Skip to main content
Top
Published in: Diabetologia 6/2016

01-06-2016 | Mini-review

Hepatic glucose and lipid metabolism

Author: John G. Jones

Published in: Diabetologia | Issue 6/2016

Login to get access

Abstract

The liver has a central role in the regulation of systemic glucose and lipid fluxes during feeding and fasting and also relies on these substrates for its own energy needs. These parallel requirements are met by coordinated control of carbohydrate and lipid fluxes into and out of the Krebs cycle, which is highly tuned to nutrient availability and heavily regulated by insulin and glucagon. During progression of type 2 diabetes, hepatic carbohydrate and lipid biosynthesis fluxes become elevated, thus contributing to hyperglycaemia and hypertriacylglycerolaemia. Over this interval there are also significant fluctuations in hepatic energy state. To date, it is not known to what extent abnormal glucose and lipid fluxes are causally linked to altered energy states. Recent evidence that the glucose-lowering effects of metformin appear to be mediated by attenuation of hepatic energy generation places an additional spotlight on the interdependence of hepatic biosynthetic and oxidative fluxes. The transition from fasting to feeding results in a significant re-direction of hepatic glucose and lipid fluxes and may also incur a temporary hepatic energy deficit. At present, it is not known to what extent these variables are additionally modified by type 2 diabetes and/or non-alcoholic fatty liver disease. Thus, there is a compelling need to measure fluxes through oxidative, gluconeogenic and lipogenic pathways and determine their relationship with hepatic energy state in both fasting and fed conditions. New magnetic resonance-based technologies allow these variables to be non-invasively studied in animal models and humans. This review summarises a presentation given at the symposium entitled ‘The liver in focus’ at the 2015 annual meeting of the EASD. It is accompanied by two other reviews on topics from this symposium (by Kenneth Cusi, DOI: 10.​1007/​s00125-016-3952-1, and by Hannele Yki-Järvinen, DOI: 10.​1007/​s00125-016-3944-1) and a commentary by the Session Chair, Michael Roden (DOI: 10.​1007/​s00125-016-3911-x).
Literature
1.
go back to reference Koliaki C, Roden M (2013) Hepatic energy metabolism in human diabetes mellitus, obesity and non-alcoholic fatty liver disease. Mol Cell Endocrinol 379:35–42CrossRefPubMed Koliaki C, Roden M (2013) Hepatic energy metabolism in human diabetes mellitus, obesity and non-alcoholic fatty liver disease. Mol Cell Endocrinol 379:35–42CrossRefPubMed
2.
go back to reference Magnusson I, Schumann WC, Bartsch GE et al (1991) Noninvasive tracing of Krebs cycle metabolism in liver. J Biol Chem 266:6975–6984PubMed Magnusson I, Schumann WC, Bartsch GE et al (1991) Noninvasive tracing of Krebs cycle metabolism in liver. J Biol Chem 266:6975–6984PubMed
3.
go back to reference Diraison F, Large V, Brunengraber H, Beylot M (1998) Non-invasive tracing of liver intermediary metabolism in normal subjects and in moderately hyperglycaemic NIDDM subjects. Evidence against increased gluconeogenesis and hepatic fatty acid oxidation in NIDDM. Diabetologia 41:212–220CrossRefPubMed Diraison F, Large V, Brunengraber H, Beylot M (1998) Non-invasive tracing of liver intermediary metabolism in normal subjects and in moderately hyperglycaemic NIDDM subjects. Evidence against increased gluconeogenesis and hepatic fatty acid oxidation in NIDDM. Diabetologia 41:212–220CrossRefPubMed
4.
go back to reference Large V, Brunengraber H, Odeon M, Beylot M (1997) Use of labeling pattern of liver glutamate to calculate rates of citric acid cycle and gluconeogenesis. Am J Physiol 272:E51–E58PubMed Large V, Brunengraber H, Odeon M, Beylot M (1997) Use of labeling pattern of liver glutamate to calculate rates of citric acid cycle and gluconeogenesis. Am J Physiol 272:E51–E58PubMed
5.
go back to reference Sunny NE, Parks EJ, Browning JD, Burgess SC (2011) Excessive hepatic mitochondrial TCA cycle and gluconeogenesis in humans with nonalcoholic fatty liver disease. Cell Metab 14:804–810CrossRefPubMedPubMedCentral Sunny NE, Parks EJ, Browning JD, Burgess SC (2011) Excessive hepatic mitochondrial TCA cycle and gluconeogenesis in humans with nonalcoholic fatty liver disease. Cell Metab 14:804–810CrossRefPubMedPubMedCentral
6.
go back to reference Jin ES, Burgess SC, Merritt ME, Sherry AD, Malloy CR (2005) Differing mechanisms of hepatic glucose overproduction in triiodothyronine-treated rats vs Zucker diabetic fatty rats by NMR analysis of plasma glucose. Am J Physiol Endocrinol Metab 288:E654–E662CrossRefPubMed Jin ES, Burgess SC, Merritt ME, Sherry AD, Malloy CR (2005) Differing mechanisms of hepatic glucose overproduction in triiodothyronine-treated rats vs Zucker diabetic fatty rats by NMR analysis of plasma glucose. Am J Physiol Endocrinol Metab 288:E654–E662CrossRefPubMed
7.
go back to reference Burgess SC, Jeffrey FMH, Storey C et al (2005) Effect of murine strain on metabolic pathways of glucose production after brief or prolonged fasting. Am J Physiol Endocrinol Metab 289:E53–E61CrossRefPubMed Burgess SC, Jeffrey FMH, Storey C et al (2005) Effect of murine strain on metabolic pathways of glucose production after brief or prolonged fasting. Am J Physiol Endocrinol Metab 289:E53–E61CrossRefPubMed
8.
go back to reference Jones JG, Solomon MA, Cole SM, Sherry AD, Malloy CR (2001) An integrated 2H and 13C NMR study of gluconeogenesis and TCA cycle flux in humans. Am J Physiol Endocrinol Metab 281:E848–E851PubMed Jones JG, Solomon MA, Cole SM, Sherry AD, Malloy CR (2001) An integrated 2H and 13C NMR study of gluconeogenesis and TCA cycle flux in humans. Am J Physiol Endocrinol Metab 281:E848–E851PubMed
9.
go back to reference Jones JG, Solomon MA, Sherry AD, Jeffrey FMH, Malloy CR (1998) 13C NMR measurements of human gluconeogenic fluxes after ingestion of [U-13C]propionate, phenylacetate, and acetaminophen. Am J Physiol Endocrinol Metab 275:E843–E852 Jones JG, Solomon MA, Sherry AD, Jeffrey FMH, Malloy CR (1998) 13C NMR measurements of human gluconeogenic fluxes after ingestion of [U-13C]propionate, phenylacetate, and acetaminophen. Am J Physiol Endocrinol Metab 275:E843–E852
10.
go back to reference Satapati S, Sunny NE, Kucejova B et al (2012) Elevated TCA cycle function in the pathology of diet-induced hepatic insulin resistance and fatty liver. J Lipid Res 53:1080–1092CrossRefPubMedPubMedCentral Satapati S, Sunny NE, Kucejova B et al (2012) Elevated TCA cycle function in the pathology of diet-induced hepatic insulin resistance and fatty liver. J Lipid Res 53:1080–1092CrossRefPubMedPubMedCentral
11.
go back to reference Madiraju AK, Erion DM, Rahimi Y et al (2014) Metformin suppresses gluconeogenesis by inhibiting mitochondrial glycerophosphate dehydrogenase. Nature 510:542–546CrossRefPubMedPubMedCentral Madiraju AK, Erion DM, Rahimi Y et al (2014) Metformin suppresses gluconeogenesis by inhibiting mitochondrial glycerophosphate dehydrogenase. Nature 510:542–546CrossRefPubMedPubMedCentral
12.
go back to reference Bridges HR, Jones AJY, Pollak MN, Hirst J (2014) Effects of metformin and other biguanides on oxidative phosphorylation in mitochondria. Biochem J 462:475–487CrossRefPubMedPubMedCentral Bridges HR, Jones AJY, Pollak MN, Hirst J (2014) Effects of metformin and other biguanides on oxidative phosphorylation in mitochondria. Biochem J 462:475–487CrossRefPubMedPubMedCentral
13.
go back to reference Tao H, Zhang Y, Zeng X, Shulman GI, Jin S (2014) Niclosamide ethanolamine-induced mild mitochondrial uncoupling improves diabetic symptoms in mice. Nat Med 20:1263–1269CrossRefPubMedPubMedCentral Tao H, Zhang Y, Zeng X, Shulman GI, Jin S (2014) Niclosamide ethanolamine-induced mild mitochondrial uncoupling improves diabetic symptoms in mice. Nat Med 20:1263–1269CrossRefPubMedPubMedCentral
14.
go back to reference Perry RJ, Zhang D, Zhang X-M, Boyer JL, Shulman GI (2015) Controlled-release mitochondrial protonophore reverses diabetes and steatohepatitis in rats. Science 347:1253–1256CrossRefPubMedPubMedCentral Perry RJ, Zhang D, Zhang X-M, Boyer JL, Shulman GI (2015) Controlled-release mitochondrial protonophore reverses diabetes and steatohepatitis in rats. Science 347:1253–1256CrossRefPubMedPubMedCentral
15.
go back to reference Landau BR, Schumann WC, Chandramouli V, Magnusson I, Kumaran K, Wahren J (1993) 14C-labeled propionate metabolism in vivo and estimates of hepatic gluconeogenesis relative to Krebs cycle flux. Am J Physiol 265:E636–E647PubMed Landau BR, Schumann WC, Chandramouli V, Magnusson I, Kumaran K, Wahren J (1993) 14C-labeled propionate metabolism in vivo and estimates of hepatic gluconeogenesis relative to Krebs cycle flux. Am J Physiol 265:E636–E647PubMed
16.
go back to reference Esenmo E, Chandramouli V, Schumann WC, Kumaran K, Wahren J, Landau BR (1992) Use of 14CO2 in estimating rates of hepatic gluconeogenesis. Am J Physiol 263:E36–E41PubMed Esenmo E, Chandramouli V, Schumann WC, Kumaran K, Wahren J, Landau BR (1992) Use of 14CO2 in estimating rates of hepatic gluconeogenesis. Am J Physiol 263:E36–E41PubMed
17.
go back to reference Schumann WC, Magnusson I, Chandramouli V, Kumaran K, Wahren J, Landau BR (1991) Metabolism of [2-14C]acetate and its use in assessing hepatic Krebs cycle activity and gluconeogenesis. J Biol Chem 266:6985–6990PubMed Schumann WC, Magnusson I, Chandramouli V, Kumaran K, Wahren J, Landau BR (1991) Metabolism of [2-14C]acetate and its use in assessing hepatic Krebs cycle activity and gluconeogenesis. J Biol Chem 266:6985–6990PubMed
18.
go back to reference Iozzo P, Bucci M, Roivainen A et al (2010) Fatty acid metabolism in the liver, measured by positron emission tomography, is increased in obese individuals. Gastroenterology 139:846–856CrossRefPubMed Iozzo P, Bucci M, Roivainen A et al (2010) Fatty acid metabolism in the liver, measured by positron emission tomography, is increased in obese individuals. Gastroenterology 139:846–856CrossRefPubMed
19.
go back to reference Vogt JA, Yarmush DM, Yu YM et al (1997) TCA cycle flux estimates from NMR- and GC-MS-determined 13C glutamate isotopomers in liver. Am J Phys 272:C2049–C2062 Vogt JA, Yarmush DM, Yu YM et al (1997) TCA cycle flux estimates from NMR- and GC-MS-determined 13C glutamate isotopomers in liver. Am J Phys 272:C2049–C2062
20.
go back to reference Jucker BM, Lee JY, Shulman RG (1998) In vivo 13C NMR measurements of hepatocellular tricarboxylic acid cycle flux. J Biol Chem 273:12187–12194CrossRefPubMed Jucker BM, Lee JY, Shulman RG (1998) In vivo 13C NMR measurements of hepatocellular tricarboxylic acid cycle flux. J Biol Chem 273:12187–12194CrossRefPubMed
21.
go back to reference Befroy DE, Perry RJ, Jain N et al (2014) Direct assessment of hepatic mitochondrial oxidative and anaplerotic fluxes in humans using dynamic 13C magnetic resonance spectroscopy. Nat Med 20:98–102CrossRefPubMedPubMedCentral Befroy DE, Perry RJ, Jain N et al (2014) Direct assessment of hepatic mitochondrial oxidative and anaplerotic fluxes in humans using dynamic 13C magnetic resonance spectroscopy. Nat Med 20:98–102CrossRefPubMedPubMedCentral
22.
go back to reference Diraison F, Large V, Maugeais C, Krempf M, Beylot M (1999) Noninvasive tracing of human liver metabolism: comparison of phenylacetate and apoB-100 to sample glutamine. Am J Physiol Endocrinol Metab 277:E529–E536 Diraison F, Large V, Maugeais C, Krempf M, Beylot M (1999) Noninvasive tracing of human liver metabolism: comparison of phenylacetate and apoB-100 to sample glutamine. Am J Physiol Endocrinol Metab 277:E529–E536
23.
go back to reference Yang DW, Previs SF, Fernandez CA et al (1996) Noninvasive probing of citric acid cycle intermediates in primate liver with phenylacetylglutamine. Am J Physiol Endocrinol Metab 270:E882–E889 Yang DW, Previs SF, Fernandez CA et al (1996) Noninvasive probing of citric acid cycle intermediates in primate liver with phenylacetylglutamine. Am J Physiol Endocrinol Metab 270:E882–E889
24.
go back to reference Weis BC, Margolis D, Burgess SC et al (2004) Glucose production pathways by 2H and 13C NMR in patients with HIV-associated lipoatrophy. Magn Reson Med 51:649–654CrossRefPubMed Weis BC, Margolis D, Burgess SC et al (2004) Glucose production pathways by 2H and 13C NMR in patients with HIV-associated lipoatrophy. Magn Reson Med 51:649–654CrossRefPubMed
25.
go back to reference Sunny NE, Kalavalapalli S, Bril F et al (2015) Cross-talk between branched-chain amino acids and hepatic mitochondria is compromised in nonalcoholic fatty liver disease. Am J Physiol Endocrinol Metab 309:E311–E319CrossRefPubMed Sunny NE, Kalavalapalli S, Bril F et al (2015) Cross-talk between branched-chain amino acids and hepatic mitochondria is compromised in nonalcoholic fatty liver disease. Am J Physiol Endocrinol Metab 309:E311–E319CrossRefPubMed
26.
go back to reference Szendroedi J, Chmelik M, Schmid AI et al (2009) Abnormal hepatic energy homeostasis in type 2 diabetes. Hepatology 50:1079–1086CrossRefPubMed Szendroedi J, Chmelik M, Schmid AI et al (2009) Abnormal hepatic energy homeostasis in type 2 diabetes. Hepatology 50:1079–1086CrossRefPubMed
27.
go back to reference Randle PJ (1998) Regulatory interactions between lipids and carbohydrates: the glucose fatty acid cycle after 35 years. Diabetes Metab Rev 14:263–283CrossRefPubMed Randle PJ (1998) Regulatory interactions between lipids and carbohydrates: the glucose fatty acid cycle after 35 years. Diabetes Metab Rev 14:263–283CrossRefPubMed
28.
go back to reference Soares AF, Viega FJ, Carvalho RA, Jones JG (2009) Quantifying hepatic glycogen synthesis by direct and indirect pathways in rats under normal ad libitum feeding conditions. Magn Reson Med 61:1–5 Soares AF, Viega FJ, Carvalho RA, Jones JG (2009) Quantifying hepatic glycogen synthesis by direct and indirect pathways in rats under normal ad libitum feeding conditions. Magn Reson Med 61:1–5
29.
go back to reference Soares AF, Carvalho RA, Veiga FJ et al (2012) Restoration of direct pathway glycogen synthesis flux in the STZ-diabetes rat model by insulin administration. Am J Physiol Endocrinol Metab 303:E875–E885CrossRefPubMed Soares AF, Carvalho RA, Veiga FJ et al (2012) Restoration of direct pathway glycogen synthesis flux in the STZ-diabetes rat model by insulin administration. Am J Physiol Endocrinol Metab 303:E875–E885CrossRefPubMed
30.
go back to reference Delgado TC, Barosa C, Nunes PM, Cerdan S, Geraldes CFGC, Jones JG (2012) Resolving the sources of plasma glucose excursions following a glucose tolerance test in the rat with deuterated water and [U-13C]glucose. PLoS ONE 7, e34042CrossRefPubMedPubMedCentral Delgado TC, Barosa C, Nunes PM, Cerdan S, Geraldes CFGC, Jones JG (2012) Resolving the sources of plasma glucose excursions following a glucose tolerance test in the rat with deuterated water and [U-13C]glucose. PLoS ONE 7, e34042CrossRefPubMedPubMedCentral
31.
go back to reference Delgado TC, Martins FO, Carvalho F et al (2013) 2H enrichment distribution of hepatic glycogen from 2H2O reveals the contribution of dietary fructose to glycogen synthesis. Am J Physiol Endocrinol Metab 304:E384–E391CrossRefPubMed Delgado TC, Martins FO, Carvalho F et al (2013) 2H enrichment distribution of hepatic glycogen from 2H2O reveals the contribution of dietary fructose to glycogen synthesis. Am J Physiol Endocrinol Metab 304:E384–E391CrossRefPubMed
32.
go back to reference Lee JJ, Lambert JE, Hovhannisyan Y et al (2015) Palmitoleic acid is elevated in fatty liver disease and reflects hepatic lipogenesis. Am J Clin Nutr 101:34–43CrossRefPubMedPubMedCentral Lee JJ, Lambert JE, Hovhannisyan Y et al (2015) Palmitoleic acid is elevated in fatty liver disease and reflects hepatic lipogenesis. Am J Clin Nutr 101:34–43CrossRefPubMedPubMedCentral
33.
go back to reference Diraison F, Pachiaudi C, Beylot M (1997) Measuring lipogenesis and cholesterol synthesis in humans with deuterated water: use of simple gas chromatographic mass spectrometric techniques. J Mass Spectrom 32:81–86CrossRefPubMed Diraison F, Pachiaudi C, Beylot M (1997) Measuring lipogenesis and cholesterol synthesis in humans with deuterated water: use of simple gas chromatographic mass spectrometric techniques. J Mass Spectrom 32:81–86CrossRefPubMed
34.
go back to reference Diraison F, Pachiaudi C, Beylot M (1996) In vivo measurement of plasma cholesterol and fatty acid synthesis with deuterated water: determination of the average number of deuterium atoms incorporated. Metab: Clin Exp 45:817–821CrossRef Diraison F, Pachiaudi C, Beylot M (1996) In vivo measurement of plasma cholesterol and fatty acid synthesis with deuterated water: determination of the average number of deuterium atoms incorporated. Metab: Clin Exp 45:817–821CrossRef
35.
go back to reference Parks EJ, Hellerstein MK (2006) Recent advances in liver triacylglycerol and fatty acid metabolism using stable isotope labeling techniques. J Lipid Res 47:1651–1660CrossRefPubMed Parks EJ, Hellerstein MK (2006) Recent advances in liver triacylglycerol and fatty acid metabolism using stable isotope labeling techniques. J Lipid Res 47:1651–1660CrossRefPubMed
36.
go back to reference Duarte JAG, Carvalho F, Pearson M et al (2014) A high-fat diet suppresses de novo lipogenesis and desaturation but not elongation and triglyceride synthesis in mice. J Lipid Res 55:2541–2553CrossRefPubMedPubMedCentral Duarte JAG, Carvalho F, Pearson M et al (2014) A high-fat diet suppresses de novo lipogenesis and desaturation but not elongation and triglyceride synthesis in mice. J Lipid Res 55:2541–2553CrossRefPubMedPubMedCentral
37.
go back to reference Martins F, Delgado TC, Viegas J et al (2015) Mechanisms by which the thiazolidinedione troglitazone protects against sucrose-induced hepatic fat accumulation and hyperinsulinemia. Br J Pharmacol 173:267–278CrossRef Martins F, Delgado TC, Viegas J et al (2015) Mechanisms by which the thiazolidinedione troglitazone protects against sucrose-induced hepatic fat accumulation and hyperinsulinemia. Br J Pharmacol 173:267–278CrossRef
38.
go back to reference Delgado TC, Pinheiro D, Caldeira M et al (2009) Sources of hepatic triglyceride accumulation during high-fat feeding in the healthy rat. NMR Biomed 22:310–317CrossRefPubMed Delgado TC, Pinheiro D, Caldeira M et al (2009) Sources of hepatic triglyceride accumulation during high-fat feeding in the healthy rat. NMR Biomed 22:310–317CrossRefPubMed
39.
go back to reference Donnelly KL, Smith CI, Schwarzenberg SJ, Jessurun J, Boldt MD, Parks EJ (2005) Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease. J Clin Investig 115:1343–1351CrossRefPubMedPubMedCentral Donnelly KL, Smith CI, Schwarzenberg SJ, Jessurun J, Boldt MD, Parks EJ (2005) Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease. J Clin Investig 115:1343–1351CrossRefPubMedPubMedCentral
40.
go back to reference Diraison F, Moulin P, Beylot M (2003) Contribution of hepatic de novo lipogenesis and reesterification of plasma non esterified fatty acids to plasma triglyceride synthesis during non-alcoholic fatty liver disease. Diabetes Metab 29:478–485CrossRefPubMed Diraison F, Moulin P, Beylot M (2003) Contribution of hepatic de novo lipogenesis and reesterification of plasma non esterified fatty acids to plasma triglyceride synthesis during non-alcoholic fatty liver disease. Diabetes Metab 29:478–485CrossRefPubMed
41.
go back to reference Parks EJ, Skokan LE, Timlin MT, Dingfelder CS (2008) Dietary sugars stimulate fatty acid synthesis in adults. J Nutr 138:1039–1046PubMedPubMedCentral Parks EJ, Skokan LE, Timlin MT, Dingfelder CS (2008) Dietary sugars stimulate fatty acid synthesis in adults. J Nutr 138:1039–1046PubMedPubMedCentral
42.
go back to reference Faeh D, Minehira K, Schwarz JM, Periasami R, Seongsu P, Tappy L (2005) Effect of fructose overfeeding and fish oil administration on hepatic de novo lipogenesis and insulin sensitivity in healthy men. Diabetes 54:1907–1913CrossRefPubMed Faeh D, Minehira K, Schwarz JM, Periasami R, Seongsu P, Tappy L (2005) Effect of fructose overfeeding and fish oil administration on hepatic de novo lipogenesis and insulin sensitivity in healthy men. Diabetes 54:1907–1913CrossRefPubMed
43.
go back to reference Schwarz J-M, Noworolski SM, Wen MJ et al (2015) Effect of a high-fructose weight-maintaining diet on lipogenesis and liver fat. J Clin Endocrinol Metab 100:2434–2442CrossRefPubMed Schwarz J-M, Noworolski SM, Wen MJ et al (2015) Effect of a high-fructose weight-maintaining diet on lipogenesis and liver fat. J Clin Endocrinol Metab 100:2434–2442CrossRefPubMed
44.
go back to reference Alves TC, Befroy DE, Kibbey RG et al (2011) Regulation of hepatic fat and glucose oxidation in rats with lipid-induced hepatic insulin resistance. Hepatology 53:1175–1181CrossRefPubMedPubMedCentral Alves TC, Befroy DE, Kibbey RG et al (2011) Regulation of hepatic fat and glucose oxidation in rats with lipid-induced hepatic insulin resistance. Hepatology 53:1175–1181CrossRefPubMedPubMedCentral
46.
go back to reference Sone H, Shimano H, Sakakura Y et al (2002) Acetyl-coenzyme A synthetase is a lipogenic enzyme controlled by SREBP-1 and energy status. Am J Physiol Endocrinol Metab 282:E222–E230CrossRefPubMed Sone H, Shimano H, Sakakura Y et al (2002) Acetyl-coenzyme A synthetase is a lipogenic enzyme controlled by SREBP-1 and energy status. Am J Physiol Endocrinol Metab 282:E222–E230CrossRefPubMed
48.
go back to reference De Vadder F, Kovatcheva-Datchary P, Goncalves D et al (2014) Microbiota-generated metabolites promote metabolic benefits via gut-brain neural circuits. Cell 156:84–96CrossRefPubMed De Vadder F, Kovatcheva-Datchary P, Goncalves D et al (2014) Microbiota-generated metabolites promote metabolic benefits via gut-brain neural circuits. Cell 156:84–96CrossRefPubMed
Metadata
Title
Hepatic glucose and lipid metabolism
Author
John G. Jones
Publication date
01-06-2016
Publisher
Springer Berlin Heidelberg
Published in
Diabetologia / Issue 6/2016
Print ISSN: 0012-186X
Electronic ISSN: 1432-0428
DOI
https://doi.org/10.1007/s00125-016-3940-5

Other articles of this Issue 6/2016

Diabetologia 6/2016 Go to the issue
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discuss last year's major advances in heart failure and cardiomyopathies.