Skip to main content
Top
Published in: Diabetologia 9/2016

Open Access 01-09-2016 | Article

Extravascular modified lipoproteins: a role in the propagation of diabetic retinopathy in a mouse model of type 1 diabetes

Authors: Jeremy Y. Yu, Mei Du, Michael H. Elliott, Mingyuan Wu, Dongxu Fu, Shihe Yang, Arpita Basu, Xiaowu Gu, Jian-Xing Ma, Christopher E. Aston, Timothy J. Lyons

Published in: Diabetologia | Issue 9/2016

Login to get access

Abstract

Aims/hypothesis

We aimed to determine whether plasma lipoproteins, after leakage into the retina and modification by glycation and oxidation, contribute to the development of diabetic retinopathy in a mouse model of type 1 diabetes.

Methods

To simulate permeation of plasma lipoproteins into retinal tissues, streptozotocin-induced mouse models of diabetes and non-diabetic mice were challenged with intravitreal injection of human ‘highly-oxidised glycated’ low-density lipoprotein (HOG-LDL), native- (N-) LDL, or the vehicle PBS. Retinal histology, electroretinography (ERG) and biochemical markers were assessed over the subsequent 14 days.

Results

Intravitreal administration of N-LDL and PBS had no effect on retinal structure or function in either diabetic or non-diabetic animals. In non-diabetic mice, HOG-LDL elicited a transient inflammatory response without altering retinal function, but in diabetic mice it caused severe, progressive retinal injury, with abnormal morphology, ERG changes, vascular leakage, vascular endothelial growth factor overexpression, gliosis, endoplasmic reticulum stress, and propensity to apoptosis.

Conclusions/interpretation

Diabetes confers susceptibility to retinal injury imposed by intravitreal injection of modified LDL. The data add to the existing evidence that extravasated, modified plasma lipoproteins contribute to the propagation of diabetic retinopathy. Intravitreal delivery of HOG-LDL simulates a stress known to be present, in addition to hyperglycaemia, in human diabetic retinopathy once blood-retinal barriers are compromised.
Appendix
Available only for authorised users
Literature
1.
2.
go back to reference Fioretto P, Dodson PM, Ziegler D, Rosenson RS (2010) Residual microvascular risk in diabetes: unmet needs and future directions. Nat Rev Endocrinol 6:19–25CrossRefPubMed Fioretto P, Dodson PM, Ziegler D, Rosenson RS (2010) Residual microvascular risk in diabetes: unmet needs and future directions. Nat Rev Endocrinol 6:19–25CrossRefPubMed
3.
4.
go back to reference Jenkins AJ, Rowley KG, Lyons TJ, Best JD, Hill MA, Klein RL (2004) Lipoproteins and diabetic microvascular complications. Curr Pharm Des 10:3395–3418CrossRefPubMed Jenkins AJ, Rowley KG, Lyons TJ, Best JD, Hill MA, Klein RL (2004) Lipoproteins and diabetic microvascular complications. Curr Pharm Des 10:3395–3418CrossRefPubMed
5.
go back to reference Yu JY, Lyons TJ (2013) Modified lipoproteins in diabetic retinopathy: a local action in the retina. J Clin Exp Ophthalmol 4:314PubMedPubMedCentral Yu JY, Lyons TJ (2013) Modified lipoproteins in diabetic retinopathy: a local action in the retina. J Clin Exp Ophthalmol 4:314PubMedPubMedCentral
6.
go back to reference Lloyd CE, Klein R, Maser RE, Kuller LH, Becker DJ, Orchard TJ (1995) The progression of retinopathy over 2 years: the Pittsburgh Epidemiology of Diabetes Complications (EDC) Study. J Diabet Complications 9:140–148CrossRef Lloyd CE, Klein R, Maser RE, Kuller LH, Becker DJ, Orchard TJ (1995) The progression of retinopathy over 2 years: the Pittsburgh Epidemiology of Diabetes Complications (EDC) Study. J Diabet Complications 9:140–148CrossRef
7.
go back to reference Chew EY, Klein ML, Ferris FL 3rd et al (1996) Association of elevated serum lipid levels with retinal hard exudate in diabetic retinopathy. Early Treatment Diabetic Retinopathy Study (ETDRS) Report 22. Arch Ophthalmol 114:1079–1084CrossRefPubMed Chew EY, Klein ML, Ferris FL 3rd et al (1996) Association of elevated serum lipid levels with retinal hard exudate in diabetic retinopathy. Early Treatment Diabetic Retinopathy Study (ETDRS) Report 22. Arch Ophthalmol 114:1079–1084CrossRefPubMed
8.
go back to reference van Leiden HA, Dekker JM, Moll AC et al (2002) Blood pressure, lipids, and obesity are associated with retinopathy: the hoorn study. Diabetes Care 25:1320–1325CrossRefPubMed van Leiden HA, Dekker JM, Moll AC et al (2002) Blood pressure, lipids, and obesity are associated with retinopathy: the hoorn study. Diabetes Care 25:1320–1325CrossRefPubMed
9.
go back to reference Klein R, Sharrett AR, Klein BEK et al (2002) The association of atherosclerosis, vascular risk factors, and retinopathy in adults with diabetes : the atherosclerosis risk in communities study. Ophthalmology 109:1225–1234CrossRefPubMed Klein R, Sharrett AR, Klein BEK et al (2002) The association of atherosclerosis, vascular risk factors, and retinopathy in adults with diabetes : the atherosclerosis risk in communities study. Ophthalmology 109:1225–1234CrossRefPubMed
10.
go back to reference Lyons TJ, Jenkins AJ, Zheng D et al (2004) Diabetic retinopathy and serum lipoprotein subclasses in the DCCT/EDIC cohort. Invest Ophthalmol Vis Sci 45:910–918CrossRefPubMed Lyons TJ, Jenkins AJ, Zheng D et al (2004) Diabetic retinopathy and serum lipoprotein subclasses in the DCCT/EDIC cohort. Invest Ophthalmol Vis Sci 45:910–918CrossRefPubMed
11.
go back to reference Fredrikson GN, Anand DV, Hopkins D et al (2009) Associations between autoantibodies against apolipoprotein B-100 peptides and vascular complications in patients with type 2 diabetes. Diabetologia 52:1426–1433CrossRefPubMedPubMedCentral Fredrikson GN, Anand DV, Hopkins D et al (2009) Associations between autoantibodies against apolipoprotein B-100 peptides and vascular complications in patients with type 2 diabetes. Diabetologia 52:1426–1433CrossRefPubMedPubMedCentral
12.
go back to reference Sasongko MB, Wong TY, Nguyen TT et al (2011) Serum apolipoprotein AI and B are stronger biomarkers of diabetic retinopathy than traditional lipids. Diabetes Care 34:474–479CrossRefPubMedPubMedCentral Sasongko MB, Wong TY, Nguyen TT et al (2011) Serum apolipoprotein AI and B are stronger biomarkers of diabetic retinopathy than traditional lipids. Diabetes Care 34:474–479CrossRefPubMedPubMedCentral
13.
go back to reference Lopes-Virella MF, Baker NL, Hunt KJ, Lyons TJ, Jenkins AJ, Virella G (2012) High concentrations of AGE-LDL and oxidized LDL in circulating immune complexes are associated with progression of retinopathy in type 1 diabetes. Diabetes Care 35:1333–1340CrossRefPubMedPubMedCentral Lopes-Virella MF, Baker NL, Hunt KJ, Lyons TJ, Jenkins AJ, Virella G (2012) High concentrations of AGE-LDL and oxidized LDL in circulating immune complexes are associated with progression of retinopathy in type 1 diabetes. Diabetes Care 35:1333–1340CrossRefPubMedPubMedCentral
14.
go back to reference Klein BE, Myers CE, Howard KP, Klein R (2015) Serum lipids and proliferative diabetic retinopathy and macular edema in persons with long-term type 1 diabetes mellitus: the Wisconsin epidemiologic study of diabetic retinopathy. JAMA Ophthalmol 133:503–510CrossRefPubMedPubMedCentral Klein BE, Myers CE, Howard KP, Klein R (2015) Serum lipids and proliferative diabetic retinopathy and macular edema in persons with long-term type 1 diabetes mellitus: the Wisconsin epidemiologic study of diabetic retinopathy. JAMA Ophthalmol 133:503–510CrossRefPubMedPubMedCentral
15.
go back to reference Klein R, Myers CE, Lee KE et al (2015) Oxidized low-density lipoprotein and the incidence of proliferative diabetic retinopathy and clinically significant macular edema determined from fundus photographs. JAMA Ophthalmol 133:1054–1061CrossRefPubMed Klein R, Myers CE, Lee KE et al (2015) Oxidized low-density lipoprotein and the incidence of proliferative diabetic retinopathy and clinically significant macular edema determined from fundus photographs. JAMA Ophthalmol 133:1054–1061CrossRefPubMed
16.
go back to reference Wu M, Chen Y, Wilson K et al (2008) Intraretinal leakage and oxidation of LDL in diabetic retinopathy. Invest Ophthalmol Vis Sci 49:2679–2685CrossRefPubMed Wu M, Chen Y, Wilson K et al (2008) Intraretinal leakage and oxidation of LDL in diabetic retinopathy. Invest Ophthalmol Vis Sci 49:2679–2685CrossRefPubMed
17.
go back to reference Fu D, Yu JY, Wu M et al (2014) Immune complex formation in human diabetic retina enhances toxicity of oxidized LDL towards retinal capillary pericytes. J Lipid Res 55:860–869CrossRefPubMedPubMedCentral Fu D, Yu JY, Wu M et al (2014) Immune complex formation in human diabetic retina enhances toxicity of oxidized LDL towards retinal capillary pericytes. J Lipid Res 55:860–869CrossRefPubMedPubMedCentral
18.
go back to reference Lyons TJ, Li W, Wells-Knecht MC, Jokl R (1994) Toxicity of mildly modified low-density lipoproteins to cultured retinal capillary endothelial cells and pericytes. Diabetes 43:1090–1095CrossRefPubMed Lyons TJ, Li W, Wells-Knecht MC, Jokl R (1994) Toxicity of mildly modified low-density lipoproteins to cultured retinal capillary endothelial cells and pericytes. Diabetes 43:1090–1095CrossRefPubMed
19.
go back to reference Song W, Barth JL, Yu Y et al (2005) Effects of oxidized and glycated LDL on gene expression in human retinal capillary pericytes. Invest Ophthalmol Vis Sci 46:2974–2982CrossRefPubMed Song W, Barth JL, Yu Y et al (2005) Effects of oxidized and glycated LDL on gene expression in human retinal capillary pericytes. Invest Ophthalmol Vis Sci 46:2974–2982CrossRefPubMed
20.
go back to reference Zhang SX, Wang JJ, Dashti A et al (2008) Pigment epithelium-derived factor mitigates inflammation and oxidative stress in retinal pericytes exposed to oxidized low-density lipoprotein. J Mol Endocrinol 41:135–143CrossRefPubMedPubMedCentral Zhang SX, Wang JJ, Dashti A et al (2008) Pigment epithelium-derived factor mitigates inflammation and oxidative stress in retinal pericytes exposed to oxidized low-density lipoprotein. J Mol Endocrinol 41:135–143CrossRefPubMedPubMedCentral
21.
go back to reference Diffley JM, Wu M, Sohn M, Song W, Hammad SM, Lyons TJ (2009) Apoptosis induction by oxidized glycated LDL in human retinal capillary pericytes is independent of activation of MAPK signaling pathways. Mol Vis 15:135–145PubMedPubMedCentral Diffley JM, Wu M, Sohn M, Song W, Hammad SM, Lyons TJ (2009) Apoptosis induction by oxidized glycated LDL in human retinal capillary pericytes is independent of activation of MAPK signaling pathways. Mol Vis 15:135–145PubMedPubMedCentral
22.
go back to reference Wu M, Yang S, Elliott MH et al (2012) Oxidative and endoplasmic reticulum stresses mediate apoptosis induced by modified LDL in human retinal Muller cells. Invest Ophthalmol Vis Sci 53:4595–4604CrossRefPubMedPubMedCentral Wu M, Yang S, Elliott MH et al (2012) Oxidative and endoplasmic reticulum stresses mediate apoptosis induced by modified LDL in human retinal Muller cells. Invest Ophthalmol Vis Sci 53:4595–4604CrossRefPubMedPubMedCentral
23.
go back to reference Fu D, Wu M, Zhang J et al (2012) Mechanisms of modified LDL-induced pericyte loss and retinal injury in diabetic retinopathy. Diabetologia 55:3128–3140CrossRefPubMed Fu D, Wu M, Zhang J et al (2012) Mechanisms of modified LDL-induced pericyte loss and retinal injury in diabetic retinopathy. Diabetologia 55:3128–3140CrossRefPubMed
24.
go back to reference Du M, Wu M, Fu D et al (2013) Effects of modified LDL and HDL on retinal pigment epithelial cells: a role in diabetic retinopathy? Diabetologia 56:2318–2328CrossRefPubMedPubMedCentral Du M, Wu M, Fu D et al (2013) Effects of modified LDL and HDL on retinal pigment epithelial cells: a role in diabetic retinopathy? Diabetologia 56:2318–2328CrossRefPubMedPubMedCentral
25.
go back to reference Keller JN, Hanni KB, Markesbery WR (1999) Oxidized low-density lipoprotein induces neuronal death: implications for calcium, reactive oxygen species, and caspases. J Neurochem 72:2601–2609CrossRefPubMed Keller JN, Hanni KB, Markesbery WR (1999) Oxidized low-density lipoprotein induces neuronal death: implications for calcium, reactive oxygen species, and caspases. J Neurochem 72:2601–2609CrossRefPubMed
26.
go back to reference Robinson R, Barathi VA, Chaurasia SS, Wong TY, Kern TS (2012) Update on animal models of diabetic retinopathy: from molecular approaches to mice and higher mammals. Dis Model Mech 5:444–456CrossRefPubMedPubMedCentral Robinson R, Barathi VA, Chaurasia SS, Wong TY, Kern TS (2012) Update on animal models of diabetic retinopathy: from molecular approaches to mice and higher mammals. Dis Model Mech 5:444–456CrossRefPubMedPubMedCentral
27.
go back to reference Bergen WG, Mersmann HJ (2005) Comparative aspects of lipid metabolism: impact on contemporary research and use of animal models. J Nutr 135:2499–2502PubMed Bergen WG, Mersmann HJ (2005) Comparative aspects of lipid metabolism: impact on contemporary research and use of animal models. J Nutr 135:2499–2502PubMed
28.
29.
go back to reference Remtulla S, Hallett PE (1985) A schematic eye for the mouse, and comparisons with the rat. Vis Res 25:21–31CrossRefPubMed Remtulla S, Hallett PE (1985) A schematic eye for the mouse, and comparisons with the rat. Vis Res 25:21–31CrossRefPubMed
30.
go back to reference Sharma S, Ball SL, Peachey NS (2005) Pharmacological studies of the mouse cone electroretinogram. Vis Neurosci 22:631–636CrossRefPubMed Sharma S, Ball SL, Peachey NS (2005) Pharmacological studies of the mouse cone electroretinogram. Vis Neurosci 22:631–636CrossRefPubMed
31.
go back to reference Nishi K, Itabe H, Uno M et al (2002) Oxidized LDL in carotid plaques and plasma associates with plaque instability. Arterioscler Thromb Vasc Biol 22:1649–1654CrossRefPubMed Nishi K, Itabe H, Uno M et al (2002) Oxidized LDL in carotid plaques and plasma associates with plaque instability. Arterioscler Thromb Vasc Biol 22:1649–1654CrossRefPubMed
32.
go back to reference Park K, Jin J, Hu Y, Zhou K, Ma JX (2011) Overexpression of pigment epithelium-derived factor inhibits retinal inflammation and neovascularization. Am J Pathol 178:688–698CrossRefPubMedPubMedCentral Park K, Jin J, Hu Y, Zhou K, Ma JX (2011) Overexpression of pigment epithelium-derived factor inhibits retinal inflammation and neovascularization. Am J Pathol 178:688–698CrossRefPubMedPubMedCentral
33.
go back to reference Li X, McClellan ME, Tanito M et al (2012) Loss of caveolin-1 impairs retinal function due to disturbance of subretinal microenvironment. J Biol Chem 287:16424–16434CrossRefPubMedPubMedCentral Li X, McClellan ME, Tanito M et al (2012) Loss of caveolin-1 impairs retinal function due to disturbance of subretinal microenvironment. J Biol Chem 287:16424–16434CrossRefPubMedPubMedCentral
34.
go back to reference Vinores SA (1995) Assessment of blood-retinal barrier integrity. Histol Histopathol 10:141–154PubMed Vinores SA (1995) Assessment of blood-retinal barrier integrity. Histol Histopathol 10:141–154PubMed
35.
go back to reference Vinores SA, Campochiaro PA, Lee A, McGehee R, Gadegbeku C, Green WR (1990) Localization of blood-retinal barrier breakdown in human pathologic specimens by immunohistochemical staining for albumin. Lab Invest 62:742–750PubMed Vinores SA, Campochiaro PA, Lee A, McGehee R, Gadegbeku C, Green WR (1990) Localization of blood-retinal barrier breakdown in human pathologic specimens by immunohistochemical staining for albumin. Lab Invest 62:742–750PubMed
36.
go back to reference Cogan DG, Toussaint D, Kuwabara T (1961) Retinal vascular patterns. IV. Diabetic retinopathy. Arch Ophthalmol 66:366–378CrossRefPubMed Cogan DG, Toussaint D, Kuwabara T (1961) Retinal vascular patterns. IV. Diabetic retinopathy. Arch Ophthalmol 66:366–378CrossRefPubMed
37.
go back to reference Yin L, Shi Y, Liu X et al (2012) A rat model for studying the biological effects of circulating LDL in the choriocapillaris-BrM-RPE complex. Am J Pathol 180:541–549CrossRefPubMed Yin L, Shi Y, Liu X et al (2012) A rat model for studying the biological effects of circulating LDL in the choriocapillaris-BrM-RPE complex. Am J Pathol 180:541–549CrossRefPubMed
38.
go back to reference Cenedella RJ (1984) Lipoproteins and lipids in cow and human aqueous humor. Biochim Biophys Acta 793:448–454CrossRefPubMed Cenedella RJ (1984) Lipoproteins and lipids in cow and human aqueous humor. Biochim Biophys Acta 793:448–454CrossRefPubMed
39.
40.
go back to reference Virella G, Lopes-Virella MF (2012) The pathogenic role of the adaptive immune response to modified LDL in diabetes. Front Endocrinol (Lausanne) 3:76 Virella G, Lopes-Virella MF (2012) The pathogenic role of the adaptive immune response to modified LDL in diabetes. Front Endocrinol (Lausanne) 3:76
41.
go back to reference Fong DS, Aiello L, Gardner TW et al (2003) Diabetic retinopathy. Diabetes Care 26(Suppl 1):S99–S102CrossRefPubMed Fong DS, Aiello L, Gardner TW et al (2003) Diabetic retinopathy. Diabetes Care 26(Suppl 1):S99–S102CrossRefPubMed
42.
go back to reference Nunes S, Ribeiro L, Lobo C, Cunha-Vaz J (2013) Three different phenotypes of mild nonproliferative diabetic retinopathy with different risks for development of clinically significant macular edema. Invest Ophthalmol Vis Sci 54:4595–4604CrossRefPubMed Nunes S, Ribeiro L, Lobo C, Cunha-Vaz J (2013) Three different phenotypes of mild nonproliferative diabetic retinopathy with different risks for development of clinically significant macular edema. Invest Ophthalmol Vis Sci 54:4595–4604CrossRefPubMed
43.
go back to reference Engerman RL, Kern TS (1987) Progression of incipient diabetic retinopathy during good glycemic control. Diabetes 36:808–812CrossRefPubMed Engerman RL, Kern TS (1987) Progression of incipient diabetic retinopathy during good glycemic control. Diabetes 36:808–812CrossRefPubMed
44.
go back to reference Farhangkhoee H, Khan ZA, Barbin Y, Chakrabarti S (2005) Glucose-induced up-regulation of CD36 mediates oxidative stress and microvascular endothelial cell dysfunction. Diabetologia 48:1401–1410CrossRefPubMed Farhangkhoee H, Khan ZA, Barbin Y, Chakrabarti S (2005) Glucose-induced up-regulation of CD36 mediates oxidative stress and microvascular endothelial cell dysfunction. Diabetologia 48:1401–1410CrossRefPubMed
45.
go back to reference Lamharzi N, Renard CB, Kramer F et al (2004) Hyperlipidemia in concert with hyperglycemia stimulates the proliferation of macrophages in atherosclerotic lesions: potential role of glucose-oxidized LDL. Diabetes 53:3217–3225CrossRefPubMed Lamharzi N, Renard CB, Kramer F et al (2004) Hyperlipidemia in concert with hyperglycemia stimulates the proliferation of macrophages in atherosclerotic lesions: potential role of glucose-oxidized LDL. Diabetes 53:3217–3225CrossRefPubMed
46.
go back to reference Abcouwer SF, Gardner TW (2014) Diabetic retinopathy: loss of neuroretinal adaptation to the diabetic metabolic environment. Ann N Y Acad Sci 1311:174–190CrossRefPubMedPubMedCentral Abcouwer SF, Gardner TW (2014) Diabetic retinopathy: loss of neuroretinal adaptation to the diabetic metabolic environment. Ann N Y Acad Sci 1311:174–190CrossRefPubMedPubMedCentral
Metadata
Title
Extravascular modified lipoproteins: a role in the propagation of diabetic retinopathy in a mouse model of type 1 diabetes
Authors
Jeremy Y. Yu
Mei Du
Michael H. Elliott
Mingyuan Wu
Dongxu Fu
Shihe Yang
Arpita Basu
Xiaowu Gu
Jian-Xing Ma
Christopher E. Aston
Timothy J. Lyons
Publication date
01-09-2016
Publisher
Springer Berlin Heidelberg
Published in
Diabetologia / Issue 9/2016
Print ISSN: 0012-186X
Electronic ISSN: 1432-0428
DOI
https://doi.org/10.1007/s00125-016-4012-6

Other articles of this Issue 9/2016

Diabetologia 9/2016 Go to the issue