Skip to main content
Top
Published in: Diabetologia 9/2010

01-09-2010 | Article

Effect of physical training on mitochondrial respiration and reactive oxygen species release in skeletal muscle in patients with obesity and type 2 diabetes

Authors: M. Hey-Mogensen, K. Højlund, B. F. Vind, L. Wang, F. Dela, H. Beck-Nielsen, M. Fernström, K. Sahlin

Published in: Diabetologia | Issue 9/2010

Login to get access

Abstract

Aim/hypothesis

Studies have suggested a link between insulin resistance and mitochondrial dysfunction in skeletal muscles. Our primary aim was to investigate the effect of aerobic training on mitochondrial respiration and mitochondrial reactive oxygen species (ROS) release in skeletal muscle of obese participants with and without type 2 diabetes.

Methods

Type 2 diabetic men (n = 13) and control (n = 14) participants matched for age, BMI and physical activity completed 10 weeks of aerobic training. Pre- and post-training muscle biopsies were obtained before a euglycaemic–hyperinsulinaemic clamp and used for measurement of respiratory function and ROS release in isolated mitochondria.

Results

Training significantly increased insulin sensitivity, maximal oxygen consumption and muscle mitochondrial respiration with no difference between groups. When expressed in relation to a marker of mitochondrial density (intrinsic mitochondrial respiration), training resulted in increased mitochondrial ADP-stimulated respiration (with NADH-generating substrates) and decreased respiration without ADP. Intrinsic mitochondrial respiration was not different between groups despite lower insulin sensitivity in type 2 diabetic participants. Mitochondrial ROS release tended to be higher in participants with type 2 diabetes.

Conclusions/interpretation

Aerobic training improves muscle respiration and intrinsic mitochondrial respiration in untrained obese participants with and without type 2 diabetes. These adaptations demonstrate an increased metabolic fitness, but do not seem to be directly related to training-induced changes in insulin sensitivity.
Literature
1.
go back to reference Eriksson J, Franssilakallunki A, Ekstrand A et al (1989) Early metabolic defects in persons at increased risk for non-insulin-dependent diabetes-mellitus. N Engl J Med 321:337–343PubMed Eriksson J, Franssilakallunki A, Ekstrand A et al (1989) Early metabolic defects in persons at increased risk for non-insulin-dependent diabetes-mellitus. N Engl J Med 321:337–343PubMed
2.
go back to reference Kelley DE, Mandarino LJ (2000) Fuel selection in human skeletal muscle in insulin resistance: a reexamination. Diabetes 49:677–683CrossRefPubMed Kelley DE, Mandarino LJ (2000) Fuel selection in human skeletal muscle in insulin resistance: a reexamination. Diabetes 49:677–683CrossRefPubMed
3.
go back to reference Szendroedi J, Schmid AI, Chmelik M et al (2007) Muscle mitochondrial ATP synthesis and glucose transport/phosphorylation in type 2 diabetes. PLoS Med 4:858–867CrossRef Szendroedi J, Schmid AI, Chmelik M et al (2007) Muscle mitochondrial ATP synthesis and glucose transport/phosphorylation in type 2 diabetes. PLoS Med 4:858–867CrossRef
4.
go back to reference De Feyter HM, van den Broek NM, Praet SF, Nicolay K, van Loon LJ, Prompers JJ (2008) Early or advanced stage type 2 diabetes is not accompanied by in vivo skeletal muscle mitochondrial dysfunction. Eur J Endocrinol 158:643–653CrossRefPubMed De Feyter HM, van den Broek NM, Praet SF, Nicolay K, van Loon LJ, Prompers JJ (2008) Early or advanced stage type 2 diabetes is not accompanied by in vivo skeletal muscle mitochondrial dysfunction. Eur J Endocrinol 158:643–653CrossRefPubMed
5.
go back to reference Brons C, Jensen CB, Storgaard H et al (2008) Mitochondrial function in skeletal muscle is normal and unrelated to insulin action in young men born with low birth weight. J Clin Endocrinol Metab 93:3885–3892CrossRefPubMed Brons C, Jensen CB, Storgaard H et al (2008) Mitochondrial function in skeletal muscle is normal and unrelated to insulin action in young men born with low birth weight. J Clin Endocrinol Metab 93:3885–3892CrossRefPubMed
6.
go back to reference Phielix E, Schrauwen-Hinderling VB, Mensink M et al (2008) Lower intrinsic ADP-stimulated mitochondrial respiration underlies in vivo mitochondrial dysfunction in muscle of male type 2 diabetic patients. Diabetes 57:2943–2949CrossRefPubMed Phielix E, Schrauwen-Hinderling VB, Mensink M et al (2008) Lower intrinsic ADP-stimulated mitochondrial respiration underlies in vivo mitochondrial dysfunction in muscle of male type 2 diabetic patients. Diabetes 57:2943–2949CrossRefPubMed
7.
go back to reference Schrauwen-Hinderling VB, Kooi ME, Hesselink MKC et al (2007) Impaired in vivo mitochondrial function but similar intramyocellular lipid content in patients with type 2 diabetes mellitus and BMI-matched control subjects. Diabetologia 50:113–120CrossRefPubMed Schrauwen-Hinderling VB, Kooi ME, Hesselink MKC et al (2007) Impaired in vivo mitochondrial function but similar intramyocellular lipid content in patients with type 2 diabetes mellitus and BMI-matched control subjects. Diabetologia 50:113–120CrossRefPubMed
8.
go back to reference Petersen KF, Dufour S, Befroy D, Garcia R, Shulman GI (2004) Impaired mitochondrial activity in the insulin-resistant offspring of patients with type 2 diabetes. N Engl J Med 350:664–671CrossRefPubMed Petersen KF, Dufour S, Befroy D, Garcia R, Shulman GI (2004) Impaired mitochondrial activity in the insulin-resistant offspring of patients with type 2 diabetes. N Engl J Med 350:664–671CrossRefPubMed
9.
go back to reference Boushel R, Gnaiger E, Schjerling P, Skovbro M, Kraunsoe R, Dela F (2007) Patients with type 2 diabetes have normal mitochondrial function in skeletal muscle. Diabetologia 50:790–796CrossRefPubMed Boushel R, Gnaiger E, Schjerling P, Skovbro M, Kraunsoe R, Dela F (2007) Patients with type 2 diabetes have normal mitochondrial function in skeletal muscle. Diabetologia 50:790–796CrossRefPubMed
10.
go back to reference Rabol R, Hojberg PMV, Almdal T et al (2009) Effect of hyperglycemia on mitochondrial respiration in type 2 diabetes. J Clin Endocrinol Metab 94:1372–1378CrossRefPubMed Rabol R, Hojberg PMV, Almdal T et al (2009) Effect of hyperglycemia on mitochondrial respiration in type 2 diabetes. J Clin Endocrinol Metab 94:1372–1378CrossRefPubMed
11.
go back to reference Kelley DE, He J, Menshikova EV, Ritov VB (2002) Dysfunction of mitochondria in human skeletal muscle in type 2 diabetes. Diabetes 51:2944–2950CrossRefPubMed Kelley DE, He J, Menshikova EV, Ritov VB (2002) Dysfunction of mitochondria in human skeletal muscle in type 2 diabetes. Diabetes 51:2944–2950CrossRefPubMed
12.
go back to reference Ritov VB, Menshikova EV, He J, Ferrell RE, Goodpaster BH, Kelley DE (2005) Deficiency of subsarcolemmal mitochondria in obesity and type 2 diabetes. Diabetes 54:8–14CrossRefPubMed Ritov VB, Menshikova EV, He J, Ferrell RE, Goodpaster BH, Kelley DE (2005) Deficiency of subsarcolemmal mitochondria in obesity and type 2 diabetes. Diabetes 54:8–14CrossRefPubMed
13.
go back to reference Mogensen M, Sahlin K, Fernstrom M et al (2007) Mitochondrial respiration is decreased in skeletal muscle of patients with type 2 diabetes. Diabetes 56:1592–1599CrossRefPubMed Mogensen M, Sahlin K, Fernstrom M et al (2007) Mitochondrial respiration is decreased in skeletal muscle of patients with type 2 diabetes. Diabetes 56:1592–1599CrossRefPubMed
14.
go back to reference Asmann YW, Stump CS, Short KR et al (2006) Skeletal muscle mitochondrial functions, mitochondrial DNA copy numbers, and gene transcript profiles in type 2 diabetic and nondiabetic subjects at equal levels of low or high insulin and euglycemia. Diabetes 55:3309–3319CrossRefPubMed Asmann YW, Stump CS, Short KR et al (2006) Skeletal muscle mitochondrial functions, mitochondrial DNA copy numbers, and gene transcript profiles in type 2 diabetic and nondiabetic subjects at equal levels of low or high insulin and euglycemia. Diabetes 55:3309–3319CrossRefPubMed
15.
go back to reference Nair KS, Bigelow ML, Asmann YW et al (2008) Asian Indians have enhanced skeletal muscle mitochondrial capacity to produce ATP in association with severe insulin resistance. Diabetes 57:1166–1175CrossRefPubMed Nair KS, Bigelow ML, Asmann YW et al (2008) Asian Indians have enhanced skeletal muscle mitochondrial capacity to produce ATP in association with severe insulin resistance. Diabetes 57:1166–1175CrossRefPubMed
16.
go back to reference Maddux BA, See W, Lawrence JC, Goldfine AL, Goldfine ID, Evans JL (2001) Protection against oxidative stress-induced insulin resistance in rat L6 muscle cells by micromolar concentrations of alpha-lipoic acid. Diabetes 50:404–410CrossRefPubMed Maddux BA, See W, Lawrence JC, Goldfine AL, Goldfine ID, Evans JL (2001) Protection against oxidative stress-induced insulin resistance in rat L6 muscle cells by micromolar concentrations of alpha-lipoic acid. Diabetes 50:404–410CrossRefPubMed
17.
go back to reference Evans JL, Goldfine ID, Maddux BA, Grodsky GM (2002) Oxidative stress and stress-activated signaling pathways: a unifying hypothesis of type 2 diabetes. Endocr Rev 23:599–622CrossRefPubMed Evans JL, Goldfine ID, Maddux BA, Grodsky GM (2002) Oxidative stress and stress-activated signaling pathways: a unifying hypothesis of type 2 diabetes. Endocr Rev 23:599–622CrossRefPubMed
18.
go back to reference Anderson EJ, Lustig ME, Boyle KE et al (2009) Mitochondrial H2O2 emission and cellular redox state link excess fat intake to insulin resistance in both rodents and humans. J Clin Investig 119:573–581CrossRef Anderson EJ, Lustig ME, Boyle KE et al (2009) Mitochondrial H2O2 emission and cellular redox state link excess fat intake to insulin resistance in both rodents and humans. J Clin Investig 119:573–581CrossRef
19.
go back to reference Abdul-Ghani MA, Jani R, Chavez A, Molina-Carrion M, Tripathy D, DeFronzo RA (2009) Mitochondrial reactive oxygen species generation in obese non-diabetic and type 2 diabetic participants. Diabetologia 52:574–582CrossRefPubMed Abdul-Ghani MA, Jani R, Chavez A, Molina-Carrion M, Tripathy D, DeFronzo RA (2009) Mitochondrial reactive oxygen species generation in obese non-diabetic and type 2 diabetic participants. Diabetologia 52:574–582CrossRefPubMed
20.
go back to reference Ristow M, Zarse K, Oberbach A et al (2009) Antioxidants prevent health-promoting effects of physical exercise in humans. Proc Natl Acad Sci U S A 106:8665–8670CrossRefPubMed Ristow M, Zarse K, Oberbach A et al (2009) Antioxidants prevent health-promoting effects of physical exercise in humans. Proc Natl Acad Sci U S A 106:8665–8670CrossRefPubMed
21.
go back to reference Loh K, Deng HY, Fukushima A et al (2009) Reactive oxygen species enhance insulin sensitivity. Cell Metab 10:260–272CrossRefPubMed Loh K, Deng HY, Fukushima A et al (2009) Reactive oxygen species enhance insulin sensitivity. Cell Metab 10:260–272CrossRefPubMed
22.
go back to reference Turrens JF (2003) Mitochondrial formation of reactive oxygen species. J Physiol-London 552:335–344CrossRefPubMed Turrens JF (2003) Mitochondrial formation of reactive oxygen species. J Physiol-London 552:335–344CrossRefPubMed
23.
go back to reference Venditti P, Masullo P, Di Meo S (1999) Effect of training on H2O2 release by mitochondria from rat skeletal muscle. Arch Biochem Biophys 372:315–320CrossRefPubMed Venditti P, Masullo P, Di Meo S (1999) Effect of training on H2O2 release by mitochondria from rat skeletal muscle. Arch Biochem Biophys 372:315–320CrossRefPubMed
24.
go back to reference Dela F, Larsen JJ, Mikines KJ, Ploug T, Petersen LN, Galbo H (1995) Insulin-stimulated muscle glucose clearance in patients with niddm—effects of one-legged physical-training. Diabetes 44:1010–1020CrossRefPubMed Dela F, Larsen JJ, Mikines KJ, Ploug T, Petersen LN, Galbo H (1995) Insulin-stimulated muscle glucose clearance in patients with niddm—effects of one-legged physical-training. Diabetes 44:1010–1020CrossRefPubMed
25.
go back to reference Bruce CR, Hawley JA (2004) Improvements in insulin resistance with aerobic exercise training: a lipocentric approach. Med Sci Sports Exerc 36:1196–1201PubMed Bruce CR, Hawley JA (2004) Improvements in insulin resistance with aerobic exercise training: a lipocentric approach. Med Sci Sports Exerc 36:1196–1201PubMed
26.
go back to reference Meex RC, Schrauwen-Hinderling VB, Moonen-Kornips E et al (2010) Restoration of muscle mitochondrial function and metabolic flexibility in type 2 diabetes by exercise training is paralleled by increased myocellular fat storage and improved insulin sensitivity. Diabetes 59:572–579CrossRefPubMed Meex RC, Schrauwen-Hinderling VB, Moonen-Kornips E et al (2010) Restoration of muscle mitochondrial function and metabolic flexibility in type 2 diabetes by exercise training is paralleled by increased myocellular fat storage and improved insulin sensitivity. Diabetes 59:572–579CrossRefPubMed
27.
go back to reference Toledo FGS, Menshikova EV, Ritov VB et al (2007) Effects of physical activity and weight loss on skeletal muscle mitochondria and relationship with glucose control in type 2 diabetes. Diabetes 56:2142–2147CrossRefPubMed Toledo FGS, Menshikova EV, Ritov VB et al (2007) Effects of physical activity and weight loss on skeletal muscle mitochondria and relationship with glucose control in type 2 diabetes. Diabetes 56:2142–2147CrossRefPubMed
28.
go back to reference Fritz T, Kramer DK, Karlsson HKR et al (2006) Low-intensity exercise increases sketelal muscle protein expression of PPAR delta and UCP3 in type 2 diabetic patients. Diab/Metab Res Rev 22:492–498CrossRef Fritz T, Kramer DK, Karlsson HKR et al (2006) Low-intensity exercise increases sketelal muscle protein expression of PPAR delta and UCP3 in type 2 diabetic patients. Diab/Metab Res Rev 22:492–498CrossRef
29.
go back to reference De Filippis E, Alvarez G, Berria R et al (2008) Insulin-resistant muscle is exercise resistant: evidence for reduced response of nuclear-encoded mitochondrial genes to exercise. Am J Physiol Endocrinol Metab 294:E607–E614CrossRefPubMed De Filippis E, Alvarez G, Berria R et al (2008) Insulin-resistant muscle is exercise resistant: evidence for reduced response of nuclear-encoded mitochondrial genes to exercise. Am J Physiol Endocrinol Metab 294:E607–E614CrossRefPubMed
30.
go back to reference Mogensen M, Vind BF, Hojlund K, Beck-Nielsen H, Sahlin K (2009) Maximal lipid oxidation in patients with type 2 diabetes is normal and shows an adequate increase in response to aerobic training. Diabetes Obes Metab 11:874–883 Mogensen M, Vind BF, Hojlund K, Beck-Nielsen H, Sahlin K (2009) Maximal lipid oxidation in patients with type 2 diabetes is normal and shows an adequate increase in response to aerobic training. Diabetes Obes Metab 11:874–883
31.
go back to reference Tonkonogi M, Sahlin K (1997) Rate of oxidative phosphorylation in isolated mitochondria from human skeletal muscle: effect of training status. Acta Physiol Scand 161:345–353CrossRefPubMed Tonkonogi M, Sahlin K (1997) Rate of oxidative phosphorylation in isolated mitochondria from human skeletal muscle: effect of training status. Acta Physiol Scand 161:345–353CrossRefPubMed
32.
go back to reference Hansen EA, Andersen JL, Nielsen JS, Sjogaard G (2002) Muscle fibre type, efficiency, and mechanical optima affect freely chosen pedal rate during cycling. Acta Physiol Scand 176:185–194CrossRefPubMed Hansen EA, Andersen JL, Nielsen JS, Sjogaard G (2002) Muscle fibre type, efficiency, and mechanical optima affect freely chosen pedal rate during cycling. Acta Physiol Scand 176:185–194CrossRefPubMed
33.
go back to reference Tonkonogi M, Fernstrom M, Walsh B et al (2003) Reduced oxidative power but unchanged antioxidative capacity in skeletal muscle from aged humans. Pflugers Arch 446:261–269PubMed Tonkonogi M, Fernstrom M, Walsh B et al (2003) Reduced oxidative power but unchanged antioxidative capacity in skeletal muscle from aged humans. Pflugers Arch 446:261–269PubMed
34.
go back to reference Alp PR, Newsholme EA, Zammit VA (1976) Activities of citrate synthase and NAD+-linked and NADP+-linked isocitrate dehydrogenase in muscle from vertebrates and invertebrates. Biochem J 154:689–700PubMed Alp PR, Newsholme EA, Zammit VA (1976) Activities of citrate synthase and NAD+-linked and NADP+-linked isocitrate dehydrogenase in muscle from vertebrates and invertebrates. Biochem J 154:689–700PubMed
35.
go back to reference Mogensen M, Bagger M, Pedersen PK, Fernstrom M, Sahlin K (2006) Cycling efficiency in humans is related to low UCP3 content and to type I fibres but not to mitochondrial efficiency. J Physiol-London 571:669–681CrossRefPubMed Mogensen M, Bagger M, Pedersen PK, Fernstrom M, Sahlin K (2006) Cycling efficiency in humans is related to low UCP3 content and to type I fibres but not to mitochondrial efficiency. J Physiol-London 571:669–681CrossRefPubMed
36.
go back to reference Nabben M, Hoeks J, Glatz JFC, Briede JJ, Hesselink MKC, Schrauwen P (2008) UCP3 and mitochondrial ROS production in cardiac and skeletal muscle. Cardiovasc Drugs Ther 22:151 Nabben M, Hoeks J, Glatz JFC, Briede JJ, Hesselink MKC, Schrauwen P (2008) UCP3 and mitochondrial ROS production in cardiac and skeletal muscle. Cardiovasc Drugs Ther 22:151
37.
go back to reference Larsen S, Ara I, Rabol R, et al (2009) Are substrate use during exercise and mitochondrial respiratory capacity decreased in arm and leg muscle in type 2 diabetes? Diabetologia 52:1400–1408 Larsen S, Ara I, Rabol R, et al (2009) Are substrate use during exercise and mitochondrial respiratory capacity decreased in arm and leg muscle in type 2 diabetes? Diabetologia 52:1400–1408
38.
go back to reference Bandyopadhyay GK, Yu JG, Ofrecio J, Olefsky JM (2006) Increased malonyl-CoA levels in muscle from obese and type 2 diabetic subjects lead to decreased fatty acid oxidation and increased lipogenesis; thiazolidinedione treatment reverses these defects. Diabetes 55:2277–2285CrossRefPubMed Bandyopadhyay GK, Yu JG, Ofrecio J, Olefsky JM (2006) Increased malonyl-CoA levels in muscle from obese and type 2 diabetic subjects lead to decreased fatty acid oxidation and increased lipogenesis; thiazolidinedione treatment reverses these defects. Diabetes 55:2277–2285CrossRefPubMed
Metadata
Title
Effect of physical training on mitochondrial respiration and reactive oxygen species release in skeletal muscle in patients with obesity and type 2 diabetes
Authors
M. Hey-Mogensen
K. Højlund
B. F. Vind
L. Wang
F. Dela
H. Beck-Nielsen
M. Fernström
K. Sahlin
Publication date
01-09-2010
Publisher
Springer-Verlag
Published in
Diabetologia / Issue 9/2010
Print ISSN: 0012-186X
Electronic ISSN: 1432-0428
DOI
https://doi.org/10.1007/s00125-010-1813-x

Other articles of this Issue 9/2010

Diabetologia 9/2010 Go to the issue