Skip to main content
Top
Published in: Strahlentherapie und Onkologie 3/2015

01-03-2015 | Original article

Influence of metallic dental implants and metal artefacts on dose calculation accuracy

Authors: Manuel Maerz, M.Sc., Oliver Koelbl, M.D., Barbara Dobler, Ph.D.

Published in: Strahlentherapie und Onkologie | Issue 3/2015

Login to get access

Abstract

Purpose

Metallic dental implants cause severe streaking artefacts in computed tomography (CT) data, which inhibit the correct representation of shape and density of the metal and the surrounding tissue. The aim of this study was to investigate the impact of dental implants on the accuracy of dose calculations in radiation therapy planning and the benefit of metal artefact reduction (MAR). A second aim was to determine the treatment technique which is less sensitive to the presence of metallic implants in terms of dose calculation accuracy.

Materials and methods

Phantoms consisting of homogeneous water equivalent material surrounding dental implants were designed. Artefact-containing CT data were corrected using the correct density information. Intensity-modulated radiation therapy (IMRT) and volumetric modulated arc therapy (VMAT) plans were calculated on corrected and uncorrected CT data and compared to 2-dimensional dose measurements using GafChromic™ EBT2 films.

Results

For all plans the accuracy of dose calculations is significantly higher if performed on corrected CT data (p = 0.015). The agreement of calculated and measured dose distributions is significantly higher for VMAT than for IMRT plans for calculations on uncorrected CT data (p = 0.011) as well as on corrected CT data (p = 0.029).

Conclusion

For IMRT and VMAT the application of metal artefact reduction significantly increases the agreement of dose calculations with film measurements. VMAT was found to provide the highest accuracy on corrected as well as on uncorrected CT data. VMAT is therefore preferable over IMRT for patients with metallic implants, if plan quality is comparable for the two techniques.
Footnotes
1
NucletronTM, “Oncentra External Beam v4.0 – Physics and Algorithms.”
 
Literature
1.
go back to reference Yazdi M, Lari MA, Bernier G et al (2011) An opposite view data replacement approach for reducing artifacts due to metallic dental objects. Med Phys 38:2275–2281CrossRefPubMed Yazdi M, Lari MA, Bernier G et al (2011) An opposite view data replacement approach for reducing artifacts due to metallic dental objects. Med Phys 38:2275–2281CrossRefPubMed
2.
go back to reference Bazalova M, Beaulieu L, Palefsky S et al (2007) Correction of CT artifacts and its influence on Monte Carlo dose calculations. Med Phys 34:2119–2132CrossRefPubMed Bazalova M, Beaulieu L, Palefsky S et al (2007) Correction of CT artifacts and its influence on Monte Carlo dose calculations. Med Phys 34:2119–2132CrossRefPubMed
3.
go back to reference Kim Y, Tomé WA, Bal M et al (2006) The impact of dental metal artifacts on head and neck IMRT dose distributions. Radiother Oncol 79:198–202CrossRefPubMed Kim Y, Tomé WA, Bal M et al (2006) The impact of dental metal artifacts on head and neck IMRT dose distributions. Radiother Oncol 79:198–202CrossRefPubMed
4.
go back to reference Roberts R (2001) How accurate is a CT-based dose calculation on a pencil beam TPS for a patient with a metallic prosthesis? Phys Med Biol 46:N227–N234 Roberts R (2001) How accurate is a CT-based dose calculation on a pencil beam TPS for a patient with a metallic prosthesis? Phys Med Biol 46:N227–N234
5.
go back to reference Wei J, Sandison GA, Hsi W-C et al (2006) Dosimetric impact of a CT metal artefact suppression algorithm for proton, electron and photon therapies. Phys Med Biol 51:5183–5197CrossRefPubMed Wei J, Sandison GA, Hsi W-C et al (2006) Dosimetric impact of a CT metal artefact suppression algorithm for proton, electron and photon therapies. Phys Med Biol 51:5183–5197CrossRefPubMed
6.
go back to reference Mail N, Albarakati Y, Ahmad Khan M et al (2013) The impacts of dental filling materials on RapidArc treatment planning and dose delivery: challenges and solution. Med Phys 40:081714CrossRefPubMed Mail N, Albarakati Y, Ahmad Khan M et al (2013) The impacts of dental filling materials on RapidArc treatment planning and dose delivery: challenges and solution. Med Phys 40:081714CrossRefPubMed
7.
go back to reference Spadea MF, Verburg J, Baroni G et al (2013) Dosimetric assessment of a novel metal artifact reduction method in CT images. J Appl Clin Med Phys 14:4027PubMed Spadea MF, Verburg J, Baroni G et al (2013) Dosimetric assessment of a novel metal artifact reduction method in CT images. J Appl Clin Med Phys 14:4027PubMed
8.
go back to reference Spadea MF, Verburg JM, Baroni G et al (2014) The impact of low-Z and high-Z metal implants in IMRT: a Monte Carlo study of dose inaccuracies in commercial dose algorithms. Med Phys 41:011702CrossRefPubMed Spadea MF, Verburg JM, Baroni G et al (2014) The impact of low-Z and high-Z metal implants in IMRT: a Monte Carlo study of dose inaccuracies in commercial dose algorithms. Med Phys 41:011702CrossRefPubMed
9.
go back to reference Paudel MR, Mackenzie M, Fallone BG et al (2013) Evaluation of normalized metal artifact reduction (NMAR) in kVCT using MVCT prior images for radiotherapy treatment planning. Med Phys 40:081701CrossRefPubMed Paudel MR, Mackenzie M, Fallone BG et al (2013) Evaluation of normalized metal artifact reduction (NMAR) in kVCT using MVCT prior images for radiotherapy treatment planning. Med Phys 40:081701CrossRefPubMed
10.
go back to reference Paudel MR, Mackenzie M, Fallone BG et al (2014) Clinical evaluation of normalized metal artifact reduction in kVCT using MVCT prior images (MVCT-NMAR) for radiation therapy treatment planning. Int J Radiat Oncol Biol Phys 89:682–689CrossRefPubMed Paudel MR, Mackenzie M, Fallone BG et al (2014) Clinical evaluation of normalized metal artifact reduction in kVCT using MVCT prior images (MVCT-NMAR) for radiation therapy treatment planning. Int J Radiat Oncol Biol Phys 89:682–689CrossRefPubMed
11.
12.
go back to reference Treutwein M, Hipp M, Koelbl O et al (2012) Searching standard parameters for volumetric modulated arc therapy (VMAT) of prostate cancer. Radiat Oncol 7:108CrossRefPubMedCentralPubMed Treutwein M, Hipp M, Koelbl O et al (2012) Searching standard parameters for volumetric modulated arc therapy (VMAT) of prostate cancer. Radiat Oncol 7:108CrossRefPubMedCentralPubMed
13.
go back to reference Alvarez-Moret J, Pohl F, Koelbl O et al (2010) Evaluation of volumetric modulated arc therapy (VMAT) with Oncentra MasterPlan(R) for the treatment of head and neck cancer. Radiat Oncol 5:110CrossRefPubMedCentralPubMed Alvarez-Moret J, Pohl F, Koelbl O et al (2010) Evaluation of volumetric modulated arc therapy (VMAT) with Oncentra MasterPlan(R) for the treatment of head and neck cancer. Radiat Oncol 5:110CrossRefPubMedCentralPubMed
14.
go back to reference Palma D, Vollans E, James K et al (2008) Volumetric modulated arc therapy for delivery of prostate radiotherapy: comparison with intensity-modulated radiotherapy and three-dimensional conformal radiotherapy. Int J Radiat Oncol Biol Phys 72:996–1001CrossRefPubMed Palma D, Vollans E, James K et al (2008) Volumetric modulated arc therapy for delivery of prostate radiotherapy: comparison with intensity-modulated radiotherapy and three-dimensional conformal radiotherapy. Int J Radiat Oncol Biol Phys 72:996–1001CrossRefPubMed
15.
go back to reference Popescu CC, Olivotto IA, Beckham WA et al (2010) Volumetric modulated arc therapy improves dosimetry and reduces treatment time compared to conventional intensity-modulated radiotherapy for locoregional radiotherapy of left-sided breast cancer and internal mammary nodes. Int J Radiat Oncol Biol Phys 76:287–295CrossRefPubMed Popescu CC, Olivotto IA, Beckham WA et al (2010) Volumetric modulated arc therapy improves dosimetry and reduces treatment time compared to conventional intensity-modulated radiotherapy for locoregional radiotherapy of left-sided breast cancer and internal mammary nodes. Int J Radiat Oncol Biol Phys 76:287–295CrossRefPubMed
16.
go back to reference Vanetti E, Clivio A, Nicolini G et al (2009) Volumetric modulated arc radiotherapy for carcinomas of the oro-pharynx, hypo-pharynx and larynx: a treatment planning comparison with fixed field IMRT. Radiother Oncol 92:111–117CrossRefPubMed Vanetti E, Clivio A, Nicolini G et al (2009) Volumetric modulated arc radiotherapy for carcinomas of the oro-pharynx, hypo-pharynx and larynx: a treatment planning comparison with fixed field IMRT. Radiother Oncol 92:111–117CrossRefPubMed
17.
go back to reference Clivio A, Fogliata A, Franzetti-Pellanda A et al (2009) Volumetric-modulated arc radiotherapy for carcinomas of the anal canal: A treatment planning comparison with fixed field IMRT. Radiother Oncol 92:118–124CrossRefPubMed Clivio A, Fogliata A, Franzetti-Pellanda A et al (2009) Volumetric-modulated arc radiotherapy for carcinomas of the anal canal: A treatment planning comparison with fixed field IMRT. Radiother Oncol 92:118–124CrossRefPubMed
18.
go back to reference Lagerwaard FJ, Meijer OW, Van Der Hoorn EA et al (2009) Volumetric modulated arc radiotherapy for vestibular schwannomas. Int J Radiat Oncol Biol Phys 74:610–615CrossRefPubMed Lagerwaard FJ, Meijer OW, Van Der Hoorn EA et al (2009) Volumetric modulated arc radiotherapy for vestibular schwannomas. Int J Radiat Oncol Biol Phys 74:610–615CrossRefPubMed
19.
go back to reference Cozzi L, Dinshaw KA, Shrivastava SK et al (2008) A treatment planning study comparing volumetric arc modulation with RapidArc and fixed field IMRT for cervix uteri radiotherapy. Radiother Oncol 89:180–191CrossRefPubMed Cozzi L, Dinshaw KA, Shrivastava SK et al (2008) A treatment planning study comparing volumetric arc modulation with RapidArc and fixed field IMRT for cervix uteri radiotherapy. Radiother Oncol 89:180–191CrossRefPubMed
20.
go back to reference Pasler M, Georg D, Bartelt S et al (2013) Node-positive left-sided breast cancer: does VMAT improve treatment plan quality with respect to IMRT? Strahlenther Onkol 189:380–386CrossRefPubMed Pasler M, Georg D, Bartelt S et al (2013) Node-positive left-sided breast cancer: does VMAT improve treatment plan quality with respect to IMRT? Strahlenther Onkol 189:380–386CrossRefPubMed
21.
go back to reference Pasler M, Wirtz H, Lutterbach J (2011) Impact of gantry rotation time on plan quality and dosimetric verification–volumetric modulated arc therapy (VMAT) vs. intensity modulated radiotherapy (IMRT). Strahlenther Onkol 187:812–819CrossRefPubMed Pasler M, Wirtz H, Lutterbach J (2011) Impact of gantry rotation time on plan quality and dosimetric verification–volumetric modulated arc therapy (VMAT) vs. intensity modulated radiotherapy (IMRT). Strahlenther Onkol 187:812–819CrossRefPubMed
22.
go back to reference Wiehle R, Knippen S, Grosu AL et al (2011) VMAT and step-and-shoot IMRT in head and neck cancer: a comparative plan analysis. Strahlenther Onkol 187:820–825CrossRefPubMed Wiehle R, Knippen S, Grosu AL et al (2011) VMAT and step-and-shoot IMRT in head and neck cancer: a comparative plan analysis. Strahlenther Onkol 187:820–825CrossRefPubMed
23.
go back to reference Kim Y, Tomé WA (2007) On the radiobiological impact of metal artifacts in head-and-neck IMRT in terms of tumor control probability (TCP) and normal tissue complication probability (NTCP). Med Biol Eng Comput 45:1045–1051CrossRefPubMed Kim Y, Tomé WA (2007) On the radiobiological impact of metal artifacts in head-and-neck IMRT in terms of tumor control probability (TCP) and normal tissue complication probability (NTCP). Med Biol Eng Comput 45:1045–1051CrossRefPubMed
24.
go back to reference Li H, Noel C, Chen H et al (2012) Clinical evaluation of a commercial orthopedic metal artifact reduction tool for CT simulations in radiation therapy. Med Phys 39:7507–7517CrossRefPubMedCentralPubMed Li H, Noel C, Chen H et al (2012) Clinical evaluation of a commercial orthopedic metal artifact reduction tool for CT simulations in radiation therapy. Med Phys 39:7507–7517CrossRefPubMedCentralPubMed
25.
go back to reference Webster GJ, Rowbottom CG, Mackay RI (2009) Evaluation of the impact of dental artefacts on intensity-modulated radiotherapy planning for the head and neck. Radiother Oncol 93:553–558CrossRefPubMed Webster GJ, Rowbottom CG, Mackay RI (2009) Evaluation of the impact of dental artefacts on intensity-modulated radiotherapy planning for the head and neck. Radiother Oncol 93:553–558CrossRefPubMed
26.
go back to reference Dobler B, Pohl F, Bogner L et al (2007) Comparison of direct machine parameter optimization versus fluence optimization with sequential sequencing in IMRT of hypopharyngeal carcinoma. Radiat Oncol 2:33CrossRefPubMedCentralPubMed Dobler B, Pohl F, Bogner L et al (2007) Comparison of direct machine parameter optimization versus fluence optimization with sequential sequencing in IMRT of hypopharyngeal carcinoma. Radiat Oncol 2:33CrossRefPubMedCentralPubMed
27.
go back to reference Snyder WS, Cook MJ, Nasset ES, Karkhausen LR, Howells GP,Tipton IH (1974) “Report of the task group on reference man,”Technical Report 23, International Commission on Radiological Protection, 1974 Snyder WS, Cook MJ, Nasset ES, Karkhausen LR, Howells GP,Tipton IH (1974) “Report of the task group on reference man,”Technical Report 23, International Commission on Radiological Protection, 1974
28.
go back to reference Tissue substitutes in radiation dosimetry and measurement (1989) International Commission on Radiation Units and Measurements Bethesda, Md., U.S.A.: International Commission on Radiation Units and Measurements (ICRU report, 44) Tissue substitutes in radiation dosimetry and measurement (1989) International Commission on Radiation Units and Measurements Bethesda, Md., U.S.A.: International Commission on Radiation Units and Measurements (ICRU report, 44)
29.
go back to reference Menegotti L, Delana A, Martignano A (2008) Radiochromic film dosimetry with flatbed scanners: a fast and accurate method for dose calibration and uniformity correction with single film exposure. Med Phys 35:3078–3085CrossRefPubMed Menegotti L, Delana A, Martignano A (2008) Radiochromic film dosimetry with flatbed scanners: a fast and accurate method for dose calibration and uniformity correction with single film exposure. Med Phys 35:3078–3085CrossRefPubMed
30.
go back to reference Micke A, Lewis DF, Yu X (2011) Multichannel film dosimetry with nonuniformity correction. Med Phys 38:2523–2534CrossRefPubMed Micke A, Lewis DF, Yu X (2011) Multichannel film dosimetry with nonuniformity correction. Med Phys 38:2523–2534CrossRefPubMed
31.
go back to reference Schneider F, Polednik M, Wolff D et al (2009) Optimization of the gafchromic EBT protocol for IMRT QA. Z Med Phys 19:29–37CrossRefPubMed Schneider F, Polednik M, Wolff D et al (2009) Optimization of the gafchromic EBT protocol for IMRT QA. Z Med Phys 19:29–37CrossRefPubMed
32.
go back to reference Lewis D, Micke A, Yu X et al (2012) An efficient protocol for radiochromic film dosimetry combining calibration and measurement in a single scan. Med Phys 39:6339–6350CrossRefPubMed Lewis D, Micke A, Yu X et al (2012) An efficient protocol for radiochromic film dosimetry combining calibration and measurement in a single scan. Med Phys 39:6339–6350CrossRefPubMed
33.
go back to reference Low DA, Harms WB, Mutic S et al (1998) A technique for the quantitative evaluation of dose distributions. Med Phys 25:656–661CrossRefPubMed Low DA, Harms WB, Mutic S et al (1998) A technique for the quantitative evaluation of dose distributions. Med Phys 25:656–661CrossRefPubMed
34.
go back to reference Ezzell GA, Burmeister JW, Dogan N et al (2009) IMRT commissioning: multiple institution planning and dosimetry comparisons, a report from AAPM Task Group 119. Med Phys 36:5359–5373CrossRefPubMed Ezzell GA, Burmeister JW, Dogan N et al (2009) IMRT commissioning: multiple institution planning and dosimetry comparisons, a report from AAPM Task Group 119. Med Phys 36:5359–5373CrossRefPubMed
35.
go back to reference Hayashi N, Watanabe Y, Malmin R et al (2012) Evaluation of triple channel correction acquisition method for radiochromic film dosimetry. J Radiat Res 53:930–935CrossRefPubMedCentralPubMed Hayashi N, Watanabe Y, Malmin R et al (2012) Evaluation of triple channel correction acquisition method for radiochromic film dosimetry. J Radiat Res 53:930–935CrossRefPubMedCentralPubMed
36.
go back to reference Dobler B, Walter C, Knopf A et al (2006) Optimization of extracranial stereotactic radiation therapy of small lung lesions using accurate dose calculation algorithms. Radiat Oncol 1:45CrossRefPubMedCentralPubMed Dobler B, Walter C, Knopf A et al (2006) Optimization of extracranial stereotactic radiation therapy of small lung lesions using accurate dose calculation algorithms. Radiat Oncol 1:45CrossRefPubMedCentralPubMed
37.
39.
go back to reference Carolan M, Dao P, Fox C et al (2000) Effect of hip prostheses on radiotherapy dose. Australas Radiol 44:290–295CrossRefPubMed Carolan M, Dao P, Fox C et al (2000) Effect of hip prostheses on radiotherapy dose. Australas Radiol 44:290–295CrossRefPubMed
Metadata
Title
Influence of metallic dental implants and metal artefacts on dose calculation accuracy
Authors
Manuel Maerz, M.Sc.
Oliver Koelbl, M.D.
Barbara Dobler, Ph.D.
Publication date
01-03-2015
Publisher
Springer Berlin Heidelberg
Published in
Strahlentherapie und Onkologie / Issue 3/2015
Print ISSN: 0179-7158
Electronic ISSN: 1439-099X
DOI
https://doi.org/10.1007/s00066-014-0774-2

Other articles of this Issue 3/2015

Strahlentherapie und Onkologie 3/2015 Go to the issue