Skip to main content
Top
Published in: Diabetologia 1/2017

Open Access 01-01-2017 | Article

HDAC7 is overexpressed in human diabetic islets and impairs insulin secretion in rat islets and clonal beta cells

Authors: Mahboubeh Daneshpajooh, Karl Bacos, Madhusudhan Bysani, Annika Bagge, Emilia Ottosson Laakso, Petter Vikman, Lena Eliasson, Hindrik Mulder, Charlotte Ling

Published in: Diabetologia | Issue 1/2017

Login to get access

Abstract

Aims/hypothesis

Pancreatic beta cell dysfunction is a prerequisite for the development of type 2 diabetes. Histone deacetylases (HDACs) may affect pancreatic endocrine function and glucose homeostasis through alterations in gene regulation. Our aim was to investigate the role of HDAC7 in human and rat pancreatic islets and clonal INS-1 beta cells (INS-1 832/13).

Methods

To explore the role of HDAC7 in pancreatic islets and clonal beta cells, we used RNA sequencing, mitochondrial functional analyses, microarray techniques, and HDAC inhibitors MC1568 and trichostatin A.

Results

Using RNA sequencing, we found increased HDAC7 expression in human pancreatic islets from type 2 diabetic compared with non-diabetic donors. HDAC7 expression correlated negatively with insulin secretion in human islets. To mimic the situation in type 2 diabetic islets, we overexpressed Hdac7 in rat islets and clonal beta cells. In both, Hdac7 overexpression resulted in impaired glucose-stimulated insulin secretion. Furthermore, it reduced insulin content, mitochondrial respiration and cellular ATP levels in clonal beta cells. Overexpression of Hdac7 also led to changes in the genome-wide gene expression pattern, including increased expression of Tcf7l2 and decreased expression of gene sets regulating DNA replication and repair as well as nucleotide metabolism. In accordance, Hdac7 overexpression reduced the number of beta cells owing to enhanced apoptosis. Finally, we found that inhibiting HDAC7 activity with pharmacological inhibitors or small interfering RNA-mediated knockdown restored glucose-stimulated insulin secretion in beta cells that were overexpressing Hdac7.

Conclusions/interpretation

Taken together, these results indicate that increased HDAC7 levels caused beta cell dysfunction and may thereby contribute to defects seen in type 2 diabetic islets. Our study supports HDAC7 inhibitors as a therapeutic option for the treatment of type 2 diabetes.
Appendix
Available only for authorised users
Literature
1.
go back to reference Rosengren AH, Braun M, Mahdi T et al (2012) Reduced insulin exocytosis in human pancreatic β-cells with gene variants linked to type 2 diabetes. Diabetes 61:1726–1733CrossRefPubMedPubMedCentral Rosengren AH, Braun M, Mahdi T et al (2012) Reduced insulin exocytosis in human pancreatic β-cells with gene variants linked to type 2 diabetes. Diabetes 61:1726–1733CrossRefPubMedPubMedCentral
2.
go back to reference Groop L, Pociot F (2014) Genetics of diabetes-are we missing the genes or the disease? Mol Cell Endocrinol 382:726–739CrossRefPubMed Groop L, Pociot F (2014) Genetics of diabetes-are we missing the genes or the disease? Mol Cell Endocrinol 382:726–739CrossRefPubMed
3.
go back to reference Dayeh T, Volkov P, Salo S et al (2014) Genome-wide DNA methylation analysis of human pancreatic islets from type 2 diabetic and non-diabetic donors identifies candidate genes that influence insulin secretion. PLoS Genet 10:e1004160CrossRefPubMedPubMedCentral Dayeh T, Volkov P, Salo S et al (2014) Genome-wide DNA methylation analysis of human pancreatic islets from type 2 diabetic and non-diabetic donors identifies candidate genes that influence insulin secretion. PLoS Genet 10:e1004160CrossRefPubMedPubMedCentral
4.
go back to reference Ling C, Del Guerra S, Lupi R et al (2008) Epigenetic regulation of PPARGC1A in human type 2 diabetic islets and effect on insulin secretion. Diabetologia 51:615–622CrossRefPubMedPubMedCentral Ling C, Del Guerra S, Lupi R et al (2008) Epigenetic regulation of PPARGC1A in human type 2 diabetic islets and effect on insulin secretion. Diabetologia 51:615–622CrossRefPubMedPubMedCentral
5.
go back to reference Nilsson E, Jansson PA, Perfilyev A et al (2014) Altered DNA methylation and differential expression of genes influencing metabolism and inflammation in adipose tissue from subjects with type 2 diabetes. Diabetes 63:2962–2976CrossRefPubMed Nilsson E, Jansson PA, Perfilyev A et al (2014) Altered DNA methylation and differential expression of genes influencing metabolism and inflammation in adipose tissue from subjects with type 2 diabetes. Diabetes 63:2962–2976CrossRefPubMed
6.
go back to reference Nilsson E, Matte A, Perfilyev A et al (2015) Epigenetic alterations in human liver from subjects with type 2 diabetes in parallel with reduced folate levels. J Clin Endocrinol Metab 100:E1491–E1501CrossRefPubMedPubMedCentral Nilsson E, Matte A, Perfilyev A et al (2015) Epigenetic alterations in human liver from subjects with type 2 diabetes in parallel with reduced folate levels. J Clin Endocrinol Metab 100:E1491–E1501CrossRefPubMedPubMedCentral
7.
go back to reference Yang BT, Dayeh TA, Kirkpatrick CL et al (2011) Insulin promoter DNA methylation correlates negatively with insulin gene expression and positively with HbA(1c) levels in human pancreatic islets. Diabetologia 54:360–367CrossRefPubMed Yang BT, Dayeh TA, Kirkpatrick CL et al (2011) Insulin promoter DNA methylation correlates negatively with insulin gene expression and positively with HbA(1c) levels in human pancreatic islets. Diabetologia 54:360–367CrossRefPubMed
8.
go back to reference Yang BT, Dayeh TA, Volkov PA et al (2012) Increased DNA methylation and decreased expression of PDX-1 in pancreatic islets from patients with type 2 diabetes. Mol Endocrinol 26:1203–1212CrossRefPubMed Yang BT, Dayeh TA, Volkov PA et al (2012) Increased DNA methylation and decreased expression of PDX-1 in pancreatic islets from patients with type 2 diabetes. Mol Endocrinol 26:1203–1212CrossRefPubMed
9.
go back to reference Lenoir O, Flosseau K, Ma FX et al (2011) Specific control of pancreatic endocrine β- and δ-cell mass by class IIa histone deacetylases HDAC4, HDAC5, and HDAC9. Diabetes 60:2861–2871CrossRefPubMedPubMedCentral Lenoir O, Flosseau K, Ma FX et al (2011) Specific control of pancreatic endocrine β- and δ-cell mass by class IIa histone deacetylases HDAC4, HDAC5, and HDAC9. Diabetes 60:2861–2871CrossRefPubMedPubMedCentral
10.
go back to reference Lundh M, Galbo T, Poulsen SS, Mandrup-Poulsen T (2015) Histone deacetylase 3 inhibition improves glycaemia and insulin secretion in obese diabetic rats. Diabetes Obes Metab 17:703–707CrossRefPubMed Lundh M, Galbo T, Poulsen SS, Mandrup-Poulsen T (2015) Histone deacetylase 3 inhibition improves glycaemia and insulin secretion in obese diabetic rats. Diabetes Obes Metab 17:703–707CrossRefPubMed
11.
go back to reference Mihaylova MM, Vasquez DS, Ravnskjaer K et al (2011) Class IIa histone deacetylases are hormone-activated regulators of FOXO and mammalian glucose homeostasis. Cell 145:607–621CrossRefPubMedPubMedCentral Mihaylova MM, Vasquez DS, Ravnskjaer K et al (2011) Class IIa histone deacetylases are hormone-activated regulators of FOXO and mammalian glucose homeostasis. Cell 145:607–621CrossRefPubMedPubMedCentral
12.
go back to reference Fadista J, Vikman P, Laakso EO et al (2014) Global genomic and transcriptomic analysis of human pancreatic islets reveals novel genes influencing glucose metabolism. Proc Natl Acad Sci U S A A111:13924–13929CrossRef Fadista J, Vikman P, Laakso EO et al (2014) Global genomic and transcriptomic analysis of human pancreatic islets reveals novel genes influencing glucose metabolism. Proc Natl Acad Sci U S A A111:13924–13929CrossRef
13.
go back to reference Eliasson L, Ma X, Renstrom E et al (2003) SUR1 regulates PKA-independent cAMP-induced granule priming in mouse pancreatic B-cells. J Gen Physiol 121:181–197CrossRefPubMedPubMedCentral Eliasson L, Ma X, Renstrom E et al (2003) SUR1 regulates PKA-independent cAMP-induced granule priming in mouse pancreatic B-cells. J Gen Physiol 121:181–197CrossRefPubMedPubMedCentral
14.
go back to reference National Research Council of the National Academies (2011) Guide for the Care and Use of Laboratory Animals. The National Academies Presss, Washington, DC National Research Council of the National Academies (2011) Guide for the Care and Use of Laboratory Animals. The National Academies Presss, Washington, DC
15.
go back to reference Hohmeier HE, Mulder H, Chen G, Henkel-Rieger R, Prentki M, Newgard CB (2000) Isolation of INS-1-derived cell lines with robust ATP-sensitive K+ channel-dependent and -independent glucose-stimulated insulin secretion. Diabetes 49:424–430CrossRefPubMed Hohmeier HE, Mulder H, Chen G, Henkel-Rieger R, Prentki M, Newgard CB (2000) Isolation of INS-1-derived cell lines with robust ATP-sensitive K+ channel-dependent and -independent glucose-stimulated insulin secretion. Diabetes 49:424–430CrossRefPubMed
16.
go back to reference Wang J, Gong B, Zhao W et al (2014) Epigenetic mechanisms linking diabetes and synaptic impairments. Diabetes 63:645–654CrossRefPubMed Wang J, Gong B, Zhao W et al (2014) Epigenetic mechanisms linking diabetes and synaptic impairments. Diabetes 63:645–654CrossRefPubMed
17.
go back to reference Tiernan AR, Champion JA, Sambanis A (2015) Trichostatin A affects the secretion pathways of beta and intestinal endocrine cells. Exp Cell Res 330:212–221CrossRefPubMed Tiernan AR, Champion JA, Sambanis A (2015) Trichostatin A affects the secretion pathways of beta and intestinal endocrine cells. Exp Cell Res 330:212–221CrossRefPubMed
18.
go back to reference Malmgren S, Spegel P, Danielsson AP et al (2013) Coordinate changes in histone modifications, mRNA levels, and metabolite profiles in clonal INS-1 832/13 β-cells accompany functional adaptations to lipotoxicity. J Biol Chem 288:11973–11987CrossRefPubMedPubMedCentral Malmgren S, Spegel P, Danielsson AP et al (2013) Coordinate changes in histone modifications, mRNA levels, and metabolite profiles in clonal INS-1 832/13 β-cells accompany functional adaptations to lipotoxicity. J Biol Chem 288:11973–11987CrossRefPubMedPubMedCentral
19.
go back to reference Mootha VK, Lindgren CM, Eriksson KF et al (2003) PGC-1α-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat Genet 34:267–273CrossRefPubMed Mootha VK, Lindgren CM, Eriksson KF et al (2003) PGC-1α-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat Genet 34:267–273CrossRefPubMed
20.
go back to reference Subramanian A, Tamayo P, Mootha VK et al (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A 102:15545–15550CrossRefPubMedPubMedCentral Subramanian A, Tamayo P, Mootha VK et al (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A 102:15545–15550CrossRefPubMedPubMedCentral
21.
go back to reference Lyssenko V, Lupi R, Marchetti P et al (2007) Mechanisms by which common variants in the TCF7L2 gene increase risk of type 2 diabetes. J Clin Investig 117:2155–2163CrossRefPubMedPubMedCentral Lyssenko V, Lupi R, Marchetti P et al (2007) Mechanisms by which common variants in the TCF7L2 gene increase risk of type 2 diabetes. J Clin Investig 117:2155–2163CrossRefPubMedPubMedCentral
22.
go back to reference Hoffmann K, Czapp M, Loscher W (2008) Increase in antiepileptic efficacy during prolonged treatment with valproic acid: role of inhibition of histone deacetylases? Epilepsy Res 81:107–113CrossRefPubMed Hoffmann K, Czapp M, Loscher W (2008) Increase in antiepileptic efficacy during prolonged treatment with valproic acid: role of inhibition of histone deacetylases? Epilepsy Res 81:107–113CrossRefPubMed
23.
go back to reference Waibel M, Christiansen AJ, Hibbs ML et al (2015) Manipulation of B-cell responses with histone deacetylase inhibitors. Nat Commun 6:6838CrossRefPubMed Waibel M, Christiansen AJ, Hibbs ML et al (2015) Manipulation of B-cell responses with histone deacetylase inhibitors. Nat Commun 6:6838CrossRefPubMed
24.
go back to reference Christensen DP, Gysemans C, Lundh M et al (2014) Lysine deacetylase inhibition prevents diabetes by chromatin-independent immunoregulation and β-cell protection. Proc Natl Acad Sci U S A 111:1055–1059CrossRefPubMedPubMedCentral Christensen DP, Gysemans C, Lundh M et al (2014) Lysine deacetylase inhibition prevents diabetes by chromatin-independent immunoregulation and β-cell protection. Proc Natl Acad Sci U S A 111:1055–1059CrossRefPubMedPubMedCentral
25.
go back to reference Lundh M, Christensen DP, Damgaard Nielsen M et al (2012) Histone deacetylases 1 and 3 but not 2 mediate cytokine-induced beta cell apoptosis in INS-1 cells and dispersed primary islets from rats and are differentially regulated in the islets of type 1 diabetic children. Diabetologia 55:2421–2431CrossRefPubMed Lundh M, Christensen DP, Damgaard Nielsen M et al (2012) Histone deacetylases 1 and 3 but not 2 mediate cytokine-induced beta cell apoptosis in INS-1 cells and dispersed primary islets from rats and are differentially regulated in the islets of type 1 diabetic children. Diabetologia 55:2421–2431CrossRefPubMed
26.
go back to reference Lundh M, Christensen DP, Rasmussen DN et al (2010) Lysine deacetylases are produced in pancreatic beta cells and are differentially regulated by proinflammatory cytokines. Diabetologia 53:2569–2578CrossRefPubMed Lundh M, Christensen DP, Rasmussen DN et al (2010) Lysine deacetylases are produced in pancreatic beta cells and are differentially regulated by proinflammatory cytokines. Diabetologia 53:2569–2578CrossRefPubMed
27.
go back to reference Koeck T, Olsson AH, Nitert MD et al (2011) A common variant in TFB1M is associated with reduced insulin secretion and increased future risk of type 2 diabetes. Cell Metab 13:80–91CrossRefPubMed Koeck T, Olsson AH, Nitert MD et al (2011) A common variant in TFB1M is associated with reduced insulin secretion and increased future risk of type 2 diabetes. Cell Metab 13:80–91CrossRefPubMed
28.
go back to reference Malmgren S, Nicholls DG, Taneera J et al (2009) Tight coupling between glucose and mitochondrial metabolism in clonal β-cells is required for robust insulin secretion. J Biol Chem 284:32395–32404CrossRefPubMedPubMedCentral Malmgren S, Nicholls DG, Taneera J et al (2009) Tight coupling between glucose and mitochondrial metabolism in clonal β-cells is required for robust insulin secretion. J Biol Chem 284:32395–32404CrossRefPubMedPubMedCentral
29.
go back to reference Olsson AH, Yang BT, Hall E et al (2011) Decreased expression of genes involved in oxidative phosphorylation in human pancreatic islets from patients with type 2 diabetes. Eur J Endocrinol 165:589–595CrossRefPubMedPubMedCentral Olsson AH, Yang BT, Hall E et al (2011) Decreased expression of genes involved in oxidative phosphorylation in human pancreatic islets from patients with type 2 diabetes. Eur J Endocrinol 165:589–595CrossRefPubMedPubMedCentral
30.
go back to reference Kato H, Tamamizu-Kato S, Shibasaki F (2004) Histone deacetylase 7 associates with hypoxia-inducible factor 1α and increases transcriptional activity. J Biol Chem 279:41966–41974CrossRefPubMed Kato H, Tamamizu-Kato S, Shibasaki F (2004) Histone deacetylase 7 associates with hypoxia-inducible factor 1α and increases transcriptional activity. J Biol Chem 279:41966–41974CrossRefPubMed
31.
go back to reference Semenza GL (2011) Hypoxia-inducible factor 1: regulator of mitochondrial metabolism and mediator of ischemic preconditioning. Biochim Biophys Acta 1813:1263–1268CrossRefPubMed Semenza GL (2011) Hypoxia-inducible factor 1: regulator of mitochondrial metabolism and mediator of ischemic preconditioning. Biochim Biophys Acta 1813:1263–1268CrossRefPubMed
32.
go back to reference Galmozzi A, Mitro N, Ferrari A et al (2013) Inhibition of class I histone deacetylases unveils a mitochondrial signature and enhances oxidative metabolism in skeletal muscle and adipose tissue. Diabetes 62:732–742CrossRefPubMedPubMedCentral Galmozzi A, Mitro N, Ferrari A et al (2013) Inhibition of class I histone deacetylases unveils a mitochondrial signature and enhances oxidative metabolism in skeletal muscle and adipose tissue. Diabetes 62:732–742CrossRefPubMedPubMedCentral
33.
go back to reference Barneda-Zahonero B, Collazo O, Azagra A et al (2015) The transcriptional repressor HDAC7 promotes apoptosis and c-Myc downregulation in particular types of leukemia and lymphoma. Cell Death Dis 6:e1635CrossRefPubMedPubMedCentral Barneda-Zahonero B, Collazo O, Azagra A et al (2015) The transcriptional repressor HDAC7 promotes apoptosis and c-Myc downregulation in particular types of leukemia and lymphoma. Cell Death Dis 6:e1635CrossRefPubMedPubMedCentral
35.
go back to reference Hall E, Volkov P, Dayeh T et al (2014) Effects of palmitate on genome-wide mRNA expression and DNA methylation patterns in human pancreatic islets. BMC Med 12:103CrossRefPubMedPubMedCentral Hall E, Volkov P, Dayeh T et al (2014) Effects of palmitate on genome-wide mRNA expression and DNA methylation patterns in human pancreatic islets. BMC Med 12:103CrossRefPubMedPubMedCentral
36.
go back to reference Olsson AH, Volkov P, Bacos K et al (2014) Genome-wide associations between genetic and epigenetic variation influence mRNA expression and insulin secretion in human pancreatic islets. PLoS Genet 10:e1004735CrossRefPubMedPubMedCentral Olsson AH, Volkov P, Bacos K et al (2014) Genome-wide associations between genetic and epigenetic variation influence mRNA expression and insulin secretion in human pancreatic islets. PLoS Genet 10:e1004735CrossRefPubMedPubMedCentral
37.
go back to reference Haumaitre C, Lenoir O, Scharfmann R (2009) Directing cell differentiation with small-molecule histone deacetylase inhibitors: the example of promoting pancreatic endocrine cells. Cell Cycle 8:536–544CrossRefPubMed Haumaitre C, Lenoir O, Scharfmann R (2009) Directing cell differentiation with small-molecule histone deacetylase inhibitors: the example of promoting pancreatic endocrine cells. Cell Cycle 8:536–544CrossRefPubMed
38.
go back to reference Dorrell C, Schug J, Lin CF et al (2011) Transcriptomes of the major human pancreatic cell types. Diabetologia 54:2832–2844CrossRefPubMed Dorrell C, Schug J, Lin CF et al (2011) Transcriptomes of the major human pancreatic cell types. Diabetologia 54:2832–2844CrossRefPubMed
Metadata
Title
HDAC7 is overexpressed in human diabetic islets and impairs insulin secretion in rat islets and clonal beta cells
Authors
Mahboubeh Daneshpajooh
Karl Bacos
Madhusudhan Bysani
Annika Bagge
Emilia Ottosson Laakso
Petter Vikman
Lena Eliasson
Hindrik Mulder
Charlotte Ling
Publication date
01-01-2017
Publisher
Springer Berlin Heidelberg
Published in
Diabetologia / Issue 1/2017
Print ISSN: 0012-186X
Electronic ISSN: 1432-0428
DOI
https://doi.org/10.1007/s00125-016-4113-2

Other articles of this Issue 1/2017

Diabetologia 1/2017 Go to the issue