Skip to main content
Top
Published in: Diabetologia 3/2014

01-03-2014 | Article

Mesenchymal stromal cells improve transplanted islet survival and islet function in a syngeneic mouse model

Authors: Danielle J. Borg, Marc Weigelt, Carmen Wilhelm, Michael Gerlach, Marc Bickle, Stephan Speier, Ezio Bonifacio, Angela Hommel

Published in: Diabetologia | Issue 3/2014

Login to get access

Abstract

Aims/hypothesis

Islet transplantation is used therapeutically in a minority of patients with type 1 diabetes. Successful outcomes are hampered by early islet beta cell loss. The adjuvant co-transplantation of mesenchymal stromal cells (MSCs) has the promise to improve islet transplant outcome.

Methods

We used a syngeneic marginal islet mass transplantation model in a mouse model of diabetes. Mice received islets or islets plus 250,000 MSCs. Kidney subcapsule, intra-hepatic and intra-ocular islet transplantation sites were used. Apoptosis, vascularisation, beta cell proliferation, MSC differentiation and laminin levels were determined by immunohistochemical analysis and image quantification post-transplant.

Results

Glucose homeostasis after the transplantation of syngeneic islets was improved by the co-transplantation of MSCs together with islets under the kidney capsule (p = 0.01) and by intravenous infusion of MSCs after intra-hepatic islet transplantation (p = 0.05). MSC co-transplantation resulted in reduced islet apoptosis, with reduced numbers of islet cells positive for cleaved caspase 3 being observed 14 days post-transplant. In kidney subcapsule, but not in intra-ocular islet transplant models, we observed increased re-vascularisation rates, but not increased blood vessel density in and around islets co-transplanted with MSCs compared with islets that were transplanted alone. Co-transplantation of MSCs did not increase beta cell proliferation, extracellular matrix protein laminin production or alpha cell numbers, and there was negligible MSC transdifferentiation into beta cells.

Conclusions/interpretation

Co-transplantation of MSCs may lead to improved islet function and survival in the early post-transplantation period in humans receiving islet transplantation.
Appendix
Available only for authorised users
Literature
1.
go back to reference Prockop DJ (1997) Marrow stromal cells as stem cells for nonhematopoietic tissues. Science 276:71–74PubMedCrossRef Prockop DJ (1997) Marrow stromal cells as stem cells for nonhematopoietic tissues. Science 276:71–74PubMedCrossRef
2.
go back to reference Hofstetter CP, Schwarz EJ, Hess D et al (2002) Marrow stromal cells form guiding strands in the injured spinal cord and promote recovery. Proc Natl Acad Sci U S A 99:1999–2204CrossRef Hofstetter CP, Schwarz EJ, Hess D et al (2002) Marrow stromal cells form guiding strands in the injured spinal cord and promote recovery. Proc Natl Acad Sci U S A 99:1999–2204CrossRef
3.
go back to reference Orlic D, Kajstura J, Chimenti S et al (2001) Bone marrow cells regenerate infarcted myocardium. Nature 410:701–705PubMedCrossRef Orlic D, Kajstura J, Chimenti S et al (2001) Bone marrow cells regenerate infarcted myocardium. Nature 410:701–705PubMedCrossRef
4.
go back to reference Horwitz EM, Prockop DJ, Fitzpatrick LA et al (1999) Transplantability and therapeutic effects of bone marrow derived mesenchymal cells in children with osteogenesis imperfecta. Nat Med 5:309–313PubMedCrossRef Horwitz EM, Prockop DJ, Fitzpatrick LA et al (1999) Transplantability and therapeutic effects of bone marrow derived mesenchymal cells in children with osteogenesis imperfecta. Nat Med 5:309–313PubMedCrossRef
5.
go back to reference Karp JM, Teo GSL (2009) Mesenchymal stem cell homing: the devil is in the details. Cell Stem Cell 4:206–216PubMedCrossRef Karp JM, Teo GSL (2009) Mesenchymal stem cell homing: the devil is in the details. Cell Stem Cell 4:206–216PubMedCrossRef
6.
go back to reference Gojo S, Gojo N, Takeda Y et al (2003) In vivo cardiovasculogenesis by direct injection of isolated adult mesenchymal stem cells. Exp Cell Res 288:51–59PubMedCrossRef Gojo S, Gojo N, Takeda Y et al (2003) In vivo cardiovasculogenesis by direct injection of isolated adult mesenchymal stem cells. Exp Cell Res 288:51–59PubMedCrossRef
7.
go back to reference Uccelli A, Moretta L, Pistoia V (2008) Mesenchymal stem cells in health and disease. Nat Rev Immunol 8:726–736PubMedCrossRef Uccelli A, Moretta L, Pistoia V (2008) Mesenchymal stem cells in health and disease. Nat Rev Immunol 8:726–736PubMedCrossRef
8.
go back to reference Ryan EA, Paty BW, Senior PA et al (2005) Five-year follow-up after clinical islet transplantation. Diabetes 54:2060–2069PubMedCrossRef Ryan EA, Paty BW, Senior PA et al (2005) Five-year follow-up after clinical islet transplantation. Diabetes 54:2060–2069PubMedCrossRef
9.
go back to reference Bennet W, Sundberg B, Groth CG et al (1999) Incompatibility between human blood and isolated islets of Langerhans: a finding with implications for clinical intraportal islet transplantation? Diabetes 48:1907–1914PubMedCrossRef Bennet W, Sundberg B, Groth CG et al (1999) Incompatibility between human blood and isolated islets of Langerhans: a finding with implications for clinical intraportal islet transplantation? Diabetes 48:1907–1914PubMedCrossRef
10.
go back to reference Moberg L, Johansson H, Lukinius A et al (2002) Production of tissue factor by pancreatic islet cells as a trigger of detrimental thrombotic reactions in clinical islet transplantation. Lancet 360:2039–2045PubMedCrossRef Moberg L, Johansson H, Lukinius A et al (2002) Production of tissue factor by pancreatic islet cells as a trigger of detrimental thrombotic reactions in clinical islet transplantation. Lancet 360:2039–2045PubMedCrossRef
11.
go back to reference Merani S, Shapiro A (2006) Current status of pancreatic islet transplantation. Clin Sci 110:611–625PubMedCrossRef Merani S, Shapiro A (2006) Current status of pancreatic islet transplantation. Clin Sci 110:611–625PubMedCrossRef
12.
go back to reference Rackham CL, Chagastelles PC, Nardi NB, Hauge-Evans AC, Jones PM, King AJF (2011) Co-transplantation of mesenchymal stem cells maintains islet organisation and morphology in mice. Diabetologia 54:1127–1135PubMedCrossRef Rackham CL, Chagastelles PC, Nardi NB, Hauge-Evans AC, Jones PM, King AJF (2011) Co-transplantation of mesenchymal stem cells maintains islet organisation and morphology in mice. Diabetologia 54:1127–1135PubMedCrossRef
13.
go back to reference Sordi V, Melzi R, Mercalli A et al (2010) Mesenchymal cells appearing in pancreatic tissue culture are bone marrow-derived stem cells with the capacity to improve transplanted islet function. Stem Cells 28:140–151PubMedCrossRef Sordi V, Melzi R, Mercalli A et al (2010) Mesenchymal cells appearing in pancreatic tissue culture are bone marrow-derived stem cells with the capacity to improve transplanted islet function. Stem Cells 28:140–151PubMedCrossRef
14.
go back to reference Figliuzzi M, Cornolti R, Perico N et al (2009) Bone marrow-derived mesenchymal stem cells improve islet graft function in diabetic rats. Transplant Proc 41:1797–1800PubMedCrossRef Figliuzzi M, Cornolti R, Perico N et al (2009) Bone marrow-derived mesenchymal stem cells improve islet graft function in diabetic rats. Transplant Proc 41:1797–1800PubMedCrossRef
15.
go back to reference Ito T, Itakura S, Todorov I et al (2010) Mesenchymal stem cell and islet co-transplantation promotes graft revascularization and function. Transplantation 89:1438–1445PubMedCrossRef Ito T, Itakura S, Todorov I et al (2010) Mesenchymal stem cell and islet co-transplantation promotes graft revascularization and function. Transplantation 89:1438–1445PubMedCrossRef
16.
go back to reference Berman DM, Willman MA, Han D et al (2010) Mesenchymal stem cells enhance allogeneic islet engraftment in nonhuman primates. Diabetes 59:2558–2568PubMedCrossRef Berman DM, Willman MA, Han D et al (2010) Mesenchymal stem cells enhance allogeneic islet engraftment in nonhuman primates. Diabetes 59:2558–2568PubMedCrossRef
17.
go back to reference Peister A, Mellad JA, Larson BL, Hall BM, Gibson LF, Prockop DJ (2004) Adult stem cells from bone marrow (MSCs) isolated from different strains of inbred mice vary in surface epitopes, rates of proliferation, and differentiation potential. Blood 103:1662–1668PubMedCrossRef Peister A, Mellad JA, Larson BL, Hall BM, Gibson LF, Prockop DJ (2004) Adult stem cells from bone marrow (MSCs) isolated from different strains of inbred mice vary in surface epitopes, rates of proliferation, and differentiation potential. Blood 103:1662–1668PubMedCrossRef
18.
go back to reference Speier S, Nyqvist D, Köhler M, Caicedo A, Leibiger IB, Berggren P (2008) Noninvasive high-resolution in vivo imaging of cell biology in the anterior chamber of the mouse eye. Nat Protoc 3:1278–1286PubMedCentralPubMedCrossRef Speier S, Nyqvist D, Köhler M, Caicedo A, Leibiger IB, Berggren P (2008) Noninvasive high-resolution in vivo imaging of cell biology in the anterior chamber of the mouse eye. Nat Protoc 3:1278–1286PubMedCentralPubMedCrossRef
19.
go back to reference Preibisch S, Saalfeld S, Tomancak P (2009) Globally optimal stitching of tiled 3D microscopic image acquisitions. Bioinformatics Oxf Engl 25:1–3CrossRef Preibisch S, Saalfeld S, Tomancak P (2009) Globally optimal stitching of tiled 3D microscopic image acquisitions. Bioinformatics Oxf Engl 25:1–3CrossRef
20.
go back to reference Wolf G, Ziyadeh FN (1999) Molecular mechanisms of diabetic renal hypertrophy. Kidney Int 56:393–405PubMedCrossRef Wolf G, Ziyadeh FN (1999) Molecular mechanisms of diabetic renal hypertrophy. Kidney Int 56:393–405PubMedCrossRef
21.
go back to reference Federici M, Hribal M, Perego L et al (2001) High glucose causes apoptosis in cultured human pancreatic islets of Langerhans: a potential role for regulation of specific Bcl family genes toward an apoptotic cell death program. Diabetes 50:1290–1301PubMedCrossRef Federici M, Hribal M, Perego L et al (2001) High glucose causes apoptosis in cultured human pancreatic islets of Langerhans: a potential role for regulation of specific Bcl family genes toward an apoptotic cell death program. Diabetes 50:1290–1301PubMedCrossRef
22.
go back to reference Gerhardt H, Betsholtz C (2003) Endothelial-pericyte interactions in angiogenesis. Cell Tissue Res 314:15–23PubMedCrossRef Gerhardt H, Betsholtz C (2003) Endothelial-pericyte interactions in angiogenesis. Cell Tissue Res 314:15–23PubMedCrossRef
23.
go back to reference Nikolova G, Jabs N, Konstantinova I et al (2006) The vascular basement membrane: a niche for insulin gene expression and beta cell proliferation. Dev Cell 10:397–405PubMedCrossRef Nikolova G, Jabs N, Konstantinova I et al (2006) The vascular basement membrane: a niche for insulin gene expression and beta cell proliferation. Dev Cell 10:397–405PubMedCrossRef
24.
go back to reference Lee RH, Seo MJ, Reger RL et al (2006) Multipotent stromal cells from human marrow home to and promote repair of pancreatic islets and renal glomeruli in diabetic NOD/scid mice. Proc Natl Acad Sci U S A 103:17438–17443PubMedCentralPubMedCrossRef Lee RH, Seo MJ, Reger RL et al (2006) Multipotent stromal cells from human marrow home to and promote repair of pancreatic islets and renal glomeruli in diabetic NOD/scid mice. Proc Natl Acad Sci U S A 103:17438–17443PubMedCentralPubMedCrossRef
25.
go back to reference Park KS, Kim YS, Kim JH et al (2010) Trophic molecules derived from human mesenchymal stem cells enhance survival, function, and angiogenesis of isolated islets after transplantation. Transplantation 89:509–517PubMed Park KS, Kim YS, Kim JH et al (2010) Trophic molecules derived from human mesenchymal stem cells enhance survival, function, and angiogenesis of isolated islets after transplantation. Transplantation 89:509–517PubMed
26.
go back to reference Hess D, Li L, Martin M et al (2003) Bone marrow-derived stem cells initiate pancreatic regeneration. Nat Biotechnol 21:763–770PubMedCrossRef Hess D, Li L, Martin M et al (2003) Bone marrow-derived stem cells initiate pancreatic regeneration. Nat Biotechnol 21:763–770PubMedCrossRef
27.
go back to reference Ianus A (2003) In vivo derivation of glucose-competent pancreatic endocrine cells from bone marrow without evidence of cell fusion. J Clin Invest 111:843–850PubMedCentralPubMedCrossRef Ianus A (2003) In vivo derivation of glucose-competent pancreatic endocrine cells from bone marrow without evidence of cell fusion. J Clin Invest 111:843–850PubMedCentralPubMedCrossRef
28.
go back to reference Choi JB, Uchino H, Azuma K et al (2003) Little evidence of transdifferentiation of bone marrow-derived cells into pancreatic beta cells. Diabetologia 46:1366–1374PubMedCrossRef Choi JB, Uchino H, Azuma K et al (2003) Little evidence of transdifferentiation of bone marrow-derived cells into pancreatic beta cells. Diabetologia 46:1366–1374PubMedCrossRef
29.
go back to reference Gao X, Song L, Shen K, Wang H, Niu W, Qin X (2008) Transplantation of bone marrow derived cells promotes pancreatic islet repair in diabetic mice. Biochem Biophys Res Commun 371:132–137PubMedCrossRef Gao X, Song L, Shen K, Wang H, Niu W, Qin X (2008) Transplantation of bone marrow derived cells promotes pancreatic islet repair in diabetic mice. Biochem Biophys Res Commun 371:132–137PubMedCrossRef
30.
go back to reference Hasegawa Y, Ogihara T, Yamada T et al (2007) Bone marrow (BM) transplantation promotes beta-cell regeneration after acute injury through BM cell mobilization. Endocrinology 148:2006–2015PubMedCrossRef Hasegawa Y, Ogihara T, Yamada T et al (2007) Bone marrow (BM) transplantation promotes beta-cell regeneration after acute injury through BM cell mobilization. Endocrinology 148:2006–2015PubMedCrossRef
31.
go back to reference Lechner A, Yang YG, Blacken RA, Wang L, Nolan AL, Habener JF (2004) No evidence for significant transdifferentiation of bone marrow into pancreatic beta-cells in vivo. Diabetes 53:616–623PubMedCrossRef Lechner A, Yang YG, Blacken RA, Wang L, Nolan AL, Habener JF (2004) No evidence for significant transdifferentiation of bone marrow into pancreatic beta-cells in vivo. Diabetes 53:616–623PubMedCrossRef
32.
go back to reference Mathew JM, Blomberg B, Ricordi C, Esquenazi V, Miller J (2008) Evaluation of the tolerogenic effects of donor bone marrow cells using a severe combined immunodeficient mouse–human islet transplant model. Hum Immunol 69:605–613PubMedCrossRef Mathew JM, Blomberg B, Ricordi C, Esquenazi V, Miller J (2008) Evaluation of the tolerogenic effects of donor bone marrow cells using a severe combined immunodeficient mouse–human islet transplant model. Hum Immunol 69:605–613PubMedCrossRef
33.
go back to reference Rosengren AH, Taneera J, Rymo S, Renstrom E (2009) Bone marrow transplantation stimulates pancreatic beta-cell replication after tissue damage. Islets 1:10–18PubMedCrossRef Rosengren AH, Taneera J, Rymo S, Renstrom E (2009) Bone marrow transplantation stimulates pancreatic beta-cell replication after tissue damage. Islets 1:10–18PubMedCrossRef
34.
go back to reference Taneera J, Rosengren AH, Renstrom E et al (2006) Failure of transplanted bone marrow cells to adopt a pancreatic beta-cell fate. Diabetes 55:290–296PubMedCrossRef Taneera J, Rosengren AH, Renstrom E et al (2006) Failure of transplanted bone marrow cells to adopt a pancreatic beta-cell fate. Diabetes 55:290–296PubMedCrossRef
35.
go back to reference Jansson L, Carlsson PO (2002) Graft vascular function after transplantation of pancreatic islets. Diabetologia 45:749–763PubMedCrossRef Jansson L, Carlsson PO (2002) Graft vascular function after transplantation of pancreatic islets. Diabetologia 45:749–763PubMedCrossRef
36.
go back to reference Hirshberg B, Mog S, Patterson N, Leconte J, Harlan DM (2002) Histopathological study of intrahepatic islets transplanted in the nonhuman primate model using Edmonton protocol immunosuppression. J Clin Endocrinol Metab 87:5424–5429PubMedCrossRef Hirshberg B, Mog S, Patterson N, Leconte J, Harlan DM (2002) Histopathological study of intrahepatic islets transplanted in the nonhuman primate model using Edmonton protocol immunosuppression. J Clin Endocrinol Metab 87:5424–5429PubMedCrossRef
37.
go back to reference Menger MD, Vajkoczy P, Leiderer R, Jäger S, Messmer K (1992) Influence of experimental hyperglycemia on microvascular blood perfusion of pancreatic islet isografts. J Clin Invest 90:1361–1369PubMedCentralPubMedCrossRef Menger MD, Vajkoczy P, Leiderer R, Jäger S, Messmer K (1992) Influence of experimental hyperglycemia on microvascular blood perfusion of pancreatic islet isografts. J Clin Invest 90:1361–1369PubMedCentralPubMedCrossRef
38.
go back to reference Vajkoczy P, Olofsson AM, Lehr HA et al (1995) Histogenesis and ultrastructure of pancreatic islet graft microvasculature. Evidence for graft revascularization by endothelial cells of host origin. Am J Pathol 146:1397–1405PubMed Vajkoczy P, Olofsson AM, Lehr HA et al (1995) Histogenesis and ultrastructure of pancreatic islet graft microvasculature. Evidence for graft revascularization by endothelial cells of host origin. Am J Pathol 146:1397–1405PubMed
39.
go back to reference Nikolova G, Strilic B, Lammert E (2007) The vascular niche and its basement membrane. Trends Cell Biol 17:19–25PubMedCrossRef Nikolova G, Strilic B, Lammert E (2007) The vascular niche and its basement membrane. Trends Cell Biol 17:19–25PubMedCrossRef
40.
go back to reference Vasir B, Aiello LP, Yoon KH, Quickel RR, Bonner-Weir S, Weir GC (1998) Hypoxia induces vascular endothelial growth factor gene and protein expression in cultured rat islet cells. Diabetes 47:1894–1903PubMedCrossRef Vasir B, Aiello LP, Yoon KH, Quickel RR, Bonner-Weir S, Weir GC (1998) Hypoxia induces vascular endothelial growth factor gene and protein expression in cultured rat islet cells. Diabetes 47:1894–1903PubMedCrossRef
41.
go back to reference Lai Y, Schneider D, Kidszun A et al (2005) Vascular endothelial growth factor increases functional beta-cell mass by improvement of angiogenesis of isolated human and murine pancreatic islets. Transplantation 79:1530–1536PubMedCrossRef Lai Y, Schneider D, Kidszun A et al (2005) Vascular endothelial growth factor increases functional beta-cell mass by improvement of angiogenesis of isolated human and murine pancreatic islets. Transplantation 79:1530–1536PubMedCrossRef
42.
go back to reference Park KS, Kim YS, Kim JH et al (2009) Influence of human allogenic bone marrow and cord blood-derived mesenchymal stem cell secreting trophic factors on ATP (adenosine-5′-triphosphate)/ADP (adenosine-5′-diphosphate) ratio and insulin secretory function of isolated human islets from cadaveric donor. Transplant Proc 41:3813–3818PubMedCrossRef Park KS, Kim YS, Kim JH et al (2009) Influence of human allogenic bone marrow and cord blood-derived mesenchymal stem cell secreting trophic factors on ATP (adenosine-5′-triphosphate)/ADP (adenosine-5′-diphosphate) ratio and insulin secretory function of isolated human islets from cadaveric donor. Transplant Proc 41:3813–3818PubMedCrossRef
43.
go back to reference Crisan M, Yap S, Casteilla L et al (2008) A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell 3:301–313PubMedCrossRef Crisan M, Yap S, Casteilla L et al (2008) A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell 3:301–313PubMedCrossRef
Metadata
Title
Mesenchymal stromal cells improve transplanted islet survival and islet function in a syngeneic mouse model
Authors
Danielle J. Borg
Marc Weigelt
Carmen Wilhelm
Michael Gerlach
Marc Bickle
Stephan Speier
Ezio Bonifacio
Angela Hommel
Publication date
01-03-2014
Publisher
Springer Berlin Heidelberg
Published in
Diabetologia / Issue 3/2014
Print ISSN: 0012-186X
Electronic ISSN: 1432-0428
DOI
https://doi.org/10.1007/s00125-013-3109-4

Other articles of this Issue 3/2014

Diabetologia 3/2014 Go to the issue