Skip to main content
Top
Published in: Strahlentherapie und Onkologie 3/2014

01-03-2014 | Original article

Target volume coverage and dose to organs at risk in prostate cancer patients

Dose calculation on daily cone-beam CT data sets

Authors: P. Hüttenrauch, M. Witt, D. Wolff, S. Bosold, R. Engenhart-Cabillic, J. Sparenberg, H. Vorwerk, K. Zink

Published in: Strahlentherapie und Onkologie | Issue 3/2014

Login to get access

Abstract

Purpose

On the basis of correct Hounsfield unit to electron density calibration, cone-beam computed tomography (CBCT) data provide the opportunity for retrospective dose recalculation in the patient. Therefore, the consequences of translational positioning corrections and of morphological changes in the patient anatomy can be quantified for prostate cancer patients.

Materials and methods

The organs at risk were newly contoured on the CBCT data sets of 7 patients so as to evaluate the actual applied dose. The daily dose to the planning target volume (PTV) was recalculated with and without the translation data, which result from the real patient repositioning.

Results

A CBCT-based dose recalculation with uncertainties less than 3 % is possible. The deviations between the planning CT and the CBCT without the translational positioning correction vector show an average dose difference of − 8 % inside the PTV. An inverse proportional relation between the mean bladder dose and the actual volume of the bladder could be established. The daily applied dose to the rectum is about 1–54 % higher than predicted by the planning CT.

Conclusion

A dose calculation based on CBCT data is possible. The daily positioning correction of the patient is necessary to avoid an underdosage in the PTV. The new contouring of the organs at risk— the bladder and rectum—allows a better appraisal to be made of the total applied dose to these organs.
Literature
1.
go back to reference Boda-Heggemann J, Lohr F, Wenz F et al (2011) kV cone-beam CT-based IGRT: a clinical review. Strahlenther Onkol 187(5):284–291PubMedCrossRef Boda-Heggemann J, Lohr F, Wenz F et al (2011) kV cone-beam CT-based IGRT: a clinical review. Strahlenther Onkol 187(5):284–291PubMedCrossRef
2.
go back to reference Boggula R, Lorenz F, Abo-Madyan Y et al (2009) A new strategy for online adaptive prostate radiotherapy based on cone-beam CT. Z Med Phys 19(4):264–276PubMedCrossRef Boggula R, Lorenz F, Abo-Madyan Y et al (2009) A new strategy for online adaptive prostate radiotherapy based on cone-beam CT. Z Med Phys 19(4):264–276PubMedCrossRef
3.
go back to reference Cambria R, Jereczek-Fossa BA, Zerini D et al (2011) Physical and clinical implications of radiotherapy treatment of prostate cancer using a full bladder protocol. Strahlenther Onkol 187(12):799–805PubMedCrossRef Cambria R, Jereczek-Fossa BA, Zerini D et al (2011) Physical and clinical implications of radiotherapy treatment of prostate cancer using a full bladder protocol. Strahlenther Onkol 187(12):799–805PubMedCrossRef
4.
go back to reference Ding GX, Duggan DM, Coffey CW et al (2007) A study on adaptive IMRT treatment planning using kV cone-beam CT. Radiother Oncol 85(1):116–125PubMedCrossRef Ding GX, Duggan DM, Coffey CW et al (2007) A study on adaptive IMRT treatment planning using kV cone-beam CT. Radiother Oncol 85(1):116–125PubMedCrossRef
5.
go back to reference Geinitz H, Zimmermann FB, Narkwong L et al (2000) Prostatic carcinoma: problems in the interpretation of rectal dose-volume histograms. Strahlenther Onkol 176(4):168–172PubMedCrossRef Geinitz H, Zimmermann FB, Narkwong L et al (2000) Prostatic carcinoma: problems in the interpretation of rectal dose-volume histograms. Strahlenther Onkol 176(4):168–172PubMedCrossRef
6.
go back to reference Guan H, Dong H (2009) Dose calculation accuracy using cone-beam CT (CBCT) for pelvic adaptive radiotherapy. Phys Med Biol 54(20):6239–6250PubMedCrossRef Guan H, Dong H (2009) Dose calculation accuracy using cone-beam CT (CBCT) for pelvic adaptive radiotherapy. Phys Med Biol 54(20):6239–6250PubMedCrossRef
7.
go back to reference Guckenberger M, Flentje M (2007) Intensity-modulated radiotherapy (IMRT) of localized prostate cancer: a review and future perspectives. Strahlenther Onkol 183(2):57–62PubMedCrossRef Guckenberger M, Flentje M (2007) Intensity-modulated radiotherapy (IMRT) of localized prostate cancer: a review and future perspectives. Strahlenther Onkol 183(2):57–62PubMedCrossRef
8.
go back to reference Guckenberger M, Ok S, Polat B et al (2010) Toxicity after intensity-modulated, image-guided radiotherapy for prostate cancer. Strahlenther Onkol 186(10):535–543PubMedCrossRef Guckenberger M, Ok S, Polat B et al (2010) Toxicity after intensity-modulated, image-guided radiotherapy for prostate cancer. Strahlenther Onkol 186(10):535–543PubMedCrossRef
9.
go back to reference Hille A, Tows N, Schmidberger H, Hess CF (2005) A prospective three-dimensional analysis about the impact of differences in the clinical target volume in prostate cancer irradiation on normal-tissue exposure. A potential for increasing the benefit/risk ratio. Strahlenther Onkol 181(12):789–795PubMedCrossRef Hille A, Tows N, Schmidberger H, Hess CF (2005) A prospective three-dimensional analysis about the impact of differences in the clinical target volume in prostate cancer irradiation on normal-tissue exposure. A potential for increasing the benefit/risk ratio. Strahlenther Onkol 181(12):789–795PubMedCrossRef
10.
go back to reference Hu CC, Huang WT, Tsai CL et al (2011) Practically acquired and modified cone-beam computed tomography images for accurate dose calculation in head and neck cancer. Strahlenther Onkol 187(10):633–644PubMedCrossRef Hu CC, Huang WT, Tsai CL et al (2011) Practically acquired and modified cone-beam computed tomography images for accurate dose calculation in head and neck cancer. Strahlenther Onkol 187(10):633–644PubMedCrossRef
11.
go back to reference Rajendran RR, Plastaras JP, Mick R et al (2010) Daily isocenter correction with electromagnetic-based localization improves target coverage and rectal sparing during prostate radiotherapy. Int J Radiat Oncol Biol Phys 76(4):1092–1099PubMedCrossRef Rajendran RR, Plastaras JP, Mick R et al (2010) Daily isocenter correction with electromagnetic-based localization improves target coverage and rectal sparing during prostate radiotherapy. Int J Radiat Oncol Biol Phys 76(4):1092–1099PubMedCrossRef
13.
go back to reference Sriram P, Vivekanandan N, Prabakar S (2010) A study on evaluation of kV-CBCT-image-based treatment planning using anthropomorphic phantom. J Med Biol Eng 31(6):429–435CrossRef Sriram P, Vivekanandan N, Prabakar S (2010) A study on evaluation of kV-CBCT-image-based treatment planning using anthropomorphic phantom. J Med Biol Eng 31(6):429–435CrossRef
14.
go back to reference The Phantom Laboratory (2013) Catphan® 503 Manual. The Phantom Laboratory, New York The Phantom Laboratory (2013) Catphan® 503 Manual. The Phantom Laboratory, New York
15.
go back to reference Treutwein M, Hipp M, Kolbl O, Bogner L (2009) IMRT of prostate cancer: a comparison of fluence optimization with sequential segmentation and direct step-and-shoot optimization. Strahlenther Onkol 185(6):379–383PubMedCrossRef Treutwein M, Hipp M, Kolbl O, Bogner L (2009) IMRT of prostate cancer: a comparison of fluence optimization with sequential segmentation and direct step-and-shoot optimization. Strahlenther Onkol 185(6):379–383PubMedCrossRef
16.
go back to reference Usui K, Ichimaru Y, Okumura Y et al (2013) Dose calculation with a cone beam CT image in image-guided radiation therapy. Radiol Phys Technol 6(1):107–114PubMedCrossRef Usui K, Ichimaru Y, Okumura Y et al (2013) Dose calculation with a cone beam CT image in image-guided radiation therapy. Radiol Phys Technol 6(1):107–114PubMedCrossRef
17.
go back to reference Wertz H, Boda-Heggemann J, Walter C et al (2007) Image-guided in vivo dosimetry for quality assurance of IMRT treatment for prostate cancer. Int J Radiat Oncol Biol Phys 67(1):288–295PubMedCrossRef Wertz H, Boda-Heggemann J, Walter C et al (2007) Image-guided in vivo dosimetry for quality assurance of IMRT treatment for prostate cancer. Int J Radiat Oncol Biol Phys 67(1):288–295PubMedCrossRef
18.
go back to reference Wertz H, Lohr F, Dobler B et al (2007) Dosimetric consequences of a translational isocenter correction based on image guidance for intensity modulated radiotherapy (IMRT) of the prostate. Phys Med Biol 52(18):5655–5665PubMedCrossRef Wertz H, Lohr F, Dobler B et al (2007) Dosimetric consequences of a translational isocenter correction based on image guidance for intensity modulated radiotherapy (IMRT) of the prostate. Phys Med Biol 52(18):5655–5665PubMedCrossRef
19.
go back to reference Wolff D, Stieler F, Hermann B et al (2010) Clinical implementation of volumetric intensity-modulated arc therapy (VMAT) with ERGO++. Strahlenther Onkol 186(5):280–288PubMedCrossRef Wolff D, Stieler F, Hermann B et al (2010) Clinical implementation of volumetric intensity-modulated arc therapy (VMAT) with ERGO++. Strahlenther Onkol 186(5):280–288PubMedCrossRef
20.
go back to reference Wolff D, Stieler F, Welzel G et al (2009) Volumetric modulated arc therapy (VMAT) vs. serial tomotherapy, step-and-shoot IMRT and 3D-conformal RT for treatment of prostate cancer. Radiother Oncol 93(2):226–233PubMedCrossRef Wolff D, Stieler F, Welzel G et al (2009) Volumetric modulated arc therapy (VMAT) vs. serial tomotherapy, step-and-shoot IMRT and 3D-conformal RT for treatment of prostate cancer. Radiother Oncol 93(2):226–233PubMedCrossRef
21.
go back to reference Wu QJ, Thongphiew D, Wang Z et al (2008) On-line re-optimization of prostate IMRT plans for adaptive radiation therapy. Phys Med Biol 53(3):673–691PubMedCrossRef Wu QJ, Thongphiew D, Wang Z et al (2008) On-line re-optimization of prostate IMRT plans for adaptive radiation therapy. Phys Med Biol 53(3):673–691PubMedCrossRef
22.
go back to reference Yoo S, Yin FF (2006) Dosimetric feasibility of cone-beam CT-based treatment planning compared to CT-based treatment planning. Int J Radiat Oncol Biol Phys 66(5):1553–1561PubMedCrossRef Yoo S, Yin FF (2006) Dosimetric feasibility of cone-beam CT-based treatment planning compared to CT-based treatment planning. Int J Radiat Oncol Biol Phys 66(5):1553–1561PubMedCrossRef
Metadata
Title
Target volume coverage and dose to organs at risk in prostate cancer patients
Dose calculation on daily cone-beam CT data sets
Authors
P. Hüttenrauch
M. Witt
D. Wolff
S. Bosold
R. Engenhart-Cabillic
J. Sparenberg
H. Vorwerk
K. Zink
Publication date
01-03-2014
Publisher
Springer-Verlag
Published in
Strahlentherapie und Onkologie / Issue 3/2014
Print ISSN: 0179-7158
Electronic ISSN: 1439-099X
DOI
https://doi.org/10.1007/s00066-013-0483-2

Other articles of this Issue 3/2014

Strahlentherapie und Onkologie 3/2014 Go to the issue