–1109CrossRefPubMed
22.
go back to reference Filippi BM, Yang CS, Tang C, Lam TK (2012) Insulin activates Erk1/2 signaling in the dorsal vagal complex to inhibit glucose production. Cell Metab 16:500–510CrossRefPubMed Filippi BM, Yang CS, Tang C, Lam TK (2012) Insulin activates Erk1/2 signaling in the dorsal vagal complex to inhibit glucose production. Cell Metab 16:500–510CrossRefPubMed
23.
go back to reference Filippi BM, Bassiri A, Abraham MA, Duca FA, Yue JT, Lam TK (2014) Insulin signals through the dorsal vagal complex to regulate energy balance. Diabetes 63:892–899CrossRefPubMed Filippi BM, Bassiri A, Abraham MA, Duca FA, Yue JT, Lam TK (2014) Insulin signals through the dorsal vagal complex to regulate energy balance. Diabetes 63:892–899CrossRefPubMed
24.
go back to reference Hayes MR, Skibicka KP, Grill HJ (2008) Caudal brainstem processing is sufficient for behavioral, sympathetic, and parasympathetic responses driven by peripheral and hindbrain glucagon-like-peptide-1 receptor stimulation. Endocrinology 149:4059–4068CrossRefPubMedPubMedCentral Hayes MR, Skibicka KP, Grill HJ (2008) Caudal brainstem processing is sufficient for behavioral, sympathetic, and parasympathetic responses driven by peripheral and hindbrain glucagon-like-peptide-1 receptor stimulation. Endocrinology 149:4059–4068CrossRefPubMedPubMedCentral
25.
go back to reference Hayes MR, Bradley L, Grill HJ (2009) Endogenous hindbrain glucagon-like peptide-1 receptor activation contributes to the control of food intake by mediating gastric satiation signaling. Endocrinology 150:2654–2659CrossRefPubMedPubMedCentral Hayes MR, Bradley L, Grill HJ (2009) Endogenous hindbrain glucagon-like peptide-1 receptor activation contributes to the control of food intake by mediating gastric satiation signaling. Endocrinology 150:2654–2659CrossRefPubMedPubMedCentral
26.
go back to reference Hayes MR, Skibicka KP, Leichner TM et al (2010) Endogenous leptin signaling in the caudal nucleus tractus solitarius and area postrema is required for energy balance regulation. Cell Metab 11:77–83CrossRefPubMedPubMedCentral Hayes MR, Skibicka KP, Leichner TM et al (2010) Endogenous leptin signaling in the caudal nucleus tractus solitarius and area postrema is required for energy balance regulation. Cell Metab 11:77–83CrossRefPubMedPubMedCentral
27.
go back to reference Hansen LH, Abrahamsen N, Nishimura E (1995) Glucagon receptor mRNA distribution in rat tissues. Peptides 16:1163–1166CrossRefPubMed Hansen LH, Abrahamsen N, Nishimura E (1995) Glucagon receptor mRNA distribution in rat tissues. Peptides 16:1163–1166CrossRefPubMed
28.
go back to reference Parker JA, McCullough KA, Field BC et al (2013) Glucagon and GLP-1 inhibit food intake and increase c-fos expression in similar appetite regulating centres in the brainstem and amygdala. Int J Obes (Lond) 37:1391–1398CrossRef Parker JA, McCullough KA, Field BC et al (2013) Glucagon and GLP-1 inhibit food intake and increase c-fos expression in similar appetite regulating centres in the brainstem and amygdala. Int J Obes (Lond) 37:1391–1398CrossRef
29.
go back to reference LaPierre MP, Abraham MA, Yue JT, Filippi BM, Lam TK (2015) Glucagon signalling in the dorsal vagal complex is sufficient and necessary for high-protein feeding to regulate glucose homeostasis in vivo. EMBO Rep 16:1299–1307CrossRefPubMed LaPierre MP, Abraham MA, Yue JT, Filippi BM, Lam TK (2015) Glucagon signalling in the dorsal vagal complex is sufficient and necessary for high-protein feeding to regulate glucose homeostasis in vivo. EMBO Rep 16:1299–1307CrossRefPubMed
30.
go back to reference Calbet JA, MacLean DA (2002) Plasma glucagon and insulin responses depend on the rate of appearance of amino acids after ingestion of different protein solutions in humans. J Nutr 132:2174–2182PubMed Calbet JA, MacLean DA (2002) Plasma glucagon and insulin responses depend on the rate of appearance of amino acids after ingestion of different protein solutions in humans. J Nutr 132:2174–2182PubMed
31.
go back to reference Claessens M, Calame W, Siemensma AD, van Baak MA, Saris WH (2009) The effect of different protein hydrolysate/carbohydrate mixtures on postprandial glucagon and insulin responses in healthy subjects. Eur J Clin Nutr 63:48–56CrossRefPubMed Claessens M, Calame W, Siemensma AD, van Baak MA, Saris WH (2009) The effect of different protein hydrolysate/carbohydrate mixtures on postprandial glucagon and insulin responses in healthy subjects. Eur J Clin Nutr 63:48–56CrossRefPubMed
32.
go back to reference Day JL, Johansen K, Ganda OP, Soeldner JS, Gleason RE, Midgley W (1978) Factors governing insulin and glucagon responses during normal meals. Clin Endocrinol (Oxf) 9:443–454CrossRef Day JL, Johansen K, Ganda OP, Soeldner JS, Gleason RE, Midgley W (1978) Factors governing insulin and glucagon responses during normal meals. Clin Endocrinol (Oxf) 9:443–454CrossRef
33.
go back to reference Peret J, Foustock S, Chanez M, Bois-Joyeux B, Assan R (1981) Plasma glucagon and insulin concentrations and hepatic phosphoenolpyruvate carboxykinase and pyruvate kinase activities during and upon adaptation of rats to a high protein diet. J Nutr 111:1173–1184PubMed Peret J, Foustock S, Chanez M, Bois-Joyeux B, Assan R (1981) Plasma glucagon and insulin concentrations and hepatic phosphoenolpyruvate carboxykinase and pyruvate kinase activities during and upon adaptation of rats to a high protein diet. J Nutr 111:1173–1184PubMed
34.
go back to reference Cheung GW, Kokorovic A, Lam CK, Chari M, Lam TK (2009) Intestinal cholecystokinin controls glucose production through a neuronal network. Cell Metab 10:99–109CrossRefPubMed Cheung GW, Kokorovic A, Lam CK, Chari M, Lam TK (2009) Intestinal cholecystokinin controls glucose production through a neuronal network. Cell Metab 10:99–109CrossRefPubMed
35.
go back to reference Wang PY, Caspi L, Lam CK et al (2008) Upper intestinal lipids trigger a gut-brain-liver axis to regulate glucose production. Nature 452:1012–1016CrossRefPubMed Wang PY, Caspi L, Lam CK et al (2008) Upper intestinal lipids trigger a gut-brain-liver axis to regulate glucose production. Nature 452:1012–1016CrossRefPubMed
36.
go back to reference Weigle DS, Breen PA, Matthys CC et al (2005) A high-protein diet induces sustained reductions in appetite, ad libitum caloric intake, and body weight despite compensatory changes in diurnal plasma leptin and ghrelin concentrations. Am J Clin Nutr 82:41–48PubMed Weigle DS, Breen PA, Matthys CC et al (2005) A high-protein diet induces sustained reductions in appetite, ad libitum caloric intake, and body weight despite compensatory changes in diurnal plasma leptin and ghrelin concentrations. Am J Clin Nutr 82:41–48PubMed
37.
go back to reference Blouet C, Mariotti F, Azzout-Marniche D et al (2006) The reduced energy intake of rats fed a high-protein low-carbohydrate diet explains the lower fat deposition, but macronutrient substitution accounts for the improved glycemic control. J Nutr 136:1849–1854PubMed Blouet C, Mariotti F, Azzout-Marniche D et al (2006) The reduced energy intake of rats fed a high-protein low-carbohydrate diet explains the lower fat deposition, but macronutrient substitution accounts for the improved glycemic control. J Nutr 136:1849–1854PubMed
38.
go back to reference Finan B, Yang B, Ottaway N et al (2015) A rationally designed monomeric peptide triagonist corrects obesity and diabetes in rodents. Nat Med 21:27–36CrossRefPubMed Finan B, Yang B, Ottaway N et al (2015) A rationally designed monomeric peptide triagonist corrects obesity and diabetes in rodents. Nat Med 21:27–36CrossRefPubMed
39.
40.
go back to reference Day JW, Ottaway N, Patterson JT et al (2009) A new glucagon and GLP-1 co-agonist eliminates obesity in rodents. Nat Chem Biol 5:749–757CrossRefPubMed Day JW, Ottaway N, Patterson JT et al (2009) A new glucagon and GLP-1 co-agonist eliminates obesity in rodents. Nat Chem Biol 5:749–757CrossRefPubMed
Metadata
Title
Glucagon action in the brain
Authors
Mona A. Abraham
Tony K. T. Lam
Publication date
01-07-2016
Publisher
Springer Berlin Heidelberg
Published in
Diabetologia / Issue 7/2016
Print ISSN: 0012-186X
Electronic ISSN: 1432-0428
DOI
https://doi.org/10.1007/s00125-016-3950-3

Other articles of this Issue 7/2016

Diabetologia 7/2016 Go to the issue