Skip to main content
Top
Published in: Diabetologia 7/2007

01-07-2007 | Article

Automated measurement of brain and white matter lesion volume in type 2 diabetes mellitus

Authors: C. Jongen, J. van der Grond, L. J. Kappelle, G. J. Biessels, M. A. Viergever, J. P. W. Pluim, on behalf of the Utrecht Diabetic Encephalopathy Study Group

Published in: Diabetologia | Issue 7/2007

Login to get access

Abstract

Aims/hypothesis

Type 2 diabetes mellitus has been associated with brain atrophy and cognitive decline, but the association with ischaemic white matter lesions is unclear. Previous neuroimaging studies have mainly used semiquantitative rating scales to measure atrophy and white matter lesions (WMLs). In this study we used an automated segmentation technique to investigate the association of type 2 diabetes, several diabetes-related risk factors and cognition with cerebral tissue and WML volumes.

Subjects and methods

Magnetic resonance images of 99 patients with type 2 diabetes and 46 control participants from a population-based sample were segmented using a k-nearest neighbour classifier trained on ten manually segmented data sets. White matter, grey matter, lateral ventricles, cerebrospinal fluid not including lateral ventricles, and WML volumes were assessed. Analyses were adjusted for age, sex, level of education and intracranial volume.

Results

Type 2 diabetes was associated with a smaller volume of grey matter (−21.8 ml; 95% CI −34.2, −9.4) and with larger lateral ventricle volume (7.1 ml; 95% CI 2.3, 12.0) and with larger white matter lesion volume (56.5%; 95% CI 4.0, 135.8), whereas white matter volume was not affected. In separate analyses for men and women, the effects of diabetes were only significant in women.

Conclusions/interpretation

The combination of atrophy with larger WML volume indicates that type 2 diabetes is associated with mixed pathology in the brain. The observed sex differences were unexpected and need to be addressed in further studies.
Appendix
Available only for authorised users
Literature
1.
go back to reference Allen KV, Frier BM, Strachan MWJ (2004) The relationship between type 2 diabetes and cognitive dysfunction: longitudinal studies and their methodological limitations. Eur J Pharmacol 490:169–175CrossRefPubMed Allen KV, Frier BM, Strachan MWJ (2004) The relationship between type 2 diabetes and cognitive dysfunction: longitudinal studies and their methodological limitations. Eur J Pharmacol 490:169–175CrossRefPubMed
2.
go back to reference Manschot SM, Brands AMA, van der Grond J et al (2006) Brain magnetic resonance imaging correlates of impaired cognition in patients with type 2 diabetes. Diabetes 55:1106–1113CrossRefPubMed Manschot SM, Brands AMA, van der Grond J et al (2006) Brain magnetic resonance imaging correlates of impaired cognition in patients with type 2 diabetes. Diabetes 55:1106–1113CrossRefPubMed
3.
go back to reference Araki Y, Nomura M, Tanaka H et al (1994) MRI of the brain in diabetes mellitus. Neuroradiology 36:101–103CrossRefPubMed Araki Y, Nomura M, Tanaka H et al (1994) MRI of the brain in diabetes mellitus. Neuroradiology 36:101–103CrossRefPubMed
4.
go back to reference Schmidt R, Launer LJ, Nilsson LG et al (2004) Magnetic resonance imaging of the brain in diabetes: the Cardiovascular Determinants of Dementia (CASCADE) Study. Diabetes 53:687–692CrossRefPubMed Schmidt R, Launer LJ, Nilsson LG et al (2004) Magnetic resonance imaging of the brain in diabetes: the Cardiovascular Determinants of Dementia (CASCADE) Study. Diabetes 53:687–692CrossRefPubMed
5.
go back to reference den Heijer T, Vermeer SE, van Dijk EJ et al (2003) Type 2 diabetes and atrophy of medial temporal lobe structures on brain MRI. Diabetologia 46:1604–1610CrossRef den Heijer T, Vermeer SE, van Dijk EJ et al (2003) Type 2 diabetes and atrophy of medial temporal lobe structures on brain MRI. Diabetologia 46:1604–1610CrossRef
6.
go back to reference Vermeer SE, den Heijer T, Koudstaal PJ, Oudkerk M, Hofman A, Breteler MMB (2003) Incidence and risk factors of silent brain infarcts in the population-based Rotterdam Scan Study. Stroke 34:392–396CrossRefPubMed Vermeer SE, den Heijer T, Koudstaal PJ, Oudkerk M, Hofman A, Breteler MMB (2003) Incidence and risk factors of silent brain infarcts in the population-based Rotterdam Scan Study. Stroke 34:392–396CrossRefPubMed
7.
go back to reference Streifler JY, Eliasziw M, Benavente OR et al (2003) Development and progression of leukoaraiosis in patients with brain ischemia and carotid artery disease. Stroke 34:1913–1917CrossRefPubMed Streifler JY, Eliasziw M, Benavente OR et al (2003) Development and progression of leukoaraiosis in patients with brain ischemia and carotid artery disease. Stroke 34:1913–1917CrossRefPubMed
8.
go back to reference Ylikoski A, Erkinjuntti T, Raininko R, Sarna S, Sulkava R, Tilvis R (1995) White matter hyperintensities on MRI in the neurologically nondiseased elderly. Analysis of cohorts of consecutive subjects aged 55 to 85 years living at home. Stroke 26:1171–1177PubMed Ylikoski A, Erkinjuntti T, Raininko R, Sarna S, Sulkava R, Tilvis R (1995) White matter hyperintensities on MRI in the neurologically nondiseased elderly. Analysis of cohorts of consecutive subjects aged 55 to 85 years living at home. Stroke 26:1171–1177PubMed
9.
go back to reference Kertesz A, Black SE, Tokar G, Benke T, Carr T, Nicholson L (1988) Periventricular and subcortical hyperintensities on magnetic resonance imaging. ‘Rims, caps, and unidentified bright objects’. Arch Neurol 45:404–408PubMed Kertesz A, Black SE, Tokar G, Benke T, Carr T, Nicholson L (1988) Periventricular and subcortical hyperintensities on magnetic resonance imaging. ‘Rims, caps, and unidentified bright objects’. Arch Neurol 45:404–408PubMed
10.
go back to reference Schmidt R, Fazekas F, Kleinert G et al (1992) Magnetic resonance imaging signal hyperintensities in the deep and subcortical white matter. A comparative study between stroke patients and normal volunteers. Arch Neurol 49:825–827PubMed Schmidt R, Fazekas F, Kleinert G et al (1992) Magnetic resonance imaging signal hyperintensities in the deep and subcortical white matter. A comparative study between stroke patients and normal volunteers. Arch Neurol 49:825–827PubMed
11.
go back to reference Erkinjuntti T, Gao F, Lee DH, Eliasziw M, Merskey H, Hachinski VC (1994) Lack of difference in brain hyperintensities between patients with early Alzheimer’s disease and control subjects. Arch Neurol 51:260–268PubMed Erkinjuntti T, Gao F, Lee DH, Eliasziw M, Merskey H, Hachinski VC (1994) Lack of difference in brain hyperintensities between patients with early Alzheimer’s disease and control subjects. Arch Neurol 51:260–268PubMed
12.
go back to reference Fazekas F, Niederkorn K, Schmidt R et al (1988) White matter signal abnormalities in normal individuals: correlation with carotid ultrasonography, cerebral blood flow measurements, and cerebrovascular risk factors. Stroke 19:1285–1288PubMed Fazekas F, Niederkorn K, Schmidt R et al (1988) White matter signal abnormalities in normal individuals: correlation with carotid ultrasonography, cerebral blood flow measurements, and cerebrovascular risk factors. Stroke 19:1285–1288PubMed
13.
go back to reference Taylor WD, MacFall JR, Provenzale JM et al (2003) Serial MR imaging of volumes of hyperintense white matter lesions in elderly patients: correlation with vascular risk factors. Am J Roentgenol 181:571–576 Taylor WD, MacFall JR, Provenzale JM et al (2003) Serial MR imaging of volumes of hyperintense white matter lesions in elderly patients: correlation with vascular risk factors. Am J Roentgenol 181:571–576
14.
go back to reference Jeerakathil T, Wolf PA, Beiser A et al (2004) Stroke risk profile predicts white matter hyperintensity volume: the Framingham Study. Stroke 35:1857–1861CrossRefPubMed Jeerakathil T, Wolf PA, Beiser A et al (2004) Stroke risk profile predicts white matter hyperintensity volume: the Framingham Study. Stroke 35:1857–1861CrossRefPubMed
15.
go back to reference Longstreth WT, Manolio TA, Arnold A et al (1996) Clinical correlates of white matter findings on cranial magnetic resonance imaging of 3,301 elderly people. The Cardiovascular Health Study. Stroke 27:1274–1282PubMed Longstreth WT, Manolio TA, Arnold A et al (1996) Clinical correlates of white matter findings on cranial magnetic resonance imaging of 3,301 elderly people. The Cardiovascular Health Study. Stroke 27:1274–1282PubMed
16.
go back to reference Fukuda H, Kitani M (1995) Differences between treated and untreated hypertensive subjects in the extent of periventricular hyperintensities observed on brain MRI. Stroke 26:1593–1597PubMed Fukuda H, Kitani M (1995) Differences between treated and untreated hypertensive subjects in the extent of periventricular hyperintensities observed on brain MRI. Stroke 26:1593–1597PubMed
17.
go back to reference Manolio TA, Kronmal RA, Burke GL et al (1994) Magnetic resonance abnormalities and cardiovascular disease in older adults. The Cardiovascular Health Study. Stroke 25:318–327PubMed Manolio TA, Kronmal RA, Burke GL et al (1994) Magnetic resonance abnormalities and cardiovascular disease in older adults. The Cardiovascular Health Study. Stroke 25:318–327PubMed
18.
go back to reference Schmidt R, Enzinger C, Ropele S, Schmidt H, Fazekas F (2003) Progression of cerebral white matter lesions: 6-year results of the Austrian Stroke Prevention Study. Lancet 361:2046–2048CrossRefPubMed Schmidt R, Enzinger C, Ropele S, Schmidt H, Fazekas F (2003) Progression of cerebral white matter lesions: 6-year results of the Austrian Stroke Prevention Study. Lancet 361:2046–2048CrossRefPubMed
19.
go back to reference Wen W, Sachdev P (2004) The topography of white matter hyperintensities on brain MRI in healthy 60- to 64-year-old individuals. Neuroimage 22:144–154CrossRefPubMed Wen W, Sachdev P (2004) The topography of white matter hyperintensities on brain MRI in healthy 60- to 64-year-old individuals. Neuroimage 22:144–154CrossRefPubMed
20.
go back to reference Anbeek P, Vincken KL, van Bochove GS, van Osch MJP, van der Grond J (2005) Probabilistic segmentation of brain tissue in MR imaging. Neuroimage 27:795–804CrossRefPubMed Anbeek P, Vincken KL, van Bochove GS, van Osch MJP, van der Grond J (2005) Probabilistic segmentation of brain tissue in MR imaging. Neuroimage 27:795–804CrossRefPubMed
21.
go back to reference Hochstenbach J, Mulder T, van Limbeek J, Donders R, Schoonderwaldt H (1998) Cognitive decline following stroke: a comprehensive study of cognitive decline following stroke. J Clin Exp Neuropsychol 20:503–517PubMed Hochstenbach J, Mulder T, van Limbeek J, Donders R, Schoonderwaldt H (1998) Cognitive decline following stroke: a comprehensive study of cognitive decline following stroke. J Clin Exp Neuropsychol 20:503–517PubMed
22.
go back to reference Wilson PW, Garrison RJ, Castelli WP, Feinleib M, McNamara PM, Kannel WB (1980) Prevalence of coronary heart disease in the Framingham Offspring Study: the role of lipoprotein cholesterols. Am J Cardiol 46:649–654CrossRefPubMed Wilson PW, Garrison RJ, Castelli WP, Feinleib M, McNamara PM, Kannel WB (1980) Prevalence of coronary heart disease in the Framingham Offspring Study: the role of lipoprotein cholesterols. Am J Cardiol 46:649–654CrossRefPubMed
23.
go back to reference Maes F, Collignon A, Vandermeulen D, Marchal G, Suetens P (1997) Multimodality image registration by maximization of mutual information. IEEE Trans Med Imag 16:187–198CrossRef Maes F, Collignon A, Vandermeulen D, Marchal G, Suetens P (1997) Multimodality image registration by maximization of mutual information. IEEE Trans Med Imag 16:187–198CrossRef
24.
go back to reference Biessels GJ, Staekenborg S, Brunner E, Brayne C, Scheltens P (2006) Risk of dementia in diabetes mellitus: a systematic review. Lancet Neurol 5:64–74CrossRefPubMed Biessels GJ, Staekenborg S, Brunner E, Brayne C, Scheltens P (2006) Risk of dementia in diabetes mellitus: a systematic review. Lancet Neurol 5:64–74CrossRefPubMed
25.
go back to reference Lemaitre H, Crivello F, Grassiot B, Alperovitch A, Tzourio C, Mazoyer B (2005) Age-and sex-related effects on the neuroanatomy of healthy elderly. Neuroimage 26:900–911CrossRefPubMed Lemaitre H, Crivello F, Grassiot B, Alperovitch A, Tzourio C, Mazoyer B (2005) Age-and sex-related effects on the neuroanatomy of healthy elderly. Neuroimage 26:900–911CrossRefPubMed
26.
go back to reference Blatter DD, Bigler ED, Gale SD et al (1995) Quantitative volumetric analysis of brain MR: normative database spanning 5 decades of life. Am J Neuroradiol 16:241–251PubMed Blatter DD, Bigler ED, Gale SD et al (1995) Quantitative volumetric analysis of brain MR: normative database spanning 5 decades of life. Am J Neuroradiol 16:241–251PubMed
27.
go back to reference Good CD, Johnsrude IS, Ashburner J, Henson RNA, Friston KJ, Frackowiak RSJ (2001) A voxel-based morphometric study of ageing in 465 normal adult human brains. Neuroimage 14:21–36CrossRefPubMed Good CD, Johnsrude IS, Ashburner J, Henson RNA, Friston KJ, Frackowiak RSJ (2001) A voxel-based morphometric study of ageing in 465 normal adult human brains. Neuroimage 14:21–36CrossRefPubMed
28.
go back to reference Xu J, Kobayashi S, Yamaguchi S, Iijima Ki, Okada K, Yamashita K (2000) Gender effects on age-related changes in brain structure. Am J Neuroradiol 21:112–118PubMed Xu J, Kobayashi S, Yamaguchi S, Iijima Ki, Okada K, Yamashita K (2000) Gender effects on age-related changes in brain structure. Am J Neuroradiol 21:112–118PubMed
29.
go back to reference Allen JS, Damasio H, Grabowski TJ (2002) Normal neuroanatomical variation in the human brain: an MRI-volumetric study. Am J Phys Anthropol 118:341–358CrossRefPubMed Allen JS, Damasio H, Grabowski TJ (2002) Normal neuroanatomical variation in the human brain: an MRI-volumetric study. Am J Phys Anthropol 118:341–358CrossRefPubMed
30.
go back to reference Taki Y, Goto R, Evans A et al (2004) Voxel-based morphometry of human brain with age and cerebrovascular risk factors. Neurobiol Aging 25:455–463CrossRefPubMed Taki Y, Goto R, Evans A et al (2004) Voxel-based morphometry of human brain with age and cerebrovascular risk factors. Neurobiol Aging 25:455–463CrossRefPubMed
31.
go back to reference de Leeuw FE, de Groot JC, Achten E et al (2001) Prevalence of cerebral white matter lesions in elderly people: a population based magnetic resonance imaging study. The Rotterdam Scan Study. J Neurol Neurosurg Psychiatry 70:9–14CrossRefPubMed de Leeuw FE, de Groot JC, Achten E et al (2001) Prevalence of cerebral white matter lesions in elderly people: a population based magnetic resonance imaging study. The Rotterdam Scan Study. J Neurol Neurosurg Psychiatry 70:9–14CrossRefPubMed
32.
go back to reference van den Heuvel DMJ, Admiraal-Behloul F, ten Dam VH et al (2004) Different progression rates for deep white matter hyperintensities in elderly men and women. Neurology 63:1699–1701PubMed van den Heuvel DMJ, Admiraal-Behloul F, ten Dam VH et al (2004) Different progression rates for deep white matter hyperintensities in elderly men and women. Neurology 63:1699–1701PubMed
33.
go back to reference Sawada H, Udaka F, Izumi Y et al (2000) Cerebral white matter lesions are not associated with apoE genotype but with age and female sex in Alzheimer’s disease. J Neurol Neurosurg Psychiatry 68:653–656CrossRefPubMed Sawada H, Udaka F, Izumi Y et al (2000) Cerebral white matter lesions are not associated with apoE genotype but with age and female sex in Alzheimer’s disease. J Neurol Neurosurg Psychiatry 68:653–656CrossRefPubMed
34.
go back to reference Enzinger C, Fazekas F, Matthews PM et al (2005) Risk factors for progression of brain atrophy in aging: six-year follow-up of normal subjects. Neurology 64:1704–1711CrossRefPubMed Enzinger C, Fazekas F, Matthews PM et al (2005) Risk factors for progression of brain atrophy in aging: six-year follow-up of normal subjects. Neurology 64:1704–1711CrossRefPubMed
35.
go back to reference Murray AD, Staff RT, Shenkin SD, Deary IJ, Starr JM, Whalley LJ (2005) Brain white matter hyperintensities: relative importance of vascular risk factors in nondemented elderly people. Radiology 237:251–257CrossRefPubMed Murray AD, Staff RT, Shenkin SD, Deary IJ, Starr JM, Whalley LJ (2005) Brain white matter hyperintensities: relative importance of vascular risk factors in nondemented elderly people. Radiology 237:251–257CrossRefPubMed
36.
go back to reference Akisaki T, Sakurai T, Takata T et al (2006) Cognitive dysfunction associates with white matter hyperintensities and subcortical atrophy on magnetic resonance imaging of the elderly diabetes mellitus Japanese elderly diabetes intervention trial (J-EDIT). Diabetes Metab Res Rev 22:376–384CrossRefPubMed Akisaki T, Sakurai T, Takata T et al (2006) Cognitive dysfunction associates with white matter hyperintensities and subcortical atrophy on magnetic resonance imaging of the elderly diabetes mellitus Japanese elderly diabetes intervention trial (J-EDIT). Diabetes Metab Res Rev 22:376–384CrossRefPubMed
37.
go back to reference Mantyla R, Erkinjuntti T, Salonen O et al (1997) Variable agreement between visual rating scales for white matter hyperintensities on MRI. Comparison of 13 rating scales in a poststroke cohort. Stroke 28:1614–1623PubMed Mantyla R, Erkinjuntti T, Salonen O et al (1997) Variable agreement between visual rating scales for white matter hyperintensities on MRI. Comparison of 13 rating scales in a poststroke cohort. Stroke 28:1614–1623PubMed
38.
go back to reference van Harten B, de Leeuw FE, Weinstein HC, Scheltens P, Biessels GJ (2006) Brain imaging in patients with diabetes: a systematic review. Diabetes Care 29:2539–2548CrossRefPubMed van Harten B, de Leeuw FE, Weinstein HC, Scheltens P, Biessels GJ (2006) Brain imaging in patients with diabetes: a systematic review. Diabetes Care 29:2539–2548CrossRefPubMed
39.
go back to reference Mankovsky BN, Ziegler D (2004) Stroke in patients with diabetes mellitus. Diabetes Metab Res Rev 20:268–287CrossRefPubMed Mankovsky BN, Ziegler D (2004) Stroke in patients with diabetes mellitus. Diabetes Metab Res Rev 20:268–287CrossRefPubMed
40.
go back to reference Peress NS, Kane WC, Aronson SM (1973) Central nervous system findings in a tenth decade autopsy population. Prog Brain Res 40:473–483PubMedCrossRef Peress NS, Kane WC, Aronson SM (1973) Central nervous system findings in a tenth decade autopsy population. Prog Brain Res 40:473–483PubMedCrossRef
41.
go back to reference Biessels GJ, Staekenborg S, Brunner E, Brayne C, Scheltens P (2006) Risk of dementia in diabetes mellitus: a systematic review. Lancet Neurol 5:64–74CrossRefPubMed Biessels GJ, Staekenborg S, Brunner E, Brayne C, Scheltens P (2006) Risk of dementia in diabetes mellitus: a systematic review. Lancet Neurol 5:64–74CrossRefPubMed
42.
go back to reference DeCarli CM, Fletcher EP, Ramey V, Harvey DP, Jagust WJM (2005) Anatomical mapping of white matter hyperintensities (WMH): exploring the relationships between periventricular WMH, deep WMH, and total WMH burden. Stroke 36:50–55CrossRefPubMed DeCarli CM, Fletcher EP, Ramey V, Harvey DP, Jagust WJM (2005) Anatomical mapping of white matter hyperintensities (WMH): exploring the relationships between periventricular WMH, deep WMH, and total WMH burden. Stroke 36:50–55CrossRefPubMed
Metadata
Title
Automated measurement of brain and white matter lesion volume in type 2 diabetes mellitus
Authors
C. Jongen
J. van der Grond
L. J. Kappelle
G. J. Biessels
M. A. Viergever
J. P. W. Pluim
on behalf of the Utrecht Diabetic Encephalopathy Study Group
Publication date
01-07-2007
Publisher
Springer-Verlag
Published in
Diabetologia / Issue 7/2007
Print ISSN: 0012-186X
Electronic ISSN: 1432-0428
DOI
https://doi.org/10.1007/s00125-007-0688-y

Other articles of this Issue 7/2007

Diabetologia 7/2007 Go to the issue