Skip to main content
Top
Published in: Strahlentherapie und Onkologie 3/2015

01-03-2015 | Original article

Hypoxia imaging with [18F]-FMISO-PET for guided dose escalation with intensity-modulated radiotherapy in head-and-neck cancers

Authors: B. Henriques de Figueiredo, M.D., Ph.D., C. Zacharatou, Ph.D., S. Galland-Girodet, M.D., J. Benech, Ph.D., H. De Clermont-Gallerande, M.D., F. Lamare, Ph.D., M. Hatt, Ph.D., L. Digue, M.D., E. De Mones del Pujol, M.D., P. Fernandez, M.D., Ph.D.

Published in: Strahlentherapie und Onkologie | Issue 3/2015

Login to get access

Abstract

Background and purpose

Positron emission tomography (PET) with [18F]-fluoromisonidazole ([18F]-FMISO) provides a non-invasive assessment of hypoxia. The aim of this study is to assess the feasibility of a dose escalation with volumetric modulated arc therapy (VMAT) guided by [18F]-FMISO-PET for head-and-neck cancers (HNC).

Patients and methods

Ten patients with inoperable stages III–IV HNC underwent [18F]-FMISO-PET before radiotherapy. Hypoxic target volumes (HTV) were segmented automatically by using the fuzzy locally adaptive Bayesian method. Retrospectively, two VMAT plans were generated delivering 70 Gy to the gross tumour volume (GTV) defined on computed tomography simulation or 79.8 Gy to the HTV. A dosimetric comparison was performed, based on calculations of tumour control probability (TCP), normal tissue complication probability (NTCP) for the parotid glands and uncomplicated tumour control probability (UTCP).

Results

The mean hypoxic fraction, defined as the ratio between the HTV and the GTV, was 0.18. The mean average dose for both parotids was 22.7 Gy and 25.5 Gy without and with dose escalation respectively. FMISO-guided dose escalation led to a mean increase of TCP, NTCP for both parotids and UTCP by 18.1, 4.6 and 8 % respectively.

Conclusion

A dose escalation up to 79.8 Gy guided by [18F]-FMISO-PET with VMAT seems feasible with improvement of TCP and without excessive increase of NTCP for parotids.
Literature
1.
go back to reference Carlson DJ, Stewart RD, Semenenko VA (2006) Effects of oxygen on intrinsic radiation sensitivity: a test of the relationship between aerobic and hypoxic linear-quadratic (LQ) model parameters. Med Phys 33(9):3105–3115CrossRefPubMed Carlson DJ, Stewart RD, Semenenko VA (2006) Effects of oxygen on intrinsic radiation sensitivity: a test of the relationship between aerobic and hypoxic linear-quadratic (LQ) model parameters. Med Phys 33(9):3105–3115CrossRefPubMed
2.
go back to reference Chao KSC, Ozyigit G, Tran BN, Cengiz M, Dempsey JF, Low DA (2003) Patterns of failure in patients receiving definitive and postoperative IMRT for head-and-neck cancer. Int J Radiat Oncol Biol Phys 55(2):312–321CrossRefPubMed Chao KSC, Ozyigit G, Tran BN, Cengiz M, Dempsey JF, Low DA (2003) Patterns of failure in patients receiving definitive and postoperative IMRT for head-and-neck cancer. Int J Radiat Oncol Biol Phys 55(2):312–321CrossRefPubMed
3.
go back to reference Cheung MR, Tucker SL, Dong L et al (2007) Investigation of bladder dose and volume factors influencing late urinary toxicity after external beam radiotherapy for prostate cancer. Int J Radiat Oncol Biol Phys 67(4):1059–1065CrossRefPubMedCentralPubMed Cheung MR, Tucker SL, Dong L et al (2007) Investigation of bladder dose and volume factors influencing late urinary toxicity after external beam radiotherapy for prostate cancer. Int J Radiat Oncol Biol Phys 67(4):1059–1065CrossRefPubMedCentralPubMed
4.
go back to reference Dijkema T, Raaijmakers CPJ, Ten Haken RK et al (2010) Parotid gland function after radiotherapy: the combined Michigan and Utrecht experience. Int J Radiat Oncol Biol Phys 78(2):449–453CrossRefPubMedCentralPubMed Dijkema T, Raaijmakers CPJ, Ten Haken RK et al (2010) Parotid gland function after radiotherapy: the combined Michigan and Utrecht experience. Int J Radiat Oncol Biol Phys 78(2):449–453CrossRefPubMedCentralPubMed
5.
go back to reference Dirix P, Vandecaveye V, Keyzer F De, Stroobants S, Hermans R, Nuyts S. (2009) Dose painting in radiotherapy for head and neck squamous cell carcinoma: value of repeated functional imaging with (18)F-FDG PET, (18)F-fluoromisonidazole PET, diffusion-weighted MRI, and dynamic contrast-enhanced MRI. J Nucl Med Off Publ Soc Nucl Med 50(7):1020–1027 Dirix P, Vandecaveye V, Keyzer F De, Stroobants S, Hermans R, Nuyts S. (2009) Dose painting in radiotherapy for head and neck squamous cell carcinoma: value of repeated functional imaging with (18)F-FDG PET, (18)F-fluoromisonidazole PET, diffusion-weighted MRI, and dynamic contrast-enhanced MRI. J Nucl Med Off Publ Soc Nucl Med 50(7):1020–1027
6.
go back to reference Eschmann SM, Paulsen F, Bedeshem C et al (2007) Hypoxia-imaging with (18)F-misonidazole and PET: changes of kinetics during radiotherapy of head-and-neck cancer. Radiother Oncol J Eur Soc Ther Radiol Oncol 83(3):406–410CrossRef Eschmann SM, Paulsen F, Bedeshem C et al (2007) Hypoxia-imaging with (18)F-misonidazole and PET: changes of kinetics during radiotherapy of head-and-neck cancer. Radiother Oncol J Eur Soc Ther Radiol Oncol 83(3):406–410CrossRef
7.
go back to reference Fogliata A, Bolsi A, Cozzi L, Bernier J. (2003) Comparative dosimetric evaluation of the simultaneous integrated boost with photon intensity modulation in head and neck cancer patients. Radiother Oncol J Eur Soc Ther Radiol Oncol 69(3):267–275CrossRef Fogliata A, Bolsi A, Cozzi L, Bernier J. (2003) Comparative dosimetric evaluation of the simultaneous integrated boost with photon intensity modulation in head and neck cancer patients. Radiother Oncol J Eur Soc Ther Radiol Oncol 69(3):267–275CrossRef
8.
go back to reference Grégoire V, Coche E, Cosnard G, Hamoir M, Reychler H (2000) Selection and delineation of lymph node target volumes in head and neck conformal radiotherapy. Proposal for standardizing terminology and procedure based on the surgical experience. Radiother Oncol J Eur Soc Ther Radiol Oncol 56(2):135–150CrossRef Grégoire V, Coche E, Cosnard G, Hamoir M, Reychler H (2000) Selection and delineation of lymph node target volumes in head and neck conformal radiotherapy. Proposal for standardizing terminology and procedure based on the surgical experience. Radiother Oncol J Eur Soc Ther Radiol Oncol 56(2):135–150CrossRef
9.
go back to reference Hatt M, Cheze le Rest C, Descourt P et al (2010) Accurate automatic delineation of heterogeneous functional volumes in positron emission tomography for oncology applications. Int J Radiat Oncol Biol Phys 77(1):301–308CrossRefPubMed Hatt M, Cheze le Rest C, Descourt P et al (2010) Accurate automatic delineation of heterogeneous functional volumes in positron emission tomography for oncology applications. Int J Radiat Oncol Biol Phys 77(1):301–308CrossRefPubMed
10.
go back to reference Hatt M, Cheze le Rest C, Turzo A, Roux C, Visvikis D. (2009) A fuzzy locally adaptive Bayesian segmentation approach for volume determination in PET. IEEE Trans Med Imaging 28(6):881–893CrossRefPubMedCentralPubMed Hatt M, Cheze le Rest C, Turzo A, Roux C, Visvikis D. (2009) A fuzzy locally adaptive Bayesian segmentation approach for volume determination in PET. IEEE Trans Med Imaging 28(6):881–893CrossRefPubMedCentralPubMed
11.
go back to reference Henriques de Figueiredo B, Merlin T, Clermont-Gallerande H de et al (2013) Potential of [(18)F]-fluoromisonidazole positron-emission tomography for radiotherapy planning in head and neck squamous cell carcinomas. Strahlenther Onkol Organ Dtsch Rontgengesellschaft Al 189(12):1015–1019 Henriques de Figueiredo B, Merlin T, Clermont-Gallerande H de et al (2013) Potential of [(18)F]-fluoromisonidazole positron-emission tomography for radiotherapy planning in head and neck squamous cell carcinomas. Strahlenther Onkol Organ Dtsch Rontgengesellschaft Al 189(12):1015–1019
12.
go back to reference Lambrecht M, Nevens D, Nuyts S. (2013) Intensity-modulated radiotherapy vs. parotid-sparing 3D conformal radiotherapy. Effect on outcome and toxicity in locally advanced head and neck cancer. Strahlenther Onkol Organ Dtsch Röntgenges Al 189(3):223–229 Lambrecht M, Nevens D, Nuyts S. (2013) Intensity-modulated radiotherapy vs. parotid-sparing 3D conformal radiotherapy. Effect on outcome and toxicity in locally advanced head and neck cancer. Strahlenther Onkol Organ Dtsch Röntgenges Al 189(3):223–229
13.
go back to reference Lin Z, Mechalakos J, Nehmeh S et al (2008) The influence of changes in tumor hypoxia on dose-painting treatment plans based on 18 F-FMISO positron emission tomography. Int J Radiat Oncol Biol Phys 70(4):1219–1228CrossRefPubMedCentralPubMed Lin Z, Mechalakos J, Nehmeh S et al (2008) The influence of changes in tumor hypoxia on dose-painting treatment plans based on 18 F-FMISO positron emission tomography. Int J Radiat Oncol Biol Phys 70(4):1219–1228CrossRefPubMedCentralPubMed
14.
go back to reference Ling CC, Humm J, Larson S et al (2000) Towards multidimensional radiotherapy (MD-CRT): biological imaging and biological conformality. Int J Radiat Oncol Biol Phys 47(3):551–560CrossRefPubMed Ling CC, Humm J, Larson S et al (2000) Towards multidimensional radiotherapy (MD-CRT): biological imaging and biological conformality. Int J Radiat Oncol Biol Phys 47(3):551–560CrossRefPubMed
15.
go back to reference Lyman JT (1985) Complication probability as assessed from dose-volume histograms. Radiat Res Suppl 8:13–19CrossRef Lyman JT (1985) Complication probability as assessed from dose-volume histograms. Radiat Res Suppl 8:13–19CrossRef
16.
go back to reference Maciejewski B, Withers HR, Taylor JM, Hliniak A (1989) Dose fractionation and regeneration in radiotherapy for cancer of the oral cavity and oropharynx: tumor dose-response and repopulation. Int J Radiat Oncol Biol Phys 16(3):831–843CrossRefPubMed Maciejewski B, Withers HR, Taylor JM, Hliniak A (1989) Dose fractionation and regeneration in radiotherapy for cancer of the oral cavity and oropharynx: tumor dose-response and repopulation. Int J Radiat Oncol Biol Phys 16(3):831–843CrossRefPubMed
17.
go back to reference Madani I, Duprez F, Boterberg T et al (2011) Maximum tolerated dose in a phase I trial on adaptive dose painting by numbers for head and neck cancer. Radiother Oncol J Eur Soc Ther Radiol Oncol 101(3):351–355CrossRef Madani I, Duprez F, Boterberg T et al (2011) Maximum tolerated dose in a phase I trial on adaptive dose painting by numbers for head and neck cancer. Radiother Oncol J Eur Soc Ther Radiol Oncol 101(3):351–355CrossRef
18.
go back to reference Mohan R, Mageras GS, Baldwin B et al (1992) Clinically relevant optimization of 3-D conformal treatments. Med Phys 19(4):933–944CrossRefPubMed Mohan R, Mageras GS, Baldwin B et al (1992) Clinically relevant optimization of 3-D conformal treatments. Med Phys 19(4):933–944CrossRefPubMed
19.
go back to reference Nordsmark M, Bentzen SM, Rudat V et al (2005) Prognostic value of tumor oxygenation in 397 head and neck tumors after primary radiation therapy. An international multi-center study. Radiother Oncol J Eur Soc Ther Radiol Oncol 77(1):18–24CrossRef Nordsmark M, Bentzen SM, Rudat V et al (2005) Prognostic value of tumor oxygenation in 397 head and neck tumors after primary radiation therapy. An international multi-center study. Radiother Oncol J Eur Soc Ther Radiol Oncol 77(1):18–24CrossRef
20.
go back to reference Okamoto S, Shiga T, Yasuda K et al (2013) High reproducibility of tumor hypoxia evaluated by 18 F-fluoromisonidazole PET for head and neck cancer. J Nucl Med Off Publ Soc Nucl Med 54(2):201–207 Okamoto S, Shiga T, Yasuda K et al (2013) High reproducibility of tumor hypoxia evaluated by 18 F-fluoromisonidazole PET for head and neck cancer. J Nucl Med Off Publ Soc Nucl Med 54(2):201–207
21.
go back to reference Overgaard H (1996) Modification of hypoxia-induced radioresistance in tumors by the use of oxygen and sensitizers. Semin Radiat Oncol 6(1):10–21CrossRef Overgaard H (1996) Modification of hypoxia-induced radioresistance in tumors by the use of oxygen and sensitizers. Semin Radiat Oncol 6(1):10–21CrossRef
22.
go back to reference Rajendran JG, Schwartz DL, O’Sullivan J et al (2006) Tumor hypoxia imaging with [F-18] fluoromisonidazole positron emission tomography in head and neck cancer. Clin Cancer Res Off J Am Assoc Cancer Res 12(18):5435–5441CrossRef Rajendran JG, Schwartz DL, O’Sullivan J et al (2006) Tumor hypoxia imaging with [F-18] fluoromisonidazole positron emission tomography in head and neck cancer. Clin Cancer Res Off J Am Assoc Cancer Res 12(18):5435–5441CrossRef
23.
go back to reference Strigari L, D’Andrea M, Abate A, Benassi M (2008) A heterogeneous dose distribution in simultaneous integrated boost: the role of the clonogenic cell density on the tumor control probability. Phys Med Biol 53(19):5257–5273CrossRefPubMed Strigari L, D’Andrea M, Abate A, Benassi M (2008) A heterogeneous dose distribution in simultaneous integrated boost: the role of the clonogenic cell density on the tumor control probability. Phys Med Biol 53(19):5257–5273CrossRefPubMed
24.
go back to reference Thorwarth D, Eschmann S-M, Paulsen F, Alber M (2007) Hypoxia dose painting by numbers: a planning study. Int J Radiat Oncol Biol Phys 68(1):291–300CrossRefPubMed Thorwarth D, Eschmann S-M, Paulsen F, Alber M (2007) Hypoxia dose painting by numbers: a planning study. Int J Radiat Oncol Biol Phys 68(1):291–300CrossRefPubMed
25.
go back to reference Thorwarth D, Eschmann S-M, Paulsen F, Alber M (2007) A model of reoxygenation dynamics of head-and-neck tumors based on serial 18 F-fluoromisonidazole positron emission tomography investigations. Int J Radiat Oncol Biol Phys 68(2):515–521CrossRefPubMed Thorwarth D, Eschmann S-M, Paulsen F, Alber M (2007) A model of reoxygenation dynamics of head-and-neck tumors based on serial 18 F-fluoromisonidazole positron emission tomography investigations. Int J Radiat Oncol Biol Phys 68(2):515–521CrossRefPubMed
26.
go back to reference Webb S, Nahum AE (1993) A model for calculating tumour control probability in radiotherapy including the effects of inhomogeneous distributions of dose and clonogenic cell density. Phys Med Biol 38(6):653–666CrossRef Webb S, Nahum AE (1993) A model for calculating tumour control probability in radiotherapy including the effects of inhomogeneous distributions of dose and clonogenic cell density. Phys Med Biol 38(6):653–666CrossRef
27.
go back to reference Zips D, Zöphel K, Abolmaali N et al (2012) Exploratory prospective trial of hypoxia-specific PET imaging during radiochemotherapy in patients with locally advanced head-and-neck cancer. Radiother Oncol J Eur Soc Ther Radiol Oncol 105(1):21–28CrossRef Zips D, Zöphel K, Abolmaali N et al (2012) Exploratory prospective trial of hypoxia-specific PET imaging during radiochemotherapy in patients with locally advanced head-and-neck cancer. Radiother Oncol J Eur Soc Ther Radiol Oncol 105(1):21–28CrossRef
Metadata
Title
Hypoxia imaging with [18F]-FMISO-PET for guided dose escalation with intensity-modulated radiotherapy in head-and-neck cancers
Authors
B. Henriques de Figueiredo, M.D., Ph.D.
C. Zacharatou, Ph.D.
S. Galland-Girodet, M.D.
J. Benech, Ph.D.
H. De Clermont-Gallerande, M.D.
F. Lamare, Ph.D.
M. Hatt, Ph.D.
L. Digue, M.D.
E. De Mones del Pujol, M.D.
P. Fernandez, M.D., Ph.D.
Publication date
01-03-2015
Publisher
Springer Berlin Heidelberg
Published in
Strahlentherapie und Onkologie / Issue 3/2015
Print ISSN: 0179-7158
Electronic ISSN: 1439-099X
DOI
https://doi.org/10.1007/s00066-014-0752-8

Other articles of this Issue 3/2015

Strahlentherapie und Onkologie 3/2015 Go to the issue