Skip to main content
Top
Published in: Diabetologia 12/2016

01-12-2016 | Commentary

New approaches beyond genetics: towards precision medicine in diabetes

Author: Leif Groop

Published in: Diabetologia | Issue 12/2016

Login to get access

Excerpt

In his State of the Union address in January 2015, President Obama launched an initiative to support research on precision medicine for diseases such as cancer and diabetes in the hope that personal information would significantly improve the healthcare and quality of life of patients. The field of cancer is much more advanced when it comes to precision medicine, and the field of diabetes has clearly been lagging behind. There are several reasons for this. The current classification of diabetes into two main forms is imprecise and poor in predicting disease outcome. A refined diabetes classification could provide a powerful tool to facilitate the implementation of individualised care from diagnosis in the same way as a genetic diagnosis of monogenic forms of diabetes guides clinicians to the optimal treatment [1]. This will require a much more comprehensive view than the current praxis of diagnosing diabetes based simply on measuring glucose. Diabetes results from a collision between a genetic predisposition and an affluent environment, and we need a more systematic approach to learn how this interaction leads to the disease. This could be achieved by combining some of the approaches presented in the symposium entitled ‘New approaches beyond genetics’ at the 2015 EASD annual meeting. The presentations included information on variation in the genome (DNA) with variation in the expression of genes (RNA) and proteins in different tissues. In a related mini-review in this issue, Jerzy Adamski discusses how this is linked to a unique metabolite profile [2], while Bernd Mayer considers how it reflects the interaction between genome and environment [3]. The genetic information may not be stable, as epigenetic processes (DNA methylation, histone modifications, microRNAs, etc.) can induce reversible changes in the genome. Glucotoxicity is considered a central mechanism for deterioration of islet function and development of diabetic complications [4]. Furthermore, glucose is a strong trigger of histone modifications and, thereby, changes in gene expression, as exemplified by glucose-induced changes in the expression of the proinflammatory TXNIP gene in the kidney, which are mediated by histones [5]. Exploring glucotoxicity will require chromatin immunoprecipitation with massively parallel DNA sequencing (ChIP sequencing) of blood and tissues from hyperglycaemic individuals to identify the most glucose-sensitive genes and pathways. …
Literature
1.
4.
go back to reference Brownlee M (2005) The pathobiology of diabetic complications: a unifying mechanism. Diabetes 54:1615–1625CrossRefPubMed Brownlee M (2005) The pathobiology of diabetic complications: a unifying mechanism. Diabetes 54:1615–1625CrossRefPubMed
5.
go back to reference De Marinis Y, Cai M, Bompada P et al (2016) Epigenetic regulation of the thioredoxin-interacting protein (TXNIP) gene by hyperglycemia in kidney. Kidney Int 89:342–353CrossRefPubMed De Marinis Y, Cai M, Bompada P et al (2016) Epigenetic regulation of the thioredoxin-interacting protein (TXNIP) gene by hyperglycemia in kidney. Kidney Int 89:342–353CrossRefPubMed
6.
go back to reference Nica AC, Montgomery SB, Dimas AS et al (2010) Candidate causal regulatory effects by integration of expression QTLs with complex trait genetic associations. Plos Genet:e1000895 Nica AC, Montgomery SB, Dimas AS et al (2010) Candidate causal regulatory effects by integration of expression QTLs with complex trait genetic associations. Plos Genet:e1000895
7.
go back to reference Taneera J, Lang S, Sharma A et al (2012) A systems genetics approach identifies novel genes and pathways for type 2 diabetes in human islets. Cell Metab 16:122–134CrossRefPubMed Taneera J, Lang S, Sharma A et al (2012) A systems genetics approach identifies novel genes and pathways for type 2 diabetes in human islets. Cell Metab 16:122–134CrossRefPubMed
8.
go back to reference Fadista J, Vikman P, Ottosson Laakso E et al (2014) Global genomic and transcriptomic analysis of human pancreatic islets reveals novel genes influencing glucose metabolism. Proc Natl Acad Sci U S A 111:13924–13929 Fadista J, Vikman P, Ottosson Laakso E et al (2014) Global genomic and transcriptomic analysis of human pancreatic islets reveals novel genes influencing glucose metabolism. Proc Natl Acad Sci U S A 111:13924–13929
9.
go back to reference Travers ME, Mackay DJG, Dekker Nitert M et al (2013) Insights into the molecular mechanism for type 2 diabetes susceptibility at the KCNQ1 locus from temporal changes in imprinting status in human islets. Diabetes 62:987–992CrossRefPubMedPubMedCentral Travers ME, Mackay DJG, Dekker Nitert M et al (2013) Insights into the molecular mechanism for type 2 diabetes susceptibility at the KCNQ1 locus from temporal changes in imprinting status in human islets. Diabetes 62:987–992CrossRefPubMedPubMedCentral
10.
go back to reference Prokopenko I, Poon W, Mägi R et al (2014) A central role for GRB10 in regulation of islet function in man. Plos Genet 10:3e004235CrossRef Prokopenko I, Poon W, Mägi R et al (2014) A central role for GRB10 in regulation of islet function in man. Plos Genet 10:3e004235CrossRef
Metadata
Title
New approaches beyond genetics: towards precision medicine in diabetes
Author
Leif Groop
Publication date
01-12-2016
Publisher
Springer Berlin Heidelberg
Published in
Diabetologia / Issue 12/2016
Print ISSN: 0012-186X
Electronic ISSN: 1432-0428
DOI
https://doi.org/10.1007/s00125-016-4014-4

Other articles of this Issue 12/2016

Diabetologia 12/2016 Go to the issue