Skip to main content
Top
Published in: Diabetologia 12/2016

01-12-2016 | Article

The suppression of hepatic glucose production improves metabolism and insulin sensitivity in subcutaneous adipose tissue in mice

Authors: Sylvie Casteras, Aya Abdul-Wahed, Maud Soty, Fanny Vulin, Hervé Guillou, Mélanie Campana, Hervé Le Stunff, Luciano Pirola, Fabienne Rajas, Gilles Mithieux, Amandine Gautier-Stein

Published in: Diabetologia | Issue 12/2016

Login to get access

Abstract

Aims/hypothesis

Despite the strong correlation between non-alcoholic fatty liver disease and insulin resistance, hepatic steatosis is associated with greater whole-body insulin sensitivity in several models. We previously reported that the inhibition of hepatic glucose production (HGP) protects against the development of obesity and diabetes despite severe steatosis, thanks to the secretion of specific hepatokines such as fibroblast growth factor 21 (FGF21) and angiopoietin-related growth factor. In this work, we focused on adipose tissue to assess whether liver metabolic fluxes might, by interorgan communication, control insulin signalling in lean animals.

Methods

Insulin signalling was studied in the adipose tissue of mice lacking the catalytic subunit of glucose 6-phosphatase, the key enzyme in endogenous glucose production, in the liver (L-G6pc /− mice). Morphological and metabolic changes in the adipose tissues were characterised by histological analyses, gene expression and protein content.

Results

Mice lacking HGP exhibited improved insulin sensitivity of the phosphoinositide 3-kinase/Akt pathway in the subcutaneous adipose tissue associated with a browning of adipocytes. The suppression of HGP increased FGF21 levels in lean animals, and increased FGF21 was responsible for the metabolic changes in the subcutaneous adipose tissue but not for its greater insulin sensitivity. The latter might be linked to an increase in the ratio of monounsaturated to saturated fatty acids released by the liver.

Conclusions

Our work provides evidence that HGP controls subcutaneous adipose tissue browning and insulin sensitivity through two pathways: the release of beneficial hepatokines and changes in hepatic fatty acids profile.
Appendix
Available only for authorised users
Literature
2.
go back to reference Peyrou M, Bourgoin L, Poher A-L et al (2015) Hepatic PTEN deficiency improves muscle insulin sensitivity and decreases adiposity in mice. J Hepatol 62:421–429CrossRefPubMed Peyrou M, Bourgoin L, Poher A-L et al (2015) Hepatic PTEN deficiency improves muscle insulin sensitivity and decreases adiposity in mice. J Hepatol 62:421–429CrossRefPubMed
3.
go back to reference Benhamed F, Denechaud PD, Lemoine M et al (2012) The lipogenic transcription factor ChREBP dissociates hepatic steatosis from insulin resistance in mice and humans. J Clin Invest 122:2176–2194CrossRefPubMedPubMedCentral Benhamed F, Denechaud PD, Lemoine M et al (2012) The lipogenic transcription factor ChREBP dissociates hepatic steatosis from insulin resistance in mice and humans. J Clin Invest 122:2176–2194CrossRefPubMedPubMedCentral
4.
5.
go back to reference Monetti M, Levin MC, Watt MJ et al (2007) Dissociation of hepatic steatosis and insulin resistance in mice overexpressing DGAT in the liver. Cell Metab 6:69–78CrossRefPubMed Monetti M, Levin MC, Watt MJ et al (2007) Dissociation of hepatic steatosis and insulin resistance in mice overexpressing DGAT in the liver. Cell Metab 6:69–78CrossRefPubMed
6.
7.
go back to reference Abdul-Wahed A, Gautier-Stein A, Casteras S et al (2014) A link between hepatic glucose production and peripheral energy metabolism via hepatokines. Mol Metab 3:531–543CrossRefPubMedPubMedCentral Abdul-Wahed A, Gautier-Stein A, Casteras S et al (2014) A link between hepatic glucose production and peripheral energy metabolism via hepatokines. Mol Metab 3:531–543CrossRefPubMedPubMedCentral
8.
go back to reference Mutel E, Abdul-Wahed A, Ramamonjisoa N et al (2011) Targeted deletion of liver glucose-6 phosphatase mimics glycogen storage disease type 1a including development of multiple adenomas. J Hepatol 54:529–537CrossRefPubMed Mutel E, Abdul-Wahed A, Ramamonjisoa N et al (2011) Targeted deletion of liver glucose-6 phosphatase mimics glycogen storage disease type 1a including development of multiple adenomas. J Hepatol 54:529–537CrossRefPubMed
9.
go back to reference Penhoat A, Mutel E, Amigo-Correig M et al (2011) Protein-induced satiety is abolished in the absence of intestinal gluconeogenesis. Physiol Behav 105:89–93CrossRefPubMed Penhoat A, Mutel E, Amigo-Correig M et al (2011) Protein-induced satiety is abolished in the absence of intestinal gluconeogenesis. Physiol Behav 105:89–93CrossRefPubMed
10.
go back to reference Rajas F, Jourdan-Pineau H, Stefanutti A et al (2007) Immunocytochemical localization of glucose 6-phosphatase and cytosolic phosphoenolpyruvate carboxykinase in gluconeogenic tissues reveals unsuspected metabolic zonation. Histochem Cell Biol 127:555–565CrossRefPubMed Rajas F, Jourdan-Pineau H, Stefanutti A et al (2007) Immunocytochemical localization of glucose 6-phosphatase and cytosolic phosphoenolpyruvate carboxykinase in gluconeogenic tissues reveals unsuspected metabolic zonation. Histochem Cell Biol 127:555–565CrossRefPubMed
12.
go back to reference Gautier-Stein A, Domon-Dell C, Calon A et al (2003) Differential regulation of the glucose-6-phosphatase TATA box by intestine-specific homeodomain proteins CDX1 and CDX2. Nucleic Acids Res 31:5238–5246CrossRefPubMedPubMedCentral Gautier-Stein A, Domon-Dell C, Calon A et al (2003) Differential regulation of the glucose-6-phosphatase TATA box by intestine-specific homeodomain proteins CDX1 and CDX2. Nucleic Acids Res 31:5238–5246CrossRefPubMedPubMedCentral
13.
go back to reference Blouin CM, Prado C, Takane KK et al (2010) Plasma membrane subdomain compartmentalization contributes to distinct mechanisms of ceramide action on insulin signaling. Diabetes 59:600–610CrossRefPubMed Blouin CM, Prado C, Takane KK et al (2010) Plasma membrane subdomain compartmentalization contributes to distinct mechanisms of ceramide action on insulin signaling. Diabetes 59:600–610CrossRefPubMed
14.
go back to reference Mutel E, Gautier-Stein A, Abdul-Wahed A et al (2011) Control of blood glucose in the absence of hepatic glucose production during prolonged fasting in mice: induction of renal and intestinal gluconeogenesis by glucagon. Diabetes 60:3121–3131CrossRefPubMedPubMedCentral Mutel E, Gautier-Stein A, Abdul-Wahed A et al (2011) Control of blood glucose in the absence of hepatic glucose production during prolonged fasting in mice: induction of renal and intestinal gluconeogenesis by glucagon. Diabetes 60:3121–3131CrossRefPubMedPubMedCentral
15.
go back to reference Zadravec D, Brolinson A, Fisher RM et al (2010) Ablation of the very-long-chain fatty acid elongase ELOVL3 in mice leads to constrained lipid storage and resistance to diet-induced obesity. Faseb J 24:4366–4377CrossRefPubMed Zadravec D, Brolinson A, Fisher RM et al (2010) Ablation of the very-long-chain fatty acid elongase ELOVL3 in mice leads to constrained lipid storage and resistance to diet-induced obesity. Faseb J 24:4366–4377CrossRefPubMed
17.
go back to reference Fisher FM, Kleiner S, Douris N et al (2012) FGF21 regulates PGC-1alpha and browning of white adipose tissues in adaptive thermogenesis. Genes Dev 26:271–281CrossRefPubMedPubMedCentral Fisher FM, Kleiner S, Douris N et al (2012) FGF21 regulates PGC-1alpha and browning of white adipose tissues in adaptive thermogenesis. Genes Dev 26:271–281CrossRefPubMedPubMedCentral
18.
go back to reference Dutchak PA, Katafuchi T, Bookout AL et al (2012) Fibroblast growth factor-21 regulates PPARgamma activity and the antidiabetic actions of thiazolidinediones. Cell 148:556–567CrossRefPubMedPubMedCentral Dutchak PA, Katafuchi T, Bookout AL et al (2012) Fibroblast growth factor-21 regulates PPARgamma activity and the antidiabetic actions of thiazolidinediones. Cell 148:556–567CrossRefPubMedPubMedCentral
19.
go back to reference Chavez JA, Summers SA (2003) Characterizing the effects of saturated fatty acids on insulin signaling and ceramide and diacylglycerol accumulation in 3T3-L1 adipocytes and C2C12 myotubes. Arch Biochem Biophys 419:101–109CrossRefPubMed Chavez JA, Summers SA (2003) Characterizing the effects of saturated fatty acids on insulin signaling and ceramide and diacylglycerol accumulation in 3T3-L1 adipocytes and C2C12 myotubes. Arch Biochem Biophys 419:101–109CrossRefPubMed
20.
go back to reference Potthoff MJ, Inagaki T, Satapati S et al (2009) FGF21 induces PGC-1alpha and regulates carbohydrate and fatty acid metabolism during the adaptive starvation response. Proc Natl Acad Sci U S A 106:10853–10858CrossRefPubMedPubMedCentral Potthoff MJ, Inagaki T, Satapati S et al (2009) FGF21 induces PGC-1alpha and regulates carbohydrate and fatty acid metabolism during the adaptive starvation response. Proc Natl Acad Sci U S A 106:10853–10858CrossRefPubMedPubMedCentral
21.
go back to reference Mithieux G, Andreelli F, Magnan C (2009) Intestinal gluconeogenesis: key signal of central control of energy and glucose homeostasis. Curr Opin Clin Nutr Metab Care 12:419–423CrossRefPubMed Mithieux G, Andreelli F, Magnan C (2009) Intestinal gluconeogenesis: key signal of central control of energy and glucose homeostasis. Curr Opin Clin Nutr Metab Care 12:419–423CrossRefPubMed
22.
go back to reference Ramamonjisoa N, Ratiney H, Mutel E et al (2013) In vivo hepatic lipid quantification using MRS at 7 Tesla in a mouse model of glycogen storage disease type 1a. J Lipid Res 54:2010–2122CrossRefPubMedPubMedCentral Ramamonjisoa N, Ratiney H, Mutel E et al (2013) In vivo hepatic lipid quantification using MRS at 7 Tesla in a mouse model of glycogen storage disease type 1a. J Lipid Res 54:2010–2122CrossRefPubMedPubMedCentral
23.
go back to reference Guo W, Wong S, Xie W et al (2007) Palmitate modulates intracellular signaling, induces endoplasmic reticulum stress, and causes apoptosis in mouse 3T3-L1 and rat primary preadipocytes. Am J Physiol Endocrinol Metab 293:E576–E586CrossRefPubMed Guo W, Wong S, Xie W et al (2007) Palmitate modulates intracellular signaling, induces endoplasmic reticulum stress, and causes apoptosis in mouse 3T3-L1 and rat primary preadipocytes. Am J Physiol Endocrinol Metab 293:E576–E586CrossRefPubMed
24.
go back to reference Stiles B, Wang Y, Stahl A et al (2004) Liver-specific deletion of negative regulator Pten results in fatty liver and insulin hypersensitivity [corrected]. Proc Natl Acad Sci U S A 101:2082–2087CrossRefPubMedPubMedCentral Stiles B, Wang Y, Stahl A et al (2004) Liver-specific deletion of negative regulator Pten results in fatty liver and insulin hypersensitivity [corrected]. Proc Natl Acad Sci U S A 101:2082–2087CrossRefPubMedPubMedCentral
25.
go back to reference Uno K, Katagiri H, Yamada T et al (2006) Neuronal pathway from the liver modulates energy expenditure and systemic insulin sensitivity. Science 312:1656–1659CrossRefPubMed Uno K, Katagiri H, Yamada T et al (2006) Neuronal pathway from the liver modulates energy expenditure and systemic insulin sensitivity. Science 312:1656–1659CrossRefPubMed
26.
go back to reference Kim JY, van de Wall E, Laplante M et al (2007) Obesity-associated improvements in metabolic profile through expansion of adipose tissue. J Clin Invest 117:2621–2637CrossRefPubMedPubMedCentral Kim JY, van de Wall E, Laplante M et al (2007) Obesity-associated improvements in metabolic profile through expansion of adipose tissue. J Clin Invest 117:2621–2637CrossRefPubMedPubMedCentral
27.
go back to reference Kusminski CM, Holland WL, Sun K et al (2012) MitoNEET-driven alterations in adipocyte mitochondrial activity reveal a crucial adaptive process that preserves insulin sensitivity in obesity. Nat Med 18:1539–1549CrossRefPubMedPubMedCentral Kusminski CM, Holland WL, Sun K et al (2012) MitoNEET-driven alterations in adipocyte mitochondrial activity reveal a crucial adaptive process that preserves insulin sensitivity in obesity. Nat Med 18:1539–1549CrossRefPubMedPubMedCentral
28.
go back to reference Cousin B, Cinti S, Morroni M et al (1992) Occurrence of brown adipocytes in rat white adipose tissue: molecular and morphological characterization. J Cell Sci 103(Pt 4):931–942PubMed Cousin B, Cinti S, Morroni M et al (1992) Occurrence of brown adipocytes in rat white adipose tissue: molecular and morphological characterization. J Cell Sci 103(Pt 4):931–942PubMed
29.
go back to reference Cao L, Choi EY, Liu X et al (2011) White to brown fat phenotypic switch induced by genetic and environmental activation of a hypothalamic-adipocyte axis. Cell Metab 14:324–338CrossRefPubMedPubMedCentral Cao L, Choi EY, Liu X et al (2011) White to brown fat phenotypic switch induced by genetic and environmental activation of a hypothalamic-adipocyte axis. Cell Metab 14:324–338CrossRefPubMedPubMedCentral
30.
go back to reference Ohno H, Shinoda K, Spiegelman BM, Kajimura S (2012) PPARgamma agonists induce a white-to-brown fat conversion through stabilization of PRDM16 protein. Cell Metab 15:395–404CrossRefPubMedPubMedCentral Ohno H, Shinoda K, Spiegelman BM, Kajimura S (2012) PPARgamma agonists induce a white-to-brown fat conversion through stabilization of PRDM16 protein. Cell Metab 15:395–404CrossRefPubMedPubMedCentral
31.
go back to reference Bostrom P, Wu J, Jedrychowski MP et al (2011) A PGC1-alpha-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature 481:463–468CrossRef Bostrom P, Wu J, Jedrychowski MP et al (2011) A PGC1-alpha-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature 481:463–468CrossRef
32.
go back to reference Bordicchia M, Liu D, Amri EZ et al (2012) Cardiac natriuretic peptides act via p38 MAPK to induce the brown fat thermogenic program in mouse and human adipocytes. J Clin Invest 122:1022–1036CrossRefPubMedPubMedCentral Bordicchia M, Liu D, Amri EZ et al (2012) Cardiac natriuretic peptides act via p38 MAPK to induce the brown fat thermogenic program in mouse and human adipocytes. J Clin Invest 122:1022–1036CrossRefPubMedPubMedCentral
33.
go back to reference Wang QA, Tao C, Gupta RK, Scherer PE (2013) Tracking adipogenesis during white adipose tissue development, expansion and regeneration. Nat Med 19:1338–1344CrossRefPubMedPubMedCentral Wang QA, Tao C, Gupta RK, Scherer PE (2013) Tracking adipogenesis during white adipose tissue development, expansion and regeneration. Nat Med 19:1338–1344CrossRefPubMedPubMedCentral
34.
go back to reference Dempersmier J, Sambeat A, Gulyaeva O et al (2015) Cold-inducible Zfp516 activates UCP1 transcription to promote browning of white fat and development of brown fat. Mol Cell 57:235–246CrossRefPubMedPubMedCentral Dempersmier J, Sambeat A, Gulyaeva O et al (2015) Cold-inducible Zfp516 activates UCP1 transcription to promote browning of white fat and development of brown fat. Mol Cell 57:235–246CrossRefPubMedPubMedCentral
35.
go back to reference McDonald ME, Li C, Bian H et al (2015) Myocardin-related transcription factor a regulates conversion of progenitors to beige adipocytes. Cell 160:105–118CrossRefPubMedPubMedCentral McDonald ME, Li C, Bian H et al (2015) Myocardin-related transcription factor a regulates conversion of progenitors to beige adipocytes. Cell 160:105–118CrossRefPubMedPubMedCentral
36.
go back to reference Cohen P, Levy JD, Zhang Y et al (2014) Ablation of PRDM16 and beige adipose causes metabolic dysfunction and a subcutaneous to visceral fat switch. Cell 156:304–316CrossRefPubMedPubMedCentral Cohen P, Levy JD, Zhang Y et al (2014) Ablation of PRDM16 and beige adipose causes metabolic dysfunction and a subcutaneous to visceral fat switch. Cell 156:304–316CrossRefPubMedPubMedCentral
37.
go back to reference She P, Burgess SC, Shiota M et al (2003) Mechanisms by which liver-specific PEPCK knockout mice preserve euglycemia during starvation. Diabetes 52:1649–1654CrossRefPubMed She P, Burgess SC, Shiota M et al (2003) Mechanisms by which liver-specific PEPCK knockout mice preserve euglycemia during starvation. Diabetes 52:1649–1654CrossRefPubMed
38.
go back to reference Kurlawalla-Martinez C, Stiles B, Wang Y et al (2005) Insulin hypersensitivity and resistance to streptozotocin-induced diabetes in mice lacking PTEN in adipose tissue. Mol Cell Biol 25:2498–2510CrossRefPubMedPubMedCentral Kurlawalla-Martinez C, Stiles B, Wang Y et al (2005) Insulin hypersensitivity and resistance to streptozotocin-induced diabetes in mice lacking PTEN in adipose tissue. Mol Cell Biol 25:2498–2510CrossRefPubMedPubMedCentral
39.
go back to reference Kumar A, Lawrence JC Jr, Jung DY et al (2010) Fat cell-specific ablation of rictor in mice impairs insulin-regulated fat cell and whole-body glucose and lipid metabolism. Diabetes 59:1397–1406CrossRefPubMedPubMedCentral Kumar A, Lawrence JC Jr, Jung DY et al (2010) Fat cell-specific ablation of rictor in mice impairs insulin-regulated fat cell and whole-body glucose and lipid metabolism. Diabetes 59:1397–1406CrossRefPubMedPubMedCentral
40.
go back to reference Shepherd PR, Kahn BB (1999) Glucose transporters and insulin action--implications for insulin resistance and diabetes mellitus. N Engl J Med 341:248–257CrossRefPubMed Shepherd PR, Kahn BB (1999) Glucose transporters and insulin action--implications for insulin resistance and diabetes mellitus. N Engl J Med 341:248–257CrossRefPubMed
41.
go back to reference Yore MM, Syed I, Moraes-Vieira PM et al (2014) Discovery of a class of endogenous mammalian lipids with anti-diabetic and anti-inflammatory effects. Cell 159:318–332CrossRefPubMedPubMedCentral Yore MM, Syed I, Moraes-Vieira PM et al (2014) Discovery of a class of endogenous mammalian lipids with anti-diabetic and anti-inflammatory effects. Cell 159:318–332CrossRefPubMedPubMedCentral
42.
go back to reference Lee DV, Li D, Yan Q et al (2014) Fibroblast growth factor 21 improves insulin sensitivity and synergizes with insulin in human adipose stem cell-derived (hASC) adipocytes. PLoS One 9:e111767CrossRefPubMedPubMedCentral Lee DV, Li D, Yan Q et al (2014) Fibroblast growth factor 21 improves insulin sensitivity and synergizes with insulin in human adipose stem cell-derived (hASC) adipocytes. PLoS One 9:e111767CrossRefPubMedPubMedCentral
43.
go back to reference Riserus U, Willett WC, Hu FB (2009) Dietary fats and prevention of type 2 diabetes. Prog Lipid Res 48:44–51CrossRefPubMed Riserus U, Willett WC, Hu FB (2009) Dietary fats and prevention of type 2 diabetes. Prog Lipid Res 48:44–51CrossRefPubMed
44.
go back to reference Rhee EP, Cheng S, Larson MG et al (2011) Lipid profiling identifies a triacylglycerol signature of insulin resistance and improves diabetes prediction in humans. J Clin Invest 121:1402–1411CrossRefPubMedPubMedCentral Rhee EP, Cheng S, Larson MG et al (2011) Lipid profiling identifies a triacylglycerol signature of insulin resistance and improves diabetes prediction in humans. J Clin Invest 121:1402–1411CrossRefPubMedPubMedCentral
45.
go back to reference Burhans MS, Flowers MT, Harrington KR et al (2015) Hepatic oleate regulates adipose tissue lipogenesis and fatty acid oxidation. J Lipid Res 56:304–318CrossRefPubMedPubMedCentral Burhans MS, Flowers MT, Harrington KR et al (2015) Hepatic oleate regulates adipose tissue lipogenesis and fatty acid oxidation. J Lipid Res 56:304–318CrossRefPubMedPubMedCentral
46.
go back to reference Muir K, Hazim A, He Y et al (2013) Proteomic and lipidomic signatures of lipid metabolism in NASH-associated hepatocellular carcinoma. Cancer Res 73:4722–4731CrossRefPubMed Muir K, Hazim A, He Y et al (2013) Proteomic and lipidomic signatures of lipid metabolism in NASH-associated hepatocellular carcinoma. Cancer Res 73:4722–4731CrossRefPubMed
47.
go back to reference Summers SA (2011) Sphingolipids and insulin resistance: the five Ws. Curr Opin Lipidol 21:128–135CrossRef Summers SA (2011) Sphingolipids and insulin resistance: the five Ws. Curr Opin Lipidol 21:128–135CrossRef
48.
go back to reference Cao H, Gerhold K, Mayers JR et al (2008) Identification of a lipokine, a lipid hormone linking adipose tissue to systemic metabolism. Cell 134:933–944CrossRefPubMedPubMedCentral Cao H, Gerhold K, Mayers JR et al (2008) Identification of a lipokine, a lipid hormone linking adipose tissue to systemic metabolism. Cell 134:933–944CrossRefPubMedPubMedCentral
49.
go back to reference Perry RJ, Camporez J-PG, Kursawe R et al (2015) Hepatic acetyl CoA links adipose tissue inflammation to hepatic insulin resistance and type 2 diabetes. Cell 160:745–758CrossRefPubMedPubMedCentral Perry RJ, Camporez J-PG, Kursawe R et al (2015) Hepatic acetyl CoA links adipose tissue inflammation to hepatic insulin resistance and type 2 diabetes. Cell 160:745–758CrossRefPubMedPubMedCentral
50.
go back to reference Consoli A, Nurjhan N, Capani F, Gerich J (1989) Predominant role of gluconeogenesis in increased hepatic glucose production in NIDDM. Diabetes 38:550–557CrossRefPubMed Consoli A, Nurjhan N, Capani F, Gerich J (1989) Predominant role of gluconeogenesis in increased hepatic glucose production in NIDDM. Diabetes 38:550–557CrossRefPubMed
Metadata
Title
The suppression of hepatic glucose production improves metabolism and insulin sensitivity in subcutaneous adipose tissue in mice
Authors
Sylvie Casteras
Aya Abdul-Wahed
Maud Soty
Fanny Vulin
Hervé Guillou
Mélanie Campana
Hervé Le Stunff
Luciano Pirola
Fabienne Rajas
Gilles Mithieux
Amandine Gautier-Stein
Publication date
01-12-2016
Publisher
Springer Berlin Heidelberg
Published in
Diabetologia / Issue 12/2016
Print ISSN: 0012-186X
Electronic ISSN: 1432-0428
DOI
https://doi.org/10.1007/s00125-016-4097-y

Other articles of this Issue 12/2016

Diabetologia 12/2016 Go to the issue
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.