Skip to main content
Top
Published in: Diabetologia 5/2017

01-05-2017 | Review

Pharmacogenetics in type 2 diabetes: precision medicine or discovery tool?

Author: Jose C. Florez

Published in: Diabetologia | Issue 5/2017

Login to get access

Abstract

In recent years, technological and analytical advances have led to an explosion in the discovery of genetic loci associated with type 2 diabetes. However, their ability to improve prediction of disease outcomes beyond standard clinical risk factors has been limited. On the other hand, genetic effects on drug response may be stronger than those commonly seen for disease incidence. Pharmacogenetic findings may aid in identifying new drug targets, elucidate pathophysiology, unravel disease heterogeneity, help prioritise specific genes in regions of genetic association, and contribute to personalised or precision treatment. In diabetes, precedent for the successful application of pharmacogenetic concepts exists in its monogenic subtypes, such as MODY or neonatal diabetes. Whether similar insights will emerge for the much more common entity of type 2 diabetes remains to be seen. As genetic approaches advance, the progressive deployment of candidate gene, large-scale genotyping and genome-wide association studies has begun to produce suggestive results that may transform clinical practice. However, many barriers to the translation of diabetes pharmacogenetic discoveries to the clinic still remain. This perspective offers a contemporary overview of the field with a focus on sulfonylureas and metformin, identifies the major uses of pharmacogenetics, and highlights potential limitations and future directions.
Appendix
Available only for authorised users
Literature
4.
go back to reference Zhou K, Pedersen HK, Dawed AY, Pearson ER (2016) Pharmacogenomics in diabetes mellitus: insights into drug action and drug discovery. Nat Rev Endocrinol 12:337–346PubMed Zhou K, Pedersen HK, Dawed AY, Pearson ER (2016) Pharmacogenomics in diabetes mellitus: insights into drug action and drug discovery. Nat Rev Endocrinol 12:337–346PubMed
5.
go back to reference Gloyn AL, Pearson ER, Antcliff JF et al (2004) Activating mutations in the gene encoding the ATP-sensitive potassium-channel subunit Kir6.2 and permanent neonatal diabetes. N Engl J Med 350:1838–1849CrossRefPubMed Gloyn AL, Pearson ER, Antcliff JF et al (2004) Activating mutations in the gene encoding the ATP-sensitive potassium-channel subunit Kir6.2 and permanent neonatal diabetes. N Engl J Med 350:1838–1849CrossRefPubMed
6.
go back to reference Babenko AP, Polak M, Cave H et al (2006) Activating mutations in the ABCC8 gene in neonatal diabetes mellitus. N Engl J Med 355:456–466CrossRefPubMed Babenko AP, Polak M, Cave H et al (2006) Activating mutations in the ABCC8 gene in neonatal diabetes mellitus. N Engl J Med 355:456–466CrossRefPubMed
7.
go back to reference Greeley SA, Naylor RN, Philipson LH, Bell GI (2011) Neonatal diabetes: an expanding list of genes allows for improved diagnosis and treatment. Curr Diab Rep 11:519–532CrossRefPubMedPubMedCentral Greeley SA, Naylor RN, Philipson LH, Bell GI (2011) Neonatal diabetes: an expanding list of genes allows for improved diagnosis and treatment. Curr Diab Rep 11:519–532CrossRefPubMedPubMedCentral
8.
go back to reference Pearson ER, Flechtner I, Njolstad PR et al (2006) Switching from insulin to oral sulfonylureas in patients with diabetes due to Kir6.2 mutations. N Engl J Med 355:467–477CrossRefPubMed Pearson ER, Flechtner I, Njolstad PR et al (2006) Switching from insulin to oral sulfonylureas in patients with diabetes due to Kir6.2 mutations. N Engl J Med 355:467–477CrossRefPubMed
9.
go back to reference Gloyn AL, Weedon MN, Owen KR et al (2003) Large-scale association studies of variants in genes encoding the pancreatic β-cell KATP channel subunits Kir6.2 (KCNJ11) and SUR1 (ABCC8) confirm that the KCNJ11 E23K variant is associated with type 2 diabetes. Diabetes 52:568–572CrossRefPubMed Gloyn AL, Weedon MN, Owen KR et al (2003) Large-scale association studies of variants in genes encoding the pancreatic β-cell KATP channel subunits Kir6.2 (KCNJ11) and SUR1 (ABCC8) confirm that the KCNJ11 E23K variant is associated with type 2 diabetes. Diabetes 52:568–572CrossRefPubMed
10.
go back to reference Florez JC, Burtt N, de Bakker PI et al (2004) Haplotype structure and genotype-phenotype correlations of the sulfonylurea receptor and the islet ATP-sensitive potassium channel gene region. Diabetes 53:1360–1368CrossRefPubMed Florez JC, Burtt N, de Bakker PI et al (2004) Haplotype structure and genotype-phenotype correlations of the sulfonylurea receptor and the islet ATP-sensitive potassium channel gene region. Diabetes 53:1360–1368CrossRefPubMed
11.
go back to reference Hamming KS, Soliman D, Matemisz LC et al (2009) Coexpression of the type 2 diabetes susceptibility gene variants KCNJ11 E23K and ABCC8 S1369A alter the ATP and sulfonylurea sensitivities of the ATP-sensitive K+ channel. Diabetes 58:2419–2424CrossRefPubMedPubMedCentral Hamming KS, Soliman D, Matemisz LC et al (2009) Coexpression of the type 2 diabetes susceptibility gene variants KCNJ11 E23K and ABCC8 S1369A alter the ATP and sulfonylurea sensitivities of the ATP-sensitive K+ channel. Diabetes 58:2419–2424CrossRefPubMedPubMedCentral
12.
go back to reference Feng Y, Mao G, Ren X et al (2008) Ser1369Ala variant in sulfonylurea receptor gene ABCC8 is associated with antidiabetic efficacy of gliclazide in Chinese type 2 diabetic patients. Diabetes Care 31:1939–1944CrossRefPubMedPubMedCentral Feng Y, Mao G, Ren X et al (2008) Ser1369Ala variant in sulfonylurea receptor gene ABCC8 is associated with antidiabetic efficacy of gliclazide in Chinese type 2 diabetic patients. Diabetes Care 31:1939–1944CrossRefPubMedPubMedCentral
13.
go back to reference Javorsky M, Klimcakova L, Schroner Z et al (2012) KCNJ11 gene E23K variant and therapeutic response to sulfonylureas. Eur J Intern Med 23:245–249CrossRefPubMed Javorsky M, Klimcakova L, Schroner Z et al (2012) KCNJ11 gene E23K variant and therapeutic response to sulfonylureas. Eur J Intern Med 23:245–249CrossRefPubMed
14.
go back to reference Ragia G, Tavridou A, Petridis I, Manolopoulos VG (2012) Association of KCNJ11 E23K gene polymorphism with hypoglycemia in sulfonylurea-treated type 2 diabetic patients. Diabetes Res Clin Pract 98:119–124CrossRefPubMed Ragia G, Tavridou A, Petridis I, Manolopoulos VG (2012) Association of KCNJ11 E23K gene polymorphism with hypoglycemia in sulfonylurea-treated type 2 diabetic patients. Diabetes Res Clin Pract 98:119–124CrossRefPubMed
15.
go back to reference Inzucchi SE, Bergenstal RM, Buse JB et al (2015) Management of hyperglycaemia in type 2 diabetes, 2015: a patient-centred approach. Update to a position statement of the American Diabetes Association and the European Association for the Study of Diabetes. Diabetologia 58:429–442CrossRefPubMed Inzucchi SE, Bergenstal RM, Buse JB et al (2015) Management of hyperglycaemia in type 2 diabetes, 2015: a patient-centred approach. Update to a position statement of the American Diabetes Association and the European Association for the Study of Diabetes. Diabetologia 58:429–442CrossRefPubMed
16.
go back to reference Nathan DM, Buse JB, Davidson MB et al (2009) Medical management of hyperglycemia in type 2 diabetes: a consensus algorithm for the initiation and adjustment of therapy: a consensus statement of the American Diabetes Association and the European Association for the Study of Diabetes. Diabetes Care 32:193–203CrossRefPubMedPubMedCentral Nathan DM, Buse JB, Davidson MB et al (2009) Medical management of hyperglycemia in type 2 diabetes: a consensus algorithm for the initiation and adjustment of therapy: a consensus statement of the American Diabetes Association and the European Association for the Study of Diabetes. Diabetes Care 32:193–203CrossRefPubMedPubMedCentral
17.
go back to reference Rodbard HW, Jellinger PS, Davidson JA et al (2009) Statement by an American Association of Clinical Endocrinologists/American College of Endocrinology consensus panel on type 2 diabetes mellitus: an algorithm for glycemic control. Endocr Pract 15:540–559CrossRefPubMed Rodbard HW, Jellinger PS, Davidson JA et al (2009) Statement by an American Association of Clinical Endocrinologists/American College of Endocrinology consensus panel on type 2 diabetes mellitus: an algorithm for glycemic control. Endocr Pract 15:540–559CrossRefPubMed
18.
19.
go back to reference Kahn SE, Haffner SM, Heise MA et al (2006) Glycemic durability of rosiglitazone, metformin, or glyburide monotherapy. N Engl J Med 355:2427–2443CrossRefPubMed Kahn SE, Haffner SM, Heise MA et al (2006) Glycemic durability of rosiglitazone, metformin, or glyburide monotherapy. N Engl J Med 355:2427–2443CrossRefPubMed
20.
go back to reference Zeitler P, Hirst K, Pyle L et al (2012) A clinical trial to maintain glycemic control in youth with type 2 diabetes. N Engl J Med 366:2247–2256CrossRefPubMed Zeitler P, Hirst K, Pyle L et al (2012) A clinical trial to maintain glycemic control in youth with type 2 diabetes. N Engl J Med 366:2247–2256CrossRefPubMed
22.
go back to reference Owen MR, Doran E, Halestrap AP (2000) Evidence that metformin exerts its anti-diabetic effects through inhibition of complex 1 of the mitochondrial respiratory chain. Biochem J 348:607–614CrossRefPubMedPubMedCentral Owen MR, Doran E, Halestrap AP (2000) Evidence that metformin exerts its anti-diabetic effects through inhibition of complex 1 of the mitochondrial respiratory chain. Biochem J 348:607–614CrossRefPubMedPubMedCentral
23.
go back to reference El-Mir MY, Nogueira V, Fontaine E, Averet N, Rigoulet M, Leverve X (2000) Dimethylbiguanide inhibits cell respiration via an indirect effect targeted on the respiratory chain complex I. J Biol Chem 275:223–228CrossRefPubMed El-Mir MY, Nogueira V, Fontaine E, Averet N, Rigoulet M, Leverve X (2000) Dimethylbiguanide inhibits cell respiration via an indirect effect targeted on the respiratory chain complex I. J Biol Chem 275:223–228CrossRefPubMed
24.
go back to reference Fryer LGD, Parbu-Patel A, Carling D (2002) The anti-diabetic drugs rosiglitazone and metformin stimulate AMP-activated protein kinase through distinct signaling pathways. J Biol Chem 277:25226–25232CrossRefPubMed Fryer LGD, Parbu-Patel A, Carling D (2002) The anti-diabetic drugs rosiglitazone and metformin stimulate AMP-activated protein kinase through distinct signaling pathways. J Biol Chem 277:25226–25232CrossRefPubMed
26.
go back to reference Foretz M, Hebrard S, Leclerc J et al (2010) Metformin inhibits hepatic gluconeogenesis in mice independently of the LKB1/AMPK pathway via a decrease in hepatic energy state. J Clin Invest 120:2355–2369CrossRefPubMedPubMedCentral Foretz M, Hebrard S, Leclerc J et al (2010) Metformin inhibits hepatic gluconeogenesis in mice independently of the LKB1/AMPK pathway via a decrease in hepatic energy state. J Clin Invest 120:2355–2369CrossRefPubMedPubMedCentral
27.
go back to reference Miller RA, Chu Q, Xie J, Foretz M, Viollet B, Birnbaum MJ (2013) Biguanides suppress hepatic glucagon signalling by decreasing production of cyclic AMP. Nature 494:256–260CrossRefPubMedPubMedCentral Miller RA, Chu Q, Xie J, Foretz M, Viollet B, Birnbaum MJ (2013) Biguanides suppress hepatic glucagon signalling by decreasing production of cyclic AMP. Nature 494:256–260CrossRefPubMedPubMedCentral
29.
go back to reference Shu Y, Sheardown SA, Brown C et al (2007) Effect of genetic variation in the organic cation transporter 1 (OCT1) on metformin action. J Clin Invest 117:1422–1431CrossRefPubMedPubMedCentral Shu Y, Sheardown SA, Brown C et al (2007) Effect of genetic variation in the organic cation transporter 1 (OCT1) on metformin action. J Clin Invest 117:1422–1431CrossRefPubMedPubMedCentral
30.
go back to reference Zhou K, Donnelly LA, Kimber CH et al (2009) Reduced function SLC22A1 polymorphisms encoding Organic Cation Transporter 1 (OCT1) and glycaemic response to metformin: A Go-DARTS study. Diabetes 58:1434–1439CrossRefPubMedPubMedCentral Zhou K, Donnelly LA, Kimber CH et al (2009) Reduced function SLC22A1 polymorphisms encoding Organic Cation Transporter 1 (OCT1) and glycaemic response to metformin: A Go-DARTS study. Diabetes 58:1434–1439CrossRefPubMedPubMedCentral
31.
go back to reference Dujic T, Zhou K, Donnelly LA, Tavendale R, Palmer CN, Pearson ER (2015) Association of organic cation transporter 1 with intolerance to metformin in type 2 diabetes: A GoDARTS Study. Diabetes 64:1786–1793CrossRefPubMed Dujic T, Zhou K, Donnelly LA, Tavendale R, Palmer CN, Pearson ER (2015) Association of organic cation transporter 1 with intolerance to metformin in type 2 diabetes: A GoDARTS Study. Diabetes 64:1786–1793CrossRefPubMed
32.
go back to reference Becker ML, Visser LE, van Schaik RHN, Hofman A, Uitterlinden AG, Stricker BHC (2009) Genetic variation in the multidrug and toxin extrusion 1 transporter protein influences the glucose-lowering effect of metformin in patients with diabetes: A preliminary study. Diabetes 58:745–749CrossRefPubMedPubMedCentral Becker ML, Visser LE, van Schaik RHN, Hofman A, Uitterlinden AG, Stricker BHC (2009) Genetic variation in the multidrug and toxin extrusion 1 transporter protein influences the glucose-lowering effect of metformin in patients with diabetes: A preliminary study. Diabetes 58:745–749CrossRefPubMedPubMedCentral
33.
go back to reference Jablonski KA, McAteer JB, de Bakker PI et al (2010) Common variants in 40 genes assessed for diabetes incidence and response to metformin and lifestyle intervention in the Diabetes Prevention Program. Diabetes 59:2672–2681CrossRefPubMedPubMedCentral Jablonski KA, McAteer JB, de Bakker PI et al (2010) Common variants in 40 genes assessed for diabetes incidence and response to metformin and lifestyle intervention in the Diabetes Prevention Program. Diabetes 59:2672–2681CrossRefPubMedPubMedCentral
34.
go back to reference Tkac I, Klimcakova L, Javorsky M et al (2013) Pharmacogenomic association between a variant in SLC47A1 gene and therapeutic response to metformin in type 2 diabetes. Diabetes Obes Metab 15:189–191CrossRefPubMed Tkac I, Klimcakova L, Javorsky M et al (2013) Pharmacogenomic association between a variant in SLC47A1 gene and therapeutic response to metformin in type 2 diabetes. Diabetes Obes Metab 15:189–191CrossRefPubMed
35.
go back to reference Dujic T, Zhou K, Yee SW et al (2016) Variants in pharmacokinetic transporters and glycaemic response to metformin: a MetGen meta-analysis. Clin Pharmacol Ther. doi:10.1002/cpt.567 PubMed Dujic T, Zhou K, Yee SW et al (2016) Variants in pharmacokinetic transporters and glycaemic response to metformin: a MetGen meta-analysis. Clin Pharmacol Ther. doi:10.​1002/​cpt.​567 PubMed
36.
go back to reference Zhou K, Bellenguez C, Spencer CC et al (2011) Common variants near ATM are associated with glycemic response to metformin in type 2 diabetes. Nat Genet 43:117–120CrossRefPubMed Zhou K, Bellenguez C, Spencer CC et al (2011) Common variants near ATM are associated with glycemic response to metformin in type 2 diabetes. Nat Genet 43:117–120CrossRefPubMed
37.
go back to reference van Leeuwen N, Nijpels G, Becker ML et al (2012) A gene variant near ATM is significantly associated with metformin treatment response in type 2 diabetes: a replication and meta-analysis of five cohorts. Diabetologia 55:1971–1977CrossRefPubMedPubMedCentral van Leeuwen N, Nijpels G, Becker ML et al (2012) A gene variant near ATM is significantly associated with metformin treatment response in type 2 diabetes: a replication and meta-analysis of five cohorts. Diabetologia 55:1971–1977CrossRefPubMedPubMedCentral
38.
go back to reference Florez JC, Jablonski KA, Taylor A et al (2012) The C allele of ATM rs11212617 does not associate with metformin response in the Diabetes Prevention Program. Diabetes Care 35:1864–1867CrossRefPubMedPubMedCentral Florez JC, Jablonski KA, Taylor A et al (2012) The C allele of ATM rs11212617 does not associate with metformin response in the Diabetes Prevention Program. Diabetes Care 35:1864–1867CrossRefPubMedPubMedCentral
39.
go back to reference Pawlyk AC, Giacomini KM, McKeon C, Shuldiner AR, Florez JC (2014) Metformin pharmacogenomics: current status and future directions. Diabetes 63:2590–2599CrossRefPubMedPubMedCentral Pawlyk AC, Giacomini KM, McKeon C, Shuldiner AR, Florez JC (2014) Metformin pharmacogenomics: current status and future directions. Diabetes 63:2590–2599CrossRefPubMedPubMedCentral
40.
go back to reference Zhou K, Yee SW, Seiser EL et al (2016) Variation in the glucose transporter gene SLC2A2 is associated with glycemic response to metformin. Nat Genet 48:1055–1059CrossRefPubMedPubMedCentral Zhou K, Yee SW, Seiser EL et al (2016) Variation in the glucose transporter gene SLC2A2 is associated with glycemic response to metformin. Nat Genet 48:1055–1059CrossRefPubMedPubMedCentral
41.
go back to reference McCulloch LJ, van de Bunt M, Braun M, Frayn KN, Clark A, Gloyn AL (2011) GLUT2 (SLC2A2) is not the principal glucose transporter in human pancreatic beta cells: implications for understanding genetic association signals at this locus. Mol Genet Metab 104:648–653CrossRefPubMed McCulloch LJ, van de Bunt M, Braun M, Frayn KN, Clark A, Gloyn AL (2011) GLUT2 (SLC2A2) is not the principal glucose transporter in human pancreatic beta cells: implications for understanding genetic association signals at this locus. Mol Genet Metab 104:648–653CrossRefPubMed
43.
go back to reference Grant SFA, Thorleifsson G, Reynisdottir I et al (2006) Variant of transcription factor 7-like 2 (TCF7L2) gene confers risk of type 2 diabetes. Nat Genet 38:320–323CrossRefPubMed Grant SFA, Thorleifsson G, Reynisdottir I et al (2006) Variant of transcription factor 7-like 2 (TCF7L2) gene confers risk of type 2 diabetes. Nat Genet 38:320–323CrossRefPubMed
45.
go back to reference Xia Q, Chesi A, Manduchi E et al (2016) The type 2 diabetes presumed causal variant within TCF7L2 resides in an element that controls the expression of ACSL5. Diabetologia 59:2360–2368CrossRefPubMed Xia Q, Chesi A, Manduchi E et al (2016) The type 2 diabetes presumed causal variant within TCF7L2 resides in an element that controls the expression of ACSL5. Diabetologia 59:2360–2368CrossRefPubMed
46.
go back to reference Florez JC, Jablonski KA, Bayley N et al (2006) TCF7L2 polymorphisms and progression to diabetes in the Diabetes Prevention Program. N Engl J Med 355:241–250CrossRefPubMedPubMedCentral Florez JC, Jablonski KA, Bayley N et al (2006) TCF7L2 polymorphisms and progression to diabetes in the Diabetes Prevention Program. N Engl J Med 355:241–250CrossRefPubMedPubMedCentral
47.
go back to reference Liu Z, Habener JF (2008) Glucagon-like peptide-1 activation of TCF7L2-dependent Wnt signaling enhances pancreatic beta cell proliferation. J Biol Chem 283:8723–8735CrossRefPubMedPubMedCentral Liu Z, Habener JF (2008) Glucagon-like peptide-1 activation of TCF7L2-dependent Wnt signaling enhances pancreatic beta cell proliferation. J Biol Chem 283:8723–8735CrossRefPubMedPubMedCentral
48.
go back to reference Loos RJF, Franks PW, Francis RW et al (2007) TCF7L2 polymorphisms modulate proinsulin levels and β-cell function in a British Europid population. Diabetes 56:1943–1947CrossRefPubMedPubMedCentral Loos RJF, Franks PW, Francis RW et al (2007) TCF7L2 polymorphisms modulate proinsulin levels and β-cell function in a British Europid population. Diabetes 56:1943–1947CrossRefPubMedPubMedCentral
49.
go back to reference Kirchhoff K, Machicao F, Haupt A et al (2008) Polymorphisms in the TCF7L2, CDKAL1 and SLC30A8 genes are associated with impaired proinsulin conversion. Diabetologia 51:597–601CrossRefPubMed Kirchhoff K, Machicao F, Haupt A et al (2008) Polymorphisms in the TCF7L2, CDKAL1 and SLC30A8 genes are associated with impaired proinsulin conversion. Diabetologia 51:597–601CrossRefPubMed
50.
go back to reference da Silva Xavier G, Loder MK, McDonald A et al (2009) TCF7L2 regulates late events in insulin secretion from pancreatic islet beta-cells. Diabetes 58:894–905CrossRefPubMedPubMedCentral da Silva Xavier G, Loder MK, McDonald A et al (2009) TCF7L2 regulates late events in insulin secretion from pancreatic islet beta-cells. Diabetes 58:894–905CrossRefPubMedPubMedCentral
51.
go back to reference Pilgaard K, Jensen CB, Schou JH et al (2009) The T allele of rs7903146 TCF7L2 is associated with impaired insulinotropic action of incretin hormones, reduced 24 h profiles of plasma insulin and glucagon, and increased hepatic glucose production in young healthy men. Diabetologia 52:1298–1307CrossRefPubMed Pilgaard K, Jensen CB, Schou JH et al (2009) The T allele of rs7903146 TCF7L2 is associated with impaired insulinotropic action of incretin hormones, reduced 24 h profiles of plasma insulin and glucagon, and increased hepatic glucose production in young healthy men. Diabetologia 52:1298–1307CrossRefPubMed
52.
go back to reference Villareal DT, Robertson H, Bell GI et al (2010) TCF7L2 variant rs7903146 affects the risk of type 2 diabetes by modulating incretin action. Diabetes 59:479–485CrossRefPubMed Villareal DT, Robertson H, Bell GI et al (2010) TCF7L2 variant rs7903146 affects the risk of type 2 diabetes by modulating incretin action. Diabetes 59:479–485CrossRefPubMed
53.
go back to reference Bailey KA, Savic D, Zielinski M et al (2015) Evidence of non-pancreatic beta cell-dependent roles of Tcf7l2 in the regulation of glucose metabolism in mice. Hum Mol Genet 24:1646–1654CrossRefPubMed Bailey KA, Savic D, Zielinski M et al (2015) Evidence of non-pancreatic beta cell-dependent roles of Tcf7l2 in the regulation of glucose metabolism in mice. Hum Mol Genet 24:1646–1654CrossRefPubMed
54.
go back to reference Pearson ER, Donnelly LA, Kimber C et al (2007) Variation in TCF7L2 influences therapeutic response to sulfonylureas: A GoDARTs study. Diabetes 56:2178–2182CrossRefPubMed Pearson ER, Donnelly LA, Kimber C et al (2007) Variation in TCF7L2 influences therapeutic response to sulfonylureas: A GoDARTs study. Diabetes 56:2178–2182CrossRefPubMed
55.
go back to reference Schroner Z, Javorsky M, Tkacova R et al (2011) Effect of sulphonylurea treatment on glycaemic control is related to TCF7L2 genotype in patients with type 2 diabetes. Diabetes Obes Metab 13:89–91CrossRefPubMed Schroner Z, Javorsky M, Tkacova R et al (2011) Effect of sulphonylurea treatment on glycaemic control is related to TCF7L2 genotype in patients with type 2 diabetes. Diabetes Obes Metab 13:89–91CrossRefPubMed
56.
go back to reference Walford GA, Colomo N, Todd JN et al (2015) The study to understand the genetics of the acute response to metformin and glipizide in humans (SUGAR-MGH): design of a pharmacogenetic resource for type 2 diabetes. PLoS ONE 10:e0121553CrossRefPubMedPubMedCentral Walford GA, Colomo N, Todd JN et al (2015) The study to understand the genetics of the acute response to metformin and glipizide in humans (SUGAR-MGH): design of a pharmacogenetic resource for type 2 diabetes. PLoS ONE 10:e0121553CrossRefPubMedPubMedCentral
Metadata
Title
Pharmacogenetics in type 2 diabetes: precision medicine or discovery tool?
Author
Jose C. Florez
Publication date
01-05-2017
Publisher
Springer Berlin Heidelberg
Published in
Diabetologia / Issue 5/2017
Print ISSN: 0012-186X
Electronic ISSN: 1432-0428
DOI
https://doi.org/10.1007/s00125-017-4227-1

Other articles of this Issue 5/2017

Diabetologia 5/2017 Go to the issue