Skip to main content
Top
Published in: Diabetologia 7/2016

Open Access 01-07-2016 | Article

Inactivation of class II PI3K-C2α induces leptin resistance, age-dependent insulin resistance and obesity in male mice

Authors: Samira Alliouachene, Benoit Bilanges, Claire Chaussade, Wayne Pearce, Lazaros C. Foukas, Cheryl L. Scudamore, Larissa S. Moniz, Bart Vanhaesebroeck

Published in: Diabetologia | Issue 7/2016

Login to get access

Abstract

Aims/hypothesis

While the class I phosphoinositide 3-kinases (PI3Ks) are well-documented positive regulators of metabolism, the involvement of class II PI3K isoforms (PI3K-C2α, -C2β and -C2γ) in metabolic regulation is just emerging. Organismal inactivation of PI3K-C2β increases insulin signalling and sensitivity, whereas PI3K-C2γ inactivation has a negative metabolic impact. In contrast, the role of PI3K-C2α in organismal metabolism remains unexplored. In this study, we investigated whether kinase inactivation of PI3K-C2α affects glucose metabolism in mice.

Methods

We have generated and characterised a mouse line with a constitutive inactivating knock-in (KI) mutation in the kinase domain of the gene encoding PI3K-C2α (Pik3c2a).

Results

While homozygosity for kinase-dead PI3K-C2α was embryonic lethal, heterozygous PI3K-C2α KI mice were viable and fertile, with no significant histopathological findings. However, male heterozygous mice showed early onset leptin resistance, with a defect in leptin signalling in the hypothalamus, correlating with a mild, age-dependent obesity, insulin resistance and glucose intolerance. Insulin signalling was unaffected in insulin target tissues of PI3K-C2α KI mice, in contrast to previous reports in which downregulation of PI3K-C2α in cell lines was shown to dampen insulin signalling. Interestingly, no metabolic phenotypes were detected in female PI3K-C2α KI mice at any age.

Conclusions/interpretation

Our data uncover a sex-dependent role for PI3K-C2α in the modulation of hypothalamic leptin action and systemic glucose homeostasis.

Access to research materials

All reagents are available upon request.
Appendix
Available only for authorised users
Literature
1.
go back to reference Vanhaesebroeck B, Guillermet-Guibert J, Graupera M, Bilanges B (2010) The emerging mechanisms of isoform-specific PI3K signalling. Nat Rev Mol Cell Biol 11:329–341CrossRefPubMed Vanhaesebroeck B, Guillermet-Guibert J, Graupera M, Bilanges B (2010) The emerging mechanisms of isoform-specific PI3K signalling. Nat Rev Mol Cell Biol 11:329–341CrossRefPubMed
2.
go back to reference Foukas LC, Claret M, Pearce W et al (2006) Critical role for the p110alpha phosphoinositide-3-OH kinase in growth and metabolic regulation. Nature 441:366–370CrossRefPubMed Foukas LC, Claret M, Pearce W et al (2006) Critical role for the p110alpha phosphoinositide-3-OH kinase in growth and metabolic regulation. Nature 441:366–370CrossRefPubMed
3.
go back to reference Knight ZA, Gonzalez B, Feldman ME et al (2006) A pharmacological map of the PI3-K family defines a role for p110alpha in insulin signaling. Cell 125:733–747CrossRefPubMedPubMedCentral Knight ZA, Gonzalez B, Feldman ME et al (2006) A pharmacological map of the PI3-K family defines a role for p110alpha in insulin signaling. Cell 125:733–747CrossRefPubMedPubMedCentral
4.
go back to reference Sopasakis VR, Liu P, Suzuki R et al (2010) Specific roles of the p110alpha isoform of phosphatidylinsositol 3-kinase in hepatic insulin signaling and metabolic regulation. Cell Metab 11:220–230CrossRefPubMedPubMedCentral Sopasakis VR, Liu P, Suzuki R et al (2010) Specific roles of the p110alpha isoform of phosphatidylinsositol 3-kinase in hepatic insulin signaling and metabolic regulation. Cell Metab 11:220–230CrossRefPubMedPubMedCentral
5.
go back to reference Falasca M, Maffucci T (2012) Regulation and cellular functions of class II phosphoinositide 3-kinases. Biochem J 443:587–601CrossRefPubMed Falasca M, Maffucci T (2012) Regulation and cellular functions of class II phosphoinositide 3-kinases. Biochem J 443:587–601CrossRefPubMed
7.
go back to reference Campa CC, Franco I, Hirsch E (2015) PI3K-C2alpha: one enzyme for two products coupling vesicle trafficking and signal transduction. FEBS Lett 589:1552–1558CrossRefPubMed Campa CC, Franco I, Hirsch E (2015) PI3K-C2alpha: one enzyme for two products coupling vesicle trafficking and signal transduction. FEBS Lett 589:1552–1558CrossRefPubMed
8.
go back to reference Nigorikawa K, Hazeki K, Guo Y, Hazeki O (2014) Involvement of class II phosphoinositide 3-kinase alpha-isoform in antigen-induced degranulation in RBL-2H3 cells. PLoS One 9, e111698CrossRefPubMedPubMedCentral Nigorikawa K, Hazeki K, Guo Y, Hazeki O (2014) Involvement of class II phosphoinositide 3-kinase alpha-isoform in antigen-induced degranulation in RBL-2H3 cells. PLoS One 9, e111698CrossRefPubMedPubMedCentral
9.
go back to reference Posor Y, Eichhorn-Gruenig M, Puchkov D et al (2013) Spatiotemporal control of endocytosis by phosphatidylinositol-3,4-bisphosphate. Nature 499:233–237CrossRefPubMed Posor Y, Eichhorn-Gruenig M, Puchkov D et al (2013) Spatiotemporal control of endocytosis by phosphatidylinositol-3,4-bisphosphate. Nature 499:233–237CrossRefPubMed
10.
go back to reference Braccini L, Ciraolo E, Campa CC et al (2015) PI3K-C2gamma is a Rab5 effector selectively controlling endosomal Akt2 activation downstream of insulin signalling. Nat Commun 6:7400CrossRefPubMedPubMedCentral Braccini L, Ciraolo E, Campa CC et al (2015) PI3K-C2gamma is a Rab5 effector selectively controlling endosomal Akt2 activation downstream of insulin signalling. Nat Commun 6:7400CrossRefPubMedPubMedCentral
11.
go back to reference Kitatani K, Usui T, Sriraman SK et al (2015) Ceramide limits phosphatidylinositol-3-kinase C2beta-controlled cell motility in ovarian cancer: potential of ceramide as a metastasis-suppressor lipid. Oncogene. doi:10.1038/onc.2015.330 Kitatani K, Usui T, Sriraman SK et al (2015) Ceramide limits phosphatidylinositol-3-kinase C2beta-controlled cell motility in ovarian cancer: potential of ceramide as a metastasis-suppressor lipid. Oncogene. doi:10.​1038/​onc.​2015.​330
12.
go back to reference Yoshioka K, Yoshida K, Cui H et al (2012) Endothelial PI3K-C2alpha, a class II PI3K, has an essential role in angiogenesis and vascular barrier function. Nat Med 18:1560–1569CrossRefPubMed Yoshioka K, Yoshida K, Cui H et al (2012) Endothelial PI3K-C2alpha, a class II PI3K, has an essential role in angiogenesis and vascular barrier function. Nat Med 18:1560–1569CrossRefPubMed
13.
go back to reference Franco I, Gulluni F, Campa CC et al (2014) PI3K class II alpha controls spatially restricted endosomal PtdIns3P and Rab11 activation to promote primary cilium function. Dev Cell 28:647–658CrossRefPubMedPubMedCentral Franco I, Gulluni F, Campa CC et al (2014) PI3K class II alpha controls spatially restricted endosomal PtdIns3P and Rab11 activation to promote primary cilium function. Dev Cell 28:647–658CrossRefPubMedPubMedCentral
14.
go back to reference Franco I, Margaria JP, De Santis MC et al (2015) Phosphoinositide 3-kinase-C2alpha regulates polycystin-2 ciliary entry and protects against kidney cyst formation. J Am Soc Nephrol JASN. doi:10.1681/ASN.2012111089 Franco I, Margaria JP, De Santis MC et al (2015) Phosphoinositide 3-kinase-C2alpha regulates polycystin-2 ciliary entry and protects against kidney cyst formation. J Am Soc Nephrol JASN. doi:10.​1681/​ASN.​2012111089
15.
go back to reference Harris DP, Vogel P, Wims M et al (2011) Requirement for class II phosphoinositide 3-kinase C2alpha in maintenance of glomerular structure and function. Mol Cell Biol 31:63–80CrossRefPubMed Harris DP, Vogel P, Wims M et al (2011) Requirement for class II phosphoinositide 3-kinase C2alpha in maintenance of glomerular structure and function. Mol Cell Biol 31:63–80CrossRefPubMed
16.
go back to reference Harada K, Truong AB, Cai T, Khavari PA (2005) The class II phosphoinositide 3-kinase C2beta is not essential for epidermal differentiation. Mol Cell Biol 25:11122–11130CrossRefPubMedPubMedCentral Harada K, Truong AB, Cai T, Khavari PA (2005) The class II phosphoinositide 3-kinase C2beta is not essential for epidermal differentiation. Mol Cell Biol 25:11122–11130CrossRefPubMedPubMedCentral
17.
go back to reference Vanhaesebroeck B, Ali K, Bilancio A, Geering B, Foukas LC (2005) Signalling by PI3K isoforms: insights from gene-targeted mice. Trends Biochem Sci 30:194–204CrossRefPubMed Vanhaesebroeck B, Ali K, Bilancio A, Geering B, Foukas LC (2005) Signalling by PI3K isoforms: insights from gene-targeted mice. Trends Biochem Sci 30:194–204CrossRefPubMed
18.
go back to reference Alliouachene S, Bilanges B, Chicanne G et al (2015) Inactivation of the class II PI3K-C2beta potentiates insulin signaling and sensitivity. Cell Rep 13:1881–1894CrossRefPubMedPubMedCentral Alliouachene S, Bilanges B, Chicanne G et al (2015) Inactivation of the class II PI3K-C2beta potentiates insulin signaling and sensitivity. Cell Rep 13:1881–1894CrossRefPubMedPubMedCentral
19.
go back to reference Brown RA, Domin J, Arcaro A, Waterfield MD, Shepherd PR (1999) Insulin activates the alpha isoform of class II phosphoinositide 3-kinase. J Biol Chem 274:14529–14532CrossRefPubMed Brown RA, Domin J, Arcaro A, Waterfield MD, Shepherd PR (1999) Insulin activates the alpha isoform of class II phosphoinositide 3-kinase. J Biol Chem 274:14529–14532CrossRefPubMed
20.
go back to reference Urso B, Brown RA, O'Rahilly S, Shepherd PR, Siddle K (1999) The alpha-isoform of class II phosphoinositide 3-kinase is more effectively activated by insulin receptors than IGF receptors, and activation requires receptor NPEY motifs. FEBS Lett 460:423–426CrossRefPubMed Urso B, Brown RA, O'Rahilly S, Shepherd PR, Siddle K (1999) The alpha-isoform of class II phosphoinositide 3-kinase is more effectively activated by insulin receptors than IGF receptors, and activation requires receptor NPEY motifs. FEBS Lett 460:423–426CrossRefPubMed
21.
go back to reference Soos MA, Jensen J, Brown RA, O'Rahilly S, Shepherd PR, Whitehead JP (2001) Class II phosphoinositide 3-kinase is activated by insulin but not by contraction in skeletal muscle. Arch Biochem Biophys 396:244–248CrossRefPubMed Soos MA, Jensen J, Brown RA, O'Rahilly S, Shepherd PR, Whitehead JP (2001) Class II phosphoinositide 3-kinase is activated by insulin but not by contraction in skeletal muscle. Arch Biochem Biophys 396:244–248CrossRefPubMed
22.
go back to reference Leibiger B, Moede T, Paschen M et al (2015) PI3K-C2alpha knockdown results in rerouting of insulin signaling and pancreatic beta cell proliferation. Cell Rep 13:15–22CrossRefPubMed Leibiger B, Moede T, Paschen M et al (2015) PI3K-C2alpha knockdown results in rerouting of insulin signaling and pancreatic beta cell proliferation. Cell Rep 13:15–22CrossRefPubMed
23.
go back to reference Chaussade C, Rewcastle GW, Kendall JD et al (2007) Evidence for functional redundancy of class IA PI3K isoforms in insulin signalling. Biochem J 404:449–458CrossRefPubMedPubMedCentral Chaussade C, Rewcastle GW, Kendall JD et al (2007) Evidence for functional redundancy of class IA PI3K isoforms in insulin signalling. Biochem J 404:449–458CrossRefPubMedPubMedCentral
24.
go back to reference Falasca M, Hughes WE, Dominguez V et al (2007) The role of phosphoinositide 3-kinase C2alpha in insulin signaling. J Biol Chem 282:28226–28236CrossRefPubMed Falasca M, Hughes WE, Dominguez V et al (2007) The role of phosphoinositide 3-kinase C2alpha in insulin signaling. J Biol Chem 282:28226–28236CrossRefPubMed
25.
go back to reference Dominguez V, Raimondi C, Somanath S et al (2011) Class II phosphoinositide 3-kinase regulates exocytosis of insulin granules in pancreatic beta cells. J Biol Chem 286:4216–4225CrossRefPubMed Dominguez V, Raimondi C, Somanath S et al (2011) Class II phosphoinositide 3-kinase regulates exocytosis of insulin granules in pancreatic beta cells. J Biol Chem 286:4216–4225CrossRefPubMed
26.
go back to reference Leibiger B, Moede T, Uhles S et al (2010) Insulin-feedback via PI3K-C2alpha activated PKBalpha/Akt1 is required for glucose-stimulated insulin secretion. FASEB J 24:1824–1837CrossRefPubMed Leibiger B, Moede T, Uhles S et al (2010) Insulin-feedback via PI3K-C2alpha activated PKBalpha/Akt1 is required for glucose-stimulated insulin secretion. FASEB J 24:1824–1837CrossRefPubMed
27.
go back to reference Lee GH, Proenca R, Montez JM et al (1996) Abnormal splicing of the leptin receptor in diabetic mice. Nature 379:632–635CrossRefPubMed Lee GH, Proenca R, Montez JM et al (1996) Abnormal splicing of the leptin receptor in diabetic mice. Nature 379:632–635CrossRefPubMed
28.
go back to reference Tartaglia LA, Dembski M, Weng X et al (1995) Identification and expression cloning of a leptin receptor, OB-R. Cell 83:1263–1271CrossRefPubMed Tartaglia LA, Dembski M, Weng X et al (1995) Identification and expression cloning of a leptin receptor, OB-R. Cell 83:1263–1271CrossRefPubMed
29.
30.
go back to reference Guerra B, Fuentes T, Delgado-Guerra S et al (2008) Gender dimorphism in skeletal muscle leptin receptors, serum leptin and insulin sensitivity. PLoS One 3, e3466CrossRefPubMedPubMedCentral Guerra B, Fuentes T, Delgado-Guerra S et al (2008) Gender dimorphism in skeletal muscle leptin receptors, serum leptin and insulin sensitivity. PLoS One 3, e3466CrossRefPubMedPubMedCentral
31.
go back to reference Maffei M, Halaas J, Ravussin E et al (1995) Leptin levels in human and rodent: measurement of plasma leptin and ob RNA in obese and weight-reduced subjects. Nat Med 1:1155–1161CrossRefPubMed Maffei M, Halaas J, Ravussin E et al (1995) Leptin levels in human and rodent: measurement of plasma leptin and ob RNA in obese and weight-reduced subjects. Nat Med 1:1155–1161CrossRefPubMed
32.
go back to reference Chen H, Charlat O, Tartaglia LA et al (1996) Evidence that the diabetes gene encodes the leptin receptor: identification of a mutation in the leptin receptor gene in db/db mice. Cell 84:491–495CrossRefPubMed Chen H, Charlat O, Tartaglia LA et al (1996) Evidence that the diabetes gene encodes the leptin receptor: identification of a mutation in the leptin receptor gene in db/db mice. Cell 84:491–495CrossRefPubMed
33.
go back to reference Chua SC Jr, Chung WK, Wu-Peng XS et al (1996) Phenotypes of mouse diabetes and rat fatty due to mutations in the OB (leptin) receptor. Science (New York, NY) 271:994–996CrossRef Chua SC Jr, Chung WK, Wu-Peng XS et al (1996) Phenotypes of mouse diabetes and rat fatty due to mutations in the OB (leptin) receptor. Science (New York, NY) 271:994–996CrossRef
35.
go back to reference Montague CT, Farooqi IS, Whitehead JP et al (1997) Congenital leptin deficiency is associated with severe early-onset obesity in humans. Nature 387:903–908CrossRefPubMed Montague CT, Farooqi IS, Whitehead JP et al (1997) Congenital leptin deficiency is associated with severe early-onset obesity in humans. Nature 387:903–908CrossRefPubMed
36.
go back to reference Valet C, Chicanne G, Severac C et al (2015) Essential role of class II PI3K-C2alpha in platelet membrane morphology. Blood 126:1128–1137CrossRefPubMed Valet C, Chicanne G, Severac C et al (2015) Essential role of class II PI3K-C2alpha in platelet membrane morphology. Blood 126:1128–1137CrossRefPubMed
37.
go back to reference Al-Qassab H, Smith MA, Irvine EE et al (2009) Dominant role of the p110beta isoform of PI3K over p110alpha in energy homeostasis regulation by POMC and AgRP neurons. Cell Metab 10:343–354CrossRefPubMedPubMedCentral Al-Qassab H, Smith MA, Irvine EE et al (2009) Dominant role of the p110beta isoform of PI3K over p110alpha in energy homeostasis regulation by POMC and AgRP neurons. Cell Metab 10:343–354CrossRefPubMedPubMedCentral
38.
go back to reference Graupera M, Guillermet-Guibert J, Foukas LC et al (2008) Angiogenesis selectively requires the p110alpha isoform of PI3K to control endothelial cell migration. Nature 453:662–666CrossRefPubMed Graupera M, Guillermet-Guibert J, Foukas LC et al (2008) Angiogenesis selectively requires the p110alpha isoform of PI3K to control endothelial cell migration. Nature 453:662–666CrossRefPubMed
39.
go back to reference Guillermet-Guibert J, Bjorklof K, Salpekar A et al (2008) The p110beta isoform of phosphoinositide 3-kinase signals downstream of G protein-coupled receptors and is functionally redundant with p110gamma. Proc Natl Acad Sci U S A 105:8292–8297CrossRefPubMedPubMedCentral Guillermet-Guibert J, Bjorklof K, Salpekar A et al (2008) The p110beta isoform of phosphoinositide 3-kinase signals downstream of G protein-coupled receptors and is functionally redundant with p110gamma. Proc Natl Acad Sci U S A 105:8292–8297CrossRefPubMedPubMedCentral
40.
go back to reference Okkenhaug K, Bilancio A, Farjot G et al (2002) Impaired B and T cell antigen receptor signaling in p110delta PI 3-kinase mutant mice. Science (New York, NY) 297:1031–1034 Okkenhaug K, Bilancio A, Farjot G et al (2002) Impaired B and T cell antigen receptor signaling in p110delta PI 3-kinase mutant mice. Science (New York, NY) 297:1031–1034
41.
go back to reference Bilancio A, Okkenhaug K, Camps M et al (2006) Key role of the p110delta isoform of PI3K in B cell antigen and IL-4 receptor signaling: comparative analysis of genetic and pharmacologic interference with p110delta function in B cells. Blood 107:642–650CrossRefPubMed Bilancio A, Okkenhaug K, Camps M et al (2006) Key role of the p110delta isoform of PI3K in B cell antigen and IL-4 receptor signaling: comparative analysis of genetic and pharmacologic interference with p110delta function in B cells. Blood 107:642–650CrossRefPubMed
42.
go back to reference Ktori C, Shepherd PR, O'Rourke L (2003) TNF-alpha and leptin activate the alpha-isoform of class II phosphoinositide 3-kinase. Biochem Biophys Res Commun 306:139–143CrossRefPubMed Ktori C, Shepherd PR, O'Rourke L (2003) TNF-alpha and leptin activate the alpha-isoform of class II phosphoinositide 3-kinase. Biochem Biophys Res Commun 306:139–143CrossRefPubMed
43.
go back to reference Guo K, McMinn JE, Ludwig T et al (2007) Disruption of peripheral leptin signaling in mice results in hyperleptinemia without associated metabolic abnormalities. Endocrinology 148:3987–3997CrossRefPubMed Guo K, McMinn JE, Ludwig T et al (2007) Disruption of peripheral leptin signaling in mice results in hyperleptinemia without associated metabolic abnormalities. Endocrinology 148:3987–3997CrossRefPubMed
44.
45.
go back to reference Sharma K, McCue P, Dunn SR (2003) Diabetic kidney disease in the db/db mouse. Am J Physiol Renal Physiol 284:F1138–F1144CrossRefPubMed Sharma K, McCue P, Dunn SR (2003) Diabetic kidney disease in the db/db mouse. Am J Physiol Renal Physiol 284:F1138–F1144CrossRefPubMed
47.
go back to reference Domin J, Gaidarov I, Smith ME, Keen JH, Waterfield MD (2000) The class II phosphoinositide 3-kinase PI3K-C2alpha is concentrated in the trans-Golgi network and present in clathrin-coated vesicles. J Biol Chem 275:11943–11950CrossRefPubMed Domin J, Gaidarov I, Smith ME, Keen JH, Waterfield MD (2000) The class II phosphoinositide 3-kinase PI3K-C2alpha is concentrated in the trans-Golgi network and present in clathrin-coated vesicles. J Biol Chem 275:11943–11950CrossRefPubMed
48.
go back to reference Rahmouni K, Fath MA, Seo S et al (2008) Leptin resistance contributes to obesity and hypertension in mouse models of Bardet-Biedl syndrome. J Clin Invest 118:1458–1467CrossRefPubMedPubMedCentral Rahmouni K, Fath MA, Seo S et al (2008) Leptin resistance contributes to obesity and hypertension in mouse models of Bardet-Biedl syndrome. J Clin Invest 118:1458–1467CrossRefPubMedPubMedCentral
49.
go back to reference Seo S, Guo DF, Bugge K, Morgan DA, Rahmouni K, Sheffield VC (2009) Requirement of Bardet-Biedl syndrome proteins for leptin receptor signaling. Hum Mol Genet 18:1323–1331CrossRefPubMedPubMedCentral Seo S, Guo DF, Bugge K, Morgan DA, Rahmouni K, Sheffield VC (2009) Requirement of Bardet-Biedl syndrome proteins for leptin receptor signaling. Hum Mol Genet 18:1323–1331CrossRefPubMedPubMedCentral
50.
go back to reference Feuillan PP, Ng D, Han JC et al (2011) Patients with Bardet-Biedl syndrome have hyperleptinemia suggestive of leptin resistance. J Clin Endocrinol Metab 96:E528–E535CrossRefPubMedPubMedCentral Feuillan PP, Ng D, Han JC et al (2011) Patients with Bardet-Biedl syndrome have hyperleptinemia suggestive of leptin resistance. J Clin Endocrinol Metab 96:E528–E535CrossRefPubMedPubMedCentral
51.
go back to reference Hernandez-Hernandez V, Pravincumar P, Diaz-Font A et al (2013) Bardet-Biedl syndrome proteins control the cilia length through regulation of actin polymerization. Hum Mol Genet 22:3858–3868CrossRefPubMedPubMedCentral Hernandez-Hernandez V, Pravincumar P, Diaz-Font A et al (2013) Bardet-Biedl syndrome proteins control the cilia length through regulation of actin polymerization. Hum Mol Genet 22:3858–3868CrossRefPubMedPubMedCentral
53.
go back to reference Berbari NF, Pasek RC, Malarkey EB et al (2013) Leptin resistance is a secondary consequence of the obesity in ciliopathy mutant mice. Proc Natl Acad Sci U S A 110:7796–7801CrossRefPubMedPubMedCentral Berbari NF, Pasek RC, Malarkey EB et al (2013) Leptin resistance is a secondary consequence of the obesity in ciliopathy mutant mice. Proc Natl Acad Sci U S A 110:7796–7801CrossRefPubMedPubMedCentral
Metadata
Title
Inactivation of class II PI3K-C2α induces leptin resistance, age-dependent insulin resistance and obesity in male mice
Authors
Samira Alliouachene
Benoit Bilanges
Claire Chaussade
Wayne Pearce
Lazaros C. Foukas
Cheryl L. Scudamore
Larissa S. Moniz
Bart Vanhaesebroeck
Publication date
01-07-2016
Publisher
Springer Berlin Heidelberg
Published in
Diabetologia / Issue 7/2016
Print ISSN: 0012-186X
Electronic ISSN: 1432-0428
DOI
https://doi.org/10.1007/s00125-016-3963-y

Other articles of this Issue 7/2016

Diabetologia 7/2016 Go to the issue