Skip to main content
Top
Published in: Diabetologia 6/2016

01-06-2016 | Mini-Review

Diagnosis of non-alcoholic fatty liver disease (NAFLD)

Author: Hannele Yki-Järvinen

Published in: Diabetologia | Issue 6/2016

Login to get access

Abstract

Non-alcoholic fatty liver disease (NAFLD) increases risk of mortality from liver and cardiovascular disease (CVD) and is the major cause of hepatocellular carcinoma (HCC), which may develop without cirrhosis. NAFLD predicts type 2 diabetes, even independently of obesity. Globally, the prevalence of NAFLD averages 25% and is as common as the metabolic syndrome. The majority of patients with type 2 diabetes have NAFLD. The challenge for the diabetologist is to identify patients at risk of advanced liver disease and HCC. At a minimum, liver function tests (LFTs), despite being neither specific nor sensitive, should be performed in all patients with the metabolic syndrome or type 2 diabetes. Increases in LFTs, for which the updated reference values are lower (serum ALT ≈30 U/l in men and ≈20 U/l in women) than those hitherto used in many laboratories, should prompt assessment of fibrosis biomarkers and referral of individuals at risk to a NAFLD/hepatology clinic. Preferably, evaluation of NAFLD should be based on measurement of steatosis biomarkers or ultrasound if easily available. A large number of individuals carry the patatin-like phospholipase domain containing 3 (PNPLA3) I148M variant (30–50%) or the transmembrane 6 superfamily member 2 (TM6SF2) E167K variant (11–15%). These variants increase the risk of advanced liver disease and HCC but not of diabetes or CVD. Genotyping of selected patients for these variants is recommended. Many patients have ‘double trouble’, i.e. carry both a genetic risk factor and have the metabolic syndrome. Excess use of alcohol could be a cause of ‘triple trouble’, but such patients would be classified as having alcoholic fatty liver disease. This review summarises a presentation given at the symposium ‘The liver in focus’ at the 2015 annual meeting of the EASD. It is accompanied by two other reviews on topics from this symposium (by Kenneth Cusi, DOI: 10.​1007/​s00125-016-3952-1, and by John Jones, DOI: 10.​1007/​s00125-016-3940-5) and a commentary by the Session Chair, Michael Roden (DOI: 10.​1007/​s00125-016-3911-x).
Literature
1.
go back to reference Neuschwander-Tetri BA, Caldwell SH (2003) Nonalcoholic steatohepatitis: summary of an AASLD Single Topic Conference. Hepatology 37:1202–1219CrossRefPubMed Neuschwander-Tetri BA, Caldwell SH (2003) Nonalcoholic steatohepatitis: summary of an AASLD Single Topic Conference. Hepatology 37:1202–1219CrossRefPubMed
2.
go back to reference Younossi ZM, Koenig AB, Abdelatif D, Fazel Y, Henry L, Wymer M (2015) Global epidemiology of non-alcoholic fatty liver disease-meta-analytic assessment of prevalence, incidence and outcomes. Hepatology Younossi ZM, Koenig AB, Abdelatif D, Fazel Y, Henry L, Wymer M (2015) Global epidemiology of non-alcoholic fatty liver disease-meta-analytic assessment of prevalence, incidence and outcomes. Hepatology
3.
go back to reference International Diabetes Federation (2006) The IDF consensus worldwide definition of the metabolic syndrome. International Diabetes Federation, Brussels International Diabetes Federation (2006) The IDF consensus worldwide definition of the metabolic syndrome. International Diabetes Federation, Brussels
4.
go back to reference Anstee QM, Targher G, Day CP (2013) Progression of NAFLD to diabetes mellitus, cardiovascular disease or cirrhosis. Nat Rev Gastroenterol Hepatol 10:330–344CrossRefPubMed Anstee QM, Targher G, Day CP (2013) Progression of NAFLD to diabetes mellitus, cardiovascular disease or cirrhosis. Nat Rev Gastroenterol Hepatol 10:330–344CrossRefPubMed
5.
go back to reference Yki-Jarvinen H (2014) Non-alcoholic fatty liver disease as a cause and a consequence of metabolic syndrome. Lancet Diabetes Endocrinol 2:901–910 Yki-Jarvinen H (2014) Non-alcoholic fatty liver disease as a cause and a consequence of metabolic syndrome. Lancet Diabetes Endocrinol 2:901–910
6.
go back to reference Alberti KG, Eckel RH, Grundy SM et al (2009) Harmonizing the metabolic syndrome: a joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation 120:1640–1645CrossRefPubMed Alberti KG, Eckel RH, Grundy SM et al (2009) Harmonizing the metabolic syndrome: a joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation 120:1640–1645CrossRefPubMed
7.
go back to reference European Association for the Study of the Liver (EASL), European Association for the Study of Diabetes (EASD) and European Association for the Study of Obesity (EASO) (2016) EASL–EASD–EASO clinical practice guidelines for the management of non-alcoholic fatty liver disease. J Hepatol doi:10.1016/j.jhep.2015.11.004 European Association for the Study of the Liver (EASL), European Association for the Study of Diabetes (EASD) and European Association for the Study of Obesity (EASO) (2016) EASL–EASD–EASO clinical practice guidelines for the management of non-alcoholic fatty liver disease. J Hepatol doi:10.​1016/​j.​jhep.​2015.​11.​004
8.
go back to reference Szczepaniak LS, Nurenberg P, Leonard D et al (2005) Magnetic resonance spectroscopy to measure hepatic triglyceride content: prevalence of hepatic steatosis in the general population. Am J Phys Endocrinol Metab 288:E462–E468CrossRef Szczepaniak LS, Nurenberg P, Leonard D et al (2005) Magnetic resonance spectroscopy to measure hepatic triglyceride content: prevalence of hepatic steatosis in the general population. Am J Phys Endocrinol Metab 288:E462–E468CrossRef
9.
go back to reference Kleiner DE, Brunt EM (2012) Nonalcoholic fatty liver disease: pathologic patterns and biopsy evaluation in clinical research. Semin Liver Dis 32:3–13CrossRefPubMed Kleiner DE, Brunt EM (2012) Nonalcoholic fatty liver disease: pathologic patterns and biopsy evaluation in clinical research. Semin Liver Dis 32:3–13CrossRefPubMed
10.
go back to reference Bedossa P, Consortium FP (2014) Utility and appropriateness of the fatty liver inhibition of progression (FLIP) algorithm and steatosis, activity, and fibrosis (SAF) score in the evaluation of biopsies of nonalcoholic fatty liver disease. Hepatology 60:565–575CrossRefPubMed Bedossa P, Consortium FP (2014) Utility and appropriateness of the fatty liver inhibition of progression (FLIP) algorithm and steatosis, activity, and fibrosis (SAF) score in the evaluation of biopsies of nonalcoholic fatty liver disease. Hepatology 60:565–575CrossRefPubMed
11.
go back to reference Kleiner DE, Brunt EM, Van Natta M et al (2005) Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology 41:1313–1321CrossRefPubMed Kleiner DE, Brunt EM, Van Natta M et al (2005) Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology 41:1313–1321CrossRefPubMed
12.
go back to reference Angulo P, Kleiner DE, Dam-Larsen S et al (2015) Liver fibrosis, but no other histologic features, is associated with long-term outcomes of patients with nonalcoholic fatty liver disease. Gastroenterology 149(389–397):e310 Angulo P, Kleiner DE, Dam-Larsen S et al (2015) Liver fibrosis, but no other histologic features, is associated with long-term outcomes of patients with nonalcoholic fatty liver disease. Gastroenterology 149(389–397):e310
13.
go back to reference Ekstedt M, Hagstrom H, Nasr P et al (2015) Fibrosis stage is the strongest predictor for disease-specific mortality in NAFLD after up to 33 years of follow-up. Hepatology 61:1547–1554CrossRefPubMed Ekstedt M, Hagstrom H, Nasr P et al (2015) Fibrosis stage is the strongest predictor for disease-specific mortality in NAFLD after up to 33 years of follow-up. Hepatology 61:1547–1554CrossRefPubMed
14.
go back to reference Portillo-Sanchez P, Bril F, Maximos M et al (2015) High prevalence of nonalcoholic fatty liver disease in patients with type 2 diabetes mellitus and normal plasma aminotransferase levels. J Clin Endocrinol Metab 100:2231–2238CrossRefPubMed Portillo-Sanchez P, Bril F, Maximos M et al (2015) High prevalence of nonalcoholic fatty liver disease in patients with type 2 diabetes mellitus and normal plasma aminotransferase levels. J Clin Endocrinol Metab 100:2231–2238CrossRefPubMed
15.
go back to reference Petit JM, Guiu B, Terriat B et al (2009) Nonalcoholic fatty liver is not associated with carotid intima-media thickness in type 2 diabetic patients. J Clin Endocrinol Metab 94:4103–4106CrossRefPubMed Petit JM, Guiu B, Terriat B et al (2009) Nonalcoholic fatty liver is not associated with carotid intima-media thickness in type 2 diabetic patients. J Clin Endocrinol Metab 94:4103–4106CrossRefPubMed
16.
go back to reference Doycheva I, Cui J, Nguyen P et al (2016) Non-invasive screening of diabetics in primary care for NAFLD and advanced fibrosis by MRI and MRE. Aliment Pharmacol Ther 43:83–95CrossRefPubMed Doycheva I, Cui J, Nguyen P et al (2016) Non-invasive screening of diabetics in primary care for NAFLD and advanced fibrosis by MRI and MRE. Aliment Pharmacol Ther 43:83–95CrossRefPubMed
17.
go back to reference Williams CD, Stengel J, Asike MI et al (2011) Prevalence of nonalcoholic fatty liver disease and nonalcoholic steatohepatitis among a largely middle-aged population utilizing ultrasound and liver biopsy: a prospective study. Gastroenterology 140:124–131CrossRefPubMed Williams CD, Stengel J, Asike MI et al (2011) Prevalence of nonalcoholic fatty liver disease and nonalcoholic steatohepatitis among a largely middle-aged population utilizing ultrasound and liver biopsy: a prospective study. Gastroenterology 140:124–131CrossRefPubMed
18.
go back to reference Williamson RM, Price JF, Glancy S et al (2011) Prevalence of and risk factors for hepatic steatosis and nonalcoholic Fatty liver disease in people with type 2 diabetes: the Edinburgh Type 2 Diabetes Study. Diabetes Care 34:1139–1144CrossRefPubMedPubMedCentral Williamson RM, Price JF, Glancy S et al (2011) Prevalence of and risk factors for hepatic steatosis and nonalcoholic Fatty liver disease in people with type 2 diabetes: the Edinburgh Type 2 Diabetes Study. Diabetes Care 34:1139–1144CrossRefPubMedPubMedCentral
19.
go back to reference Targher G, Bertolini L, Padovani R et al (2007) Prevalence of nonalcoholic fatty liver disease and its association with cardiovascular disease among type 2 diabetic patients. Diabetes Care 30:1212–1218CrossRefPubMed Targher G, Bertolini L, Padovani R et al (2007) Prevalence of nonalcoholic fatty liver disease and its association with cardiovascular disease among type 2 diabetic patients. Diabetes Care 30:1212–1218CrossRefPubMed
20.
go back to reference Hyysalo J, Mannisto VT, Zhou Y, et al. (2013) A population-based study on the prevalence of NASH using scores validated against liver histology. J Hepatol 60:839–846 Hyysalo J, Mannisto VT, Zhou Y, et al. (2013) A population-based study on the prevalence of NASH using scores validated against liver histology. J Hepatol 60:839–846
21.
go back to reference Reaven GM (1988) Banting lecture 1988. Role of insulin resistance in human disease. Diabetes 37:1595–1607CrossRefPubMed Reaven GM (1988) Banting lecture 1988. Role of insulin resistance in human disease. Diabetes 37:1595–1607CrossRefPubMed
22.
go back to reference Lazo M, Hernaez R, Eberhardt MS et al (2013) Prevalence of nonalcoholic fatty liver disease in the United States: the third national health and nutrition examination survey, 1988-1994. Am J Epidemiol 178:38–45CrossRefPubMedPubMedCentral Lazo M, Hernaez R, Eberhardt MS et al (2013) Prevalence of nonalcoholic fatty liver disease in the United States: the third national health and nutrition examination survey, 1988-1994. Am J Epidemiol 178:38–45CrossRefPubMedPubMedCentral
23.
go back to reference Seppala-Lindroos A, Vehkavaara S, Hakkinen AM et al (2002) Fat accumulation in the liver is associated with defects in insulin suppression of glucose production and serum free fatty acids independent of obesity in normal men. J Clin Endocrinol Metab 87:3023–3028CrossRefPubMed Seppala-Lindroos A, Vehkavaara S, Hakkinen AM et al (2002) Fat accumulation in the liver is associated with defects in insulin suppression of glucose production and serum free fatty acids independent of obesity in normal men. J Clin Endocrinol Metab 87:3023–3028CrossRefPubMed
24.
go back to reference Kotronen A, Yki-Jarvinen H (2008) Fatty liver: a novel component of the metabolic syndrome. Arterioscler Thromb Vasc Biol 28:27–38CrossRefPubMed Kotronen A, Yki-Jarvinen H (2008) Fatty liver: a novel component of the metabolic syndrome. Arterioscler Thromb Vasc Biol 28:27–38CrossRefPubMed
25.
go back to reference Singh S, Allen AM, Wang Z, Prokop LJ, Murad MH, Loomba R (2015) Fibrosis progression in nonalcoholic fatty liver vs nonalcoholic steatohepatitis: a systematic review and meta-analysis of paired-biopsy studies. Clin Gastroenterol Hepatol: Off Clin Pract J Am Gastroenterol Assoc 13:643-654 e641-649, quiz e639-640 Singh S, Allen AM, Wang Z, Prokop LJ, Murad MH, Loomba R (2015) Fibrosis progression in nonalcoholic fatty liver vs nonalcoholic steatohepatitis: a systematic review and meta-analysis of paired-biopsy studies. Clin Gastroenterol Hepatol: Off Clin Pract J Am Gastroenterol Assoc 13:643-654 e641-649, quiz e639-640
26.
go back to reference McPherson S, Hardy T, Henderson E, Burt AD, Day CP, Anstee QM (2015) Evidence of NAFLD progression from steatosis to fibrosing-steatohepatitis using paired biopsies: implications for prognosis and clinical management. J Hepatol 62:1148–1155CrossRefPubMed McPherson S, Hardy T, Henderson E, Burt AD, Day CP, Anstee QM (2015) Evidence of NAFLD progression from steatosis to fibrosing-steatohepatitis using paired biopsies: implications for prognosis and clinical management. J Hepatol 62:1148–1155CrossRefPubMed
27.
go back to reference Pais R, Charlotte F, Fedchuk L, et al. (2013) A systematic review of follow-up biopsies reveals disease progression in patients with non-alcoholic fatty liver. J Hepatol 59:550–556 Pais R, Charlotte F, Fedchuk L, et al. (2013) A systematic review of follow-up biopsies reveals disease progression in patients with non-alcoholic fatty liver. J Hepatol 59:550–556
28.
go back to reference Wong VW, Wong GL, Choi PC et al (2010) Disease progression of non-alcoholic fatty liver disease: a prospective study with paired liver biopsies at 3 years. Gut 59:969–974CrossRefPubMed Wong VW, Wong GL, Choi PC et al (2010) Disease progression of non-alcoholic fatty liver disease: a prospective study with paired liver biopsies at 3 years. Gut 59:969–974CrossRefPubMed
29.
go back to reference Calle EE, Rodriguez C, Walker-Thurmond K, Thun MJ (2003) Overweight, obesity, and mortality from cancer in a prospectively studied cohort of U.S. adults. N Engl J Med 348:1625–1638CrossRefPubMed Calle EE, Rodriguez C, Walker-Thurmond K, Thun MJ (2003) Overweight, obesity, and mortality from cancer in a prospectively studied cohort of U.S. adults. N Engl J Med 348:1625–1638CrossRefPubMed
30.
go back to reference Margini C, Dufour JF (2015) The story of HCC in NAFLD: from epidemiology, across pathogenesis, to prevention and treatment. Liver Int 36:317–324 Margini C, Dufour JF (2015) The story of HCC in NAFLD: from epidemiology, across pathogenesis, to prevention and treatment. Liver Int 36:317–324
31.
go back to reference Yopp AC, Choti MA (2015) Non-alcoholic steatohepatitis-related hepatocellular carcinoma: a growing epidemic? Dig Dis 33:642–647CrossRefPubMed Yopp AC, Choti MA (2015) Non-alcoholic steatohepatitis-related hepatocellular carcinoma: a growing epidemic? Dig Dis 33:642–647CrossRefPubMed
32.
go back to reference Setiawan VW, Lim U, Lipworth L, et al. (2015) Sex and ethnic differences in the association of obesity with risk of hepatocellular carcinoma. Clin Gastroenterol Hepatol 14:309–316 Setiawan VW, Lim U, Lipworth L, et al. (2015) Sex and ethnic differences in the association of obesity with risk of hepatocellular carcinoma. Clin Gastroenterol Hepatol 14:309–316
34.
go back to reference Pocha C, Kolly P, Dufour JF (2015) Nonalcoholic fatty liver disease-related hepatocellular carcinoma: a problem of growing magnitude. Semin Liver Dis 35:304–317CrossRefPubMed Pocha C, Kolly P, Dufour JF (2015) Nonalcoholic fatty liver disease-related hepatocellular carcinoma: a problem of growing magnitude. Semin Liver Dis 35:304–317CrossRefPubMed
35.
go back to reference Dyson J, Jaques B, Chattopadyhay D et al (2014) Hepatocellular cancer: the impact of obesity, type 2 diabetes and a multidisciplinary team. J Hepatol 60:110–117CrossRefPubMed Dyson J, Jaques B, Chattopadyhay D et al (2014) Hepatocellular cancer: the impact of obesity, type 2 diabetes and a multidisciplinary team. J Hepatol 60:110–117CrossRefPubMed
36.
go back to reference Perumpail RB, Wong RJ, Ahmed A, Harrison SA (2015) Hepatocellular carcinoma in the setting of non-cirrhotic nonalcoholic fatty liver disease and the metabolic syndrome: US experience. Dig Dis Sci 60:3142–3148CrossRefPubMed Perumpail RB, Wong RJ, Ahmed A, Harrison SA (2015) Hepatocellular carcinoma in the setting of non-cirrhotic nonalcoholic fatty liver disease and the metabolic syndrome: US experience. Dig Dis Sci 60:3142–3148CrossRefPubMed
38.
go back to reference Ziol M, Handra-Luca A, Kettaneh A et al (2005) Noninvasive assessment of liver fibrosis by measurement of stiffness in patients with chronic hepatitis C. Hepatology 41:48–54CrossRefPubMed Ziol M, Handra-Luca A, Kettaneh A et al (2005) Noninvasive assessment of liver fibrosis by measurement of stiffness in patients with chronic hepatitis C. Hepatology 41:48–54CrossRefPubMed
39.
go back to reference Kotronen A, Peltonen M, Hakkarainen A et al (2009) Prediction of non-alcoholic fatty liver disease and liver fat using metabolic and genetic factors. Gastroenterology 137:865–872CrossRefPubMed Kotronen A, Peltonen M, Hakkarainen A et al (2009) Prediction of non-alcoholic fatty liver disease and liver fat using metabolic and genetic factors. Gastroenterology 137:865–872CrossRefPubMed
40.
go back to reference Kotronen A, Westerbacka J, Bergholm R, Pietilainen KH, Yki-Jarvinen H (2007) Liver fat in the metabolic syndrome. J Clin Endocrinol Metab 92:3490–3497CrossRefPubMed Kotronen A, Westerbacka J, Bergholm R, Pietilainen KH, Yki-Jarvinen H (2007) Liver fat in the metabolic syndrome. J Clin Endocrinol Metab 92:3490–3497CrossRefPubMed
41.
go back to reference Pacifico L, Ferraro F, Bonci E, Anania C, Romaggioli S, Chiesa C (2013) Upper limit of normal for alanine aminotransferase: quo vadis? Clin Chim Acta 422:29–39CrossRefPubMed Pacifico L, Ferraro F, Bonci E, Anania C, Romaggioli S, Chiesa C (2013) Upper limit of normal for alanine aminotransferase: quo vadis? Clin Chim Acta 422:29–39CrossRefPubMed
42.
go back to reference Williams AL, Hoofnagle JH (1988) Ratio of serum aspartate to alanine aminotransferase in chronic hepatitis. Relationship to cirrhosis. Gastroenterology 95:734–739PubMed Williams AL, Hoofnagle JH (1988) Ratio of serum aspartate to alanine aminotransferase in chronic hepatitis. Relationship to cirrhosis. Gastroenterology 95:734–739PubMed
43.
go back to reference Clark JM, Brancati FL, Diehl AM (2003) The prevalence and etiology of elevated aminotransferase levels in the United States. Am J Gastroenterol 98:960–967CrossRefPubMed Clark JM, Brancati FL, Diehl AM (2003) The prevalence and etiology of elevated aminotransferase levels in the United States. Am J Gastroenterol 98:960–967CrossRefPubMed
44.
go back to reference Jenkins CM, Mancuso DJ, Yan W, Sims HF, Gibson B, Gross RW (2004) Identification, cloning, expression, and purification of three novel human calcium-independent phospholipase A2 family members possessing triacylglycerol lipase and acylglycerol transacylase activities. J Biol Chem 279:48968–48975CrossRefPubMed Jenkins CM, Mancuso DJ, Yan W, Sims HF, Gibson B, Gross RW (2004) Identification, cloning, expression, and purification of three novel human calcium-independent phospholipase A2 family members possessing triacylglycerol lipase and acylglycerol transacylase activities. J Biol Chem 279:48968–48975CrossRefPubMed
45.
go back to reference He S, McPhaul C, Li JZ et al (2010) A sequence variation (I148M) in PNPLA3 associated with nonalcoholic fatty liver disease disrupts triglyceride hydrolysis. J Biol Chem 285:6706–6715CrossRefPubMedPubMedCentral He S, McPhaul C, Li JZ et al (2010) A sequence variation (I148M) in PNPLA3 associated with nonalcoholic fatty liver disease disrupts triglyceride hydrolysis. J Biol Chem 285:6706–6715CrossRefPubMedPubMedCentral
46.
go back to reference Kumari M, Schoiswohl G, Chitraju C et al (2012) Adiponutrin functions as a nutritionally regulated lysophosphatidic acid acyltransferase. Cell Metab 15:691–702CrossRefPubMedPubMedCentral Kumari M, Schoiswohl G, Chitraju C et al (2012) Adiponutrin functions as a nutritionally regulated lysophosphatidic acid acyltransferase. Cell Metab 15:691–702CrossRefPubMedPubMedCentral
47.
go back to reference Luukkonen P, Zhou Y, Sadevirta S, Leivonen M, Arola J, Oresic M, HyotylainenT, Yki-Jarvinen H (2016) Hepatic ceramides dissociate steatosis and insulin resistance in patients with non-alcoholic fatty liver disease. J Hepatol. doi:10.1016/j.jhep.2016.01.002 Luukkonen P, Zhou Y, Sadevirta S, Leivonen M, Arola J, Oresic M, HyotylainenT, Yki-Jarvinen H (2016) Hepatic ceramides dissociate steatosis and insulin resistance in patients with non-alcoholic fatty liver disease. J Hepatol. doi:10.​1016/​j.​jhep.​2016.​01.​002
48.
go back to reference Kozlitina J, Smagris E, Stender S, et al. (2014) Exome-wide association study identifies a TM6SF2 variant that confers susceptibility to nonalcoholic fatty liver disease. Nat Genet 46:352–356 Kozlitina J, Smagris E, Stender S, et al. (2014) Exome-wide association study identifies a TM6SF2 variant that confers susceptibility to nonalcoholic fatty liver disease. Nat Genet 46:352–356
49.
go back to reference Mahdessian H, Taxiarchis A, Popov S et al (2014) TM6SF2 is a regulator of liver fat metabolism influencing triglyceride secretion and hepatic lipid droplet content. Proc Natl Acad Sci U S A 111:8913–8918CrossRefPubMedPubMedCentral Mahdessian H, Taxiarchis A, Popov S et al (2014) TM6SF2 is a regulator of liver fat metabolism influencing triglyceride secretion and hepatic lipid droplet content. Proc Natl Acad Sci U S A 111:8913–8918CrossRefPubMedPubMedCentral
50.
go back to reference Sookoian S, Castano GO, Scian R et al (2015) Genetic variation in transmembrane 6 superfamily member 2 and the risk of nonalcoholic fatty liver disease and histological disease severity. Hepatology 61:515–525CrossRefPubMed Sookoian S, Castano GO, Scian R et al (2015) Genetic variation in transmembrane 6 superfamily member 2 and the risk of nonalcoholic fatty liver disease and histological disease severity. Hepatology 61:515–525CrossRefPubMed
51.
go back to reference Dongiovanni P, Petta S, Maglio C et al (2015) Transmembrane 6 superfamily member 2 gene variant disentangles nonalcoholic steatohepatitis from cardiovascular disease. Hepatology 61:506–514CrossRefPubMed Dongiovanni P, Petta S, Maglio C et al (2015) Transmembrane 6 superfamily member 2 gene variant disentangles nonalcoholic steatohepatitis from cardiovascular disease. Hepatology 61:506–514CrossRefPubMed
52.
go back to reference Falleti E, Cussigh A, Cmet S, Fabris C, Toniutto P (2016) PNPLA3 rs738409 and TM6SF2 rs58542926 variants increase the risk of hepatocellular carcinoma in alcoholic cirrhosis. Dig Liver Dis 48:69–75 Falleti E, Cussigh A, Cmet S, Fabris C, Toniutto P (2016) PNPLA3 rs738409 and TM6SF2 rs58542926 variants increase the risk of hepatocellular carcinoma in alcoholic cirrhosis. Dig Liver Dis 48:69–75
53.
go back to reference Zhou Y, Llaurado G, Oresic M, Hyotylainen T, Orho-Melander M, Yki-Jarvinen H (2015) Circulating triacylglycerol signatures and insulin sensitivity in NAFLD associated with the E167K variant in TM6SF2. J Hepatol 62:657–663CrossRefPubMed Zhou Y, Llaurado G, Oresic M, Hyotylainen T, Orho-Melander M, Yki-Jarvinen H (2015) Circulating triacylglycerol signatures and insulin sensitivity in NAFLD associated with the E167K variant in TM6SF2. J Hepatol 62:657–663CrossRefPubMed
Metadata
Title
Diagnosis of non-alcoholic fatty liver disease (NAFLD)
Author
Hannele Yki-Järvinen
Publication date
01-06-2016
Publisher
Springer Berlin Heidelberg
Published in
Diabetologia / Issue 6/2016
Print ISSN: 0012-186X
Electronic ISSN: 1432-0428
DOI
https://doi.org/10.1007/s00125-016-3944-1

Other articles of this Issue 6/2016

Diabetologia 6/2016 Go to the issue