Skip to main content
Top
Published in: Diabetologia 8/2015

01-08-2015 | Commentary

Genomic medicine at the heart of diabetes management

Author: Mark I. McCarthy

Published in: Diabetologia | Issue 8/2015

Login to get access

Abstract

Individual predisposition to type 2 diabetes is influenced by the combined effect of a constellation of genetic variants and a multitude of environmental exposures. Identification of the specific genetic variants involved, and the mechanisms through which they operate, provides a powerful approach for delivering biological insights that can drive translational benefit, one that is already widely exploited in the personalised management of monogenic and syndromic forms of diabetes. This commentary develops the argument that equivalent translational advances for more common forms of diabetes are unlikely to result solely from the ability to define more complete individual inventories of genetic risk and environmental exposure. They will also require identification of complex molecular signatures able to provide integrative, empirical, longitudinal readouts of disease progression. These signatures will track causal mechanisms and capture an individual’s position within a complex spectrum of pathophysiological processes, thereby supporting personalised approaches to intervention and treatment. This is one of a series of commentaries under the banner ‘50 years forward’, giving personal opinions on future perspectives in diabetes, to celebrate the 50th anniversary of Diabetologia (1965–2015).
Literature
1.
go back to reference Mahajan A, Go MJ, Zhang W et al (2014) Genome-wide trans-ancestry meta-analysis provides insight into the genetic architecture of type 2 diabetes susceptibility. Nat Genet 46:234–244PubMedCrossRef Mahajan A, Go MJ, Zhang W et al (2014) Genome-wide trans-ancestry meta-analysis provides insight into the genetic architecture of type 2 diabetes susceptibility. Nat Genet 46:234–244PubMedCrossRef
2.
go back to reference Morris AP, Voight BF, Teslovich TM et al (2012) Large-scale association analysis provides insights into the genetic architecture and pathophysiology of type 2 diabetes. Nat Genet 44:981–990PubMedCentralPubMedCrossRef Morris AP, Voight BF, Teslovich TM et al (2012) Large-scale association analysis provides insights into the genetic architecture and pathophysiology of type 2 diabetes. Nat Genet 44:981–990PubMedCentralPubMedCrossRef
3.
go back to reference Langenberg C, Sharp SJ, Franks PW et al (2014) Gene-lifestyle interaction and type 2 diabetes: the EPIC interact case-cohort study. PLoS Med 11:e1001647PubMedCentralPubMedCrossRef Langenberg C, Sharp SJ, Franks PW et al (2014) Gene-lifestyle interaction and type 2 diabetes: the EPIC interact case-cohort study. PLoS Med 11:e1001647PubMedCentralPubMedCrossRef
4.
go back to reference Plenge RM, Scolnick EM, Altshuler D (2013) Validating therapeutic targets through human genetics. Nat Rev Drug Discov 12:581–594PubMedCrossRef Plenge RM, Scolnick EM, Altshuler D (2013) Validating therapeutic targets through human genetics. Nat Rev Drug Discov 12:581–594PubMedCrossRef
5.
go back to reference Wessel J, Chy AY, Willems SW et al (2015) Low-frequency and rare exome chip variants associate with fasting glucose and type 2 diabetes susceptibility. Nat Commun 6:5897PubMedCentralPubMedCrossRef Wessel J, Chy AY, Willems SW et al (2015) Low-frequency and rare exome chip variants associate with fasting glucose and type 2 diabetes susceptibility. Nat Commun 6:5897PubMedCentralPubMedCrossRef
6.
go back to reference Cohen JC, Boerwinkle E, Mosley TH Jr, Hobbs HH (2006) Sequence variations in PCSK9, low LDL, and protection against coronary heart disease. N Engl J Med 354:1264–1272PubMedCrossRef Cohen JC, Boerwinkle E, Mosley TH Jr, Hobbs HH (2006) Sequence variations in PCSK9, low LDL, and protection against coronary heart disease. N Engl J Med 354:1264–1272PubMedCrossRef
7.
8.
go back to reference Gloyn AL, Pearson ER, Antcliff J et al (2004) Activating mutations in the gene encoding the ATP-sensitive potassium-channel subunit Kir6.2 and permanent neonatal diabetes. N Engl J Med 350:1838–1849PubMedCrossRef Gloyn AL, Pearson ER, Antcliff J et al (2004) Activating mutations in the gene encoding the ATP-sensitive potassium-channel subunit Kir6.2 and permanent neonatal diabetes. N Engl J Med 350:1838–1849PubMedCrossRef
9.
go back to reference Meigs JB, Shrader P, Sullivan LM et al (2008) Genotype score in addition to common risk factors for prediction of type 2 diabetes. N Engl J Med 359:2208–2219PubMedCentralPubMedCrossRef Meigs JB, Shrader P, Sullivan LM et al (2008) Genotype score in addition to common risk factors for prediction of type 2 diabetes. N Engl J Med 359:2208–2219PubMedCentralPubMedCrossRef
10.
11.
go back to reference Visscher PM, Yang J, Goddard ME (2010) A commentary on ‘common SNPs explain a large proportion of the heritability for human height’ by Yang et al. (2010). Twin Res Hum Genet 13:517–524PubMedCrossRef Visscher PM, Yang J, Goddard ME (2010) A commentary on ‘common SNPs explain a large proportion of the heritability for human height’ by Yang et al. (2010). Twin Res Hum Genet 13:517–524PubMedCrossRef
12.
Metadata
Title
Genomic medicine at the heart of diabetes management
Author
Mark I. McCarthy
Publication date
01-08-2015
Publisher
Springer Berlin Heidelberg
Published in
Diabetologia / Issue 8/2015
Print ISSN: 0012-186X
Electronic ISSN: 1432-0428
DOI
https://doi.org/10.1007/s00125-015-3588-6

Other articles of this Issue 8/2015

Diabetologia 8/2015 Go to the issue