Skip to main content
Top
Published in: Inflammation Research 9/2020

01-09-2020 | Influenza Virus | Short Communication

SARS-CoV-2 will constantly sweep its tracks: a vaccine containing CpG motifs in ‘lasso’ for the multi-faced virus

Authors: V. V. Oberemok, K. V. Laikova, K. A. Yurchenko, N. A. Marochkin, I. I. Fomochkina, A. V. Kubyshkin

Published in: Inflammation Research | Issue 9/2020

Login to get access

Abstract

During the current COVID-19 pandemic, the global ratio between the dead and the survivors is approximately 1 to 10, which has put humanity on high alert and provided strong motivation for the intensive search for vaccines and drugs. It is already clear that if we follow the most likely scenario, which is similar to that used to create seasonal influenza vaccines, then we will need to develop improved vaccine formulas every year to control the spread of the new, highly mutable coronavirus SARS-CoV-2. In this article, using well-known RNA viruses (HIV, influenza viruses, HCV) as examples, we consider the main successes and failures in creating primarily highly effective vaccines. The experience accumulated dealing with the biology of zoonotic RNA viruses suggests that the fight against COVID-19 will be difficult and lengthy. The most effective vaccines against SARS-CoV-2 will be those able to form highly effective memory cells for both humoral (memory B cells) and cellular (cross-reactive antiviral memory T cells) immunity. Unfortunately, RNA viruses constantly sweep their tracks and perhaps one of the most promising solutions in the fight against the COVID-19 pandemic is the creation of 'universal' vaccines based on conservative SARS-CoV-2 genome sequences (antigen-presenting) and unmethylated CpG dinucleotides (adjuvant) in the composition of the phosphorothioate backbone of single-stranded DNA oligonucleotides (ODN), which can be effective for long periods of use. Here, we propose a SARS-CoV-2 vaccine based on a lasso-like phosphorothioate oligonucleotide construction containing CpG motifs and the antigen-presenting unique ACG-containing genome sequence of SARS-CoV-2. We found that CpG dinucleotides are the most rare dinucleotides in the genomes of SARS-CoV-2 and other known human coronaviruses, and hypothesized that their higher frequency could be responsible for the unwanted increased lethality to the host, causing a ‘cytokine storm’ in people who overexpress cytokines through the activation of specific Toll-like receptors in a manner similar to TLR9-CpG ODN interactions. Interestingly, the virus strains sequenced in China (Wuhan) in February 2020 contained on average one CpG dinucleotide more in their genome than the later strains from the USA (New York) sequenced in May 2020. Obviously, during the first steps of the microevolution of SARS-CoV-2 in the human population, natural selection tends to select viral genomes containing fewer CpG motifs that do not trigger a strong innate immune response, so the infected person has moderate symptoms and spreads SARS-CoV-2 more readily. However, in our opinion, unmethylated CpG dinucleotides are also capable of preparing the host immune system for the coronavirus infection and should be present in SARS-CoV-2 vaccines as strong adjuvants.
Literature
1.
go back to reference Andersen KG, Rambaut A, Lipkin WI, et al. The proximal origin of SARS-CoV-2. Nat Med. 2020;26:450–2.PubMed Andersen KG, Rambaut A, Lipkin WI, et al. The proximal origin of SARS-CoV-2. Nat Med. 2020;26:450–2.PubMed
2.
3.
go back to reference Kenney RT, Cross AS. Adjuvants for the future. In: Levine MM, Dougan G, Good MF, Liu MA, Nabel GJ, Nataro JP, Rappuoli R, editors. New Generation Vaccines. New York: Informa Healthcare USA, Inc.; 2010. p. 250–262. Kenney RT, Cross AS. Adjuvants for the future. In: Levine MM, Dougan G, Good MF, Liu MA, Nabel GJ, Nataro JP, Rappuoli R, editors. New Generation Vaccines. New York: Informa Healthcare USA, Inc.; 2010. p. 250–262.
4.
go back to reference Pulendran B, Powell J, Flavell RA. Modulating vaccine responses with innate immunity. In: Levine MM, Dougan G, Good MF, Liu MA, Nabel GJ, Nataro JP, Rappuoli R, editors. New Generation Vaccines. New York: Informa Healthcare USA, Inc.; 2010. p. 183–190. Pulendran B, Powell J, Flavell RA. Modulating vaccine responses with innate immunity. In: Levine MM, Dougan G, Good MF, Liu MA, Nabel GJ, Nataro JP, Rappuoli R, editors. New Generation Vaccines. New York: Informa Healthcare USA, Inc.; 2010. p. 183–190.
5.
go back to reference Paltrinieri S, Cammarata MP, Cammarata G, Comazzi S. Some aspects of humoral and cellular immunity in naturally occuring feline infectious peritonitis. Vet Immunol Immunopathol. 1998;65:205–20.PubMedPubMedCentral Paltrinieri S, Cammarata MP, Cammarata G, Comazzi S. Some aspects of humoral and cellular immunity in naturally occuring feline infectious peritonitis. Vet Immunol Immunopathol. 1998;65:205–20.PubMedPubMedCentral
6.
go back to reference Loa CC, Lin TL, Wu CC, Bryan T, Thacker HL, Hooper T, Schrader D. Humoral and cellular immune responses in turkey poults infected with turkey coronavirus. Poult Sci. 2001;80:1416–24.PubMed Loa CC, Lin TL, Wu CC, Bryan T, Thacker HL, Hooper T, Schrader D. Humoral and cellular immune responses in turkey poults infected with turkey coronavirus. Poult Sci. 2001;80:1416–24.PubMed
7.
go back to reference He Y, Jiang S. Vaccine design for severe acute respiratory syndrome coronavirus. Viral Immunol. 2005;18:327–32.PubMed He Y, Jiang S. Vaccine design for severe acute respiratory syndrome coronavirus. Viral Immunol. 2005;18:327–32.PubMed
8.
go back to reference Lin JT, Zhang JS, Su N, Xu JG, Wang N, Chen JT, Chen X, Liu YX, Gao H, Jia YP. Safety and immunogenicity from a phase I trial of inactivated severe acute respiratory syndrome coronavirus vaccine. Antivir Ther (Lond). 2007;12:1107–13. Lin JT, Zhang JS, Su N, Xu JG, Wang N, Chen JT, Chen X, Liu YX, Gao H, Jia YP. Safety and immunogenicity from a phase I trial of inactivated severe acute respiratory syndrome coronavirus vaccine. Antivir Ther (Lond). 2007;12:1107–13.
9.
go back to reference Martin JE, Louder MK, Holman LA, Gordon IJ, Enama ME, Larkin BD, Andrews CA, Vogel L, Koup RA, Roederer M. VRC 301 Study Team A SARS DNA vaccine induces neutralizing antibody and cellular immune responses in healthy adults in a Phase I clinical trial. Vaccine. 2008;26:6338–433.PubMedPubMedCentral Martin JE, Louder MK, Holman LA, Gordon IJ, Enama ME, Larkin BD, Andrews CA, Vogel L, Koup RA, Roederer M. VRC 301 Study Team A SARS DNA vaccine induces neutralizing antibody and cellular immune responses in healthy adults in a Phase I clinical trial. Vaccine. 2008;26:6338–433.PubMedPubMedCentral
10.
go back to reference Lan L, Xu D, Ye G, Xia C, Wang S, Li Y, Xu H. Positive RT-PCR test results in patients recovered from COVID-19. JAMA. 2020;323(15):1502–3.PubMedCentralPubMed Lan L, Xu D, Ye G, Xia C, Wang S, Li Y, Xu H. Positive RT-PCR test results in patients recovered from COVID-19. JAMA. 2020;323(15):1502–3.PubMedCentralPubMed
11.
go back to reference Wrapp D, Wang N, Corbett KS, Goldsmith JA, Hsieh CL, Abiona O, Graham BS, McLellan JS. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science. 2020;367:1260–3.PubMedPubMedCentral Wrapp D, Wang N, Corbett KS, Goldsmith JA, Hsieh CL, Abiona O, Graham BS, McLellan JS. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science. 2020;367:1260–3.PubMedPubMedCentral
12.
go back to reference ter Meulen J, van den Brink EN, Poon LL, Marissen WE, Leung CS, Cox F, Cheung CY, Bakker AQ, Bogaards JA, van Deventer E. Human monoclonal antibody combination against SARS coronavirus: synergy and coverage of escape mutants. PLoS Med. 2006;3:e237.PubMedPubMedCentral ter Meulen J, van den Brink EN, Poon LL, Marissen WE, Leung CS, Cox F, Cheung CY, Bakker AQ, Bogaards JA, van Deventer E. Human monoclonal antibody combination against SARS coronavirus: synergy and coverage of escape mutants. PLoS Med. 2006;3:e237.PubMedPubMedCentral
13.
go back to reference Tian X, Li C, Huang A, Xia S, Lu S, Shi Z, Lu L, Jiang S, Yang Z, Wu Y, Ying T. Potent binding of 2019 novel coronavirus spike protein by a SARS coronavirus-specific human monoclonal antibody. Emerg Microbes Infect. 2020;9:382–5.PubMedPubMedCentral Tian X, Li C, Huang A, Xia S, Lu S, Shi Z, Lu L, Jiang S, Yang Z, Wu Y, Ying T. Potent binding of 2019 novel coronavirus spike protein by a SARS coronavirus-specific human monoclonal antibody. Emerg Microbes Infect. 2020;9:382–5.PubMedPubMedCentral
14.
go back to reference Pallesen J, Wang N, Corbett KS, Wrapp D, Kirchdoerfer RN, Turner HL, Cottrell CA, Becker MM, Wang L, Shi W. Immunogenicity and structures of a rationally designed prefusion MERS-CoV spike antigen. Proc Natl Acad Sci USA. 2017;114:E7348–E73577357.PubMedPubMedCentral Pallesen J, Wang N, Corbett KS, Wrapp D, Kirchdoerfer RN, Turner HL, Cottrell CA, Becker MM, Wang L, Shi W. Immunogenicity and structures of a rationally designed prefusion MERS-CoV spike antigen. Proc Natl Acad Sci USA. 2017;114:E7348–E73577357.PubMedPubMedCentral
16.
go back to reference Ran Z, Shen H, Lang Y, Kolb EA, Turan N, Zhu L, et al. Domestic pigs are susceptible to infection with influenza B viruses. J Virol. 2015;89(9):4818–26.PubMedPubMedCentral Ran Z, Shen H, Lang Y, Kolb EA, Turan N, Zhu L, et al. Domestic pigs are susceptible to infection with influenza B viruses. J Virol. 2015;89(9):4818–26.PubMedPubMedCentral
17.
go back to reference Heo JY, Song JY, Noh JY, Choi MJ, Yoon JG, Lee SN, Cheong HJ, Kim WJ. Effects of influenza immunization on pneumonia in the elderly. Hum Vacc Immuno. 2017;1:744–9. Heo JY, Song JY, Noh JY, Choi MJ, Yoon JG, Lee SN, Cheong HJ, Kim WJ. Effects of influenza immunization on pneumonia in the elderly. Hum Vacc Immuno. 2017;1:744–9.
18.
go back to reference Siriwardena AN. Increasing evidence that influenza is a trigger for cardiovascular disease. J Infect Dis. 2012;206:1636–8.PubMed Siriwardena AN. Increasing evidence that influenza is a trigger for cardiovascular disease. J Infect Dis. 2012;206:1636–8.PubMed
19.
go back to reference Sridhar S, Brokstad KA, Cox RJ. Influenza Vaccination Strategies: Comparing Inactivated and Live Attenuated Influenza Vaccines. Vaccines (Basel). 2015;3(2):373–89. Sridhar S, Brokstad KA, Cox RJ. Influenza Vaccination Strategies: Comparing Inactivated and Live Attenuated Influenza Vaccines. Vaccines (Basel). 2015;3(2):373–89.
20.
go back to reference Isakova-Sivak I, Rudenko L. Safety, immunogenicity and infectivity of new live attenuated influenza vaccines. Expert Rev Vaccines. 2015;14(10):1313–29.PubMed Isakova-Sivak I, Rudenko L. Safety, immunogenicity and infectivity of new live attenuated influenza vaccines. Expert Rev Vaccines. 2015;14(10):1313–29.PubMed
22.
go back to reference Uchida T. Development of a cytotoxic T-lymphocyte-based, broadly protective influenza vaccine. Microbiol Immunol. 2011;55:19–27.PubMed Uchida T. Development of a cytotoxic T-lymphocyte-based, broadly protective influenza vaccine. Microbiol Immunol. 2011;55:19–27.PubMed
23.
go back to reference Li R, Stewart B, McNeil MM, Duffy J, Nelson J, Kawai AT, Baxter R, Belongia EA, Weintraub E. Post licensure surveillance of influenza vaccines in the Vaccine Safety Datalink in the 2013–2014 and 2014–2015 seasons. Pharmacoepidemiol Drug Saf. 2016;25(8):928–34.PubMed Li R, Stewart B, McNeil MM, Duffy J, Nelson J, Kawai AT, Baxter R, Belongia EA, Weintraub E. Post licensure surveillance of influenza vaccines in the Vaccine Safety Datalink in the 2013–2014 and 2014–2015 seasons. Pharmacoepidemiol Drug Saf. 2016;25(8):928–34.PubMed
24.
go back to reference Sarkanen TO, Alakuijala APE, Dauvilliers YA, Partinen MM. Incidence of narcolepsy after H1N1 influenza and vaccinations: systematic review and meta-analysis. Sleep Med Rev. 2017;17:30001–11. Sarkanen TO, Alakuijala APE, Dauvilliers YA, Partinen MM. Incidence of narcolepsy after H1N1 influenza and vaccinations: systematic review and meta-analysis. Sleep Med Rev. 2017;17:30001–11.
25.
go back to reference Trombetta CM, Montomoli E. Influenza immunology evaluation and correlates of protection: a focus on vaccines. Expert Rev Vaccines. 2016;15:967–76.PubMed Trombetta CM, Montomoli E. Influenza immunology evaluation and correlates of protection: a focus on vaccines. Expert Rev Vaccines. 2016;15:967–76.PubMed
26.
go back to reference El Zowalaty ME, Järhult JD. From SARS to COVID-19: a previously unknown SARS-CoV-2 virus of pandemic potential infecting humans–Call for a One Health approach. One Health. 2020;10:1–24. El Zowalaty ME, Järhult JD. From SARS to COVID-19: a previously unknown SARS-CoV-2 virus of pandemic potential infecting humans–Call for a One Health approach. One Health. 2020;10:1–24.
27.
go back to reference Parrish CR, Murcia PR, Holmes EC. Influenza virus reservoirs and intermediate hosts: dogs, horses, and new possibilities for influenza virus exposure of humans. J Virol. 2015;89(6):2990–4.PubMed Parrish CR, Murcia PR, Holmes EC. Influenza virus reservoirs and intermediate hosts: dogs, horses, and new possibilities for influenza virus exposure of humans. J Virol. 2015;89(6):2990–4.PubMed
28.
go back to reference Luciw PA. Human immunodeficiency viruses and their replication. In: Fields BN, editor. Virology. 3rd ed. Philadelphia: Lippincott-Raven; 1996. p. 1881–1952. Luciw PA. Human immunodeficiency viruses and their replication. In: Fields BN, editor. Virology. 3rd ed. Philadelphia: Lippincott-Raven; 1996. p. 1881–1952.
29.
go back to reference Sharp PM, Hahn BH. Origins of HIV and the AIDS pandemic Cold spring Harbor perspectives in medicine. Medicine. 2011;6:8–41. Sharp PM, Hahn BH. Origins of HIV and the AIDS pandemic Cold spring Harbor perspectives in medicine. Medicine. 2011;6:8–41.
30.
go back to reference Kwong PD, Wyatt R, Robinson J, Sweet RW, Sodroski J, Hendrickson WA. Structure of an HIV gp120 envelope glycoprotein in complex with the CD4 receptor and a neutralizing human antibody. Nature. 1994;4(393):648–59. Kwong PD, Wyatt R, Robinson J, Sweet RW, Sodroski J, Hendrickson WA. Structure of an HIV gp120 envelope glycoprotein in complex with the CD4 receptor and a neutralizing human antibody. Nature. 1994;4(393):648–59.
31.
go back to reference Myszka DG, Sweet RW, Hensley P, Brigham-Burke M, Kwong PD, Hendrickson WA, Wyatt R, Sodroski J, Doyle ML. Energetics of the HIV gp120-CD4 binding reaction. Proc Natl Acad Sci USA. 2000;97:9026–31.PubMedPubMedCentral Myszka DG, Sweet RW, Hensley P, Brigham-Burke M, Kwong PD, Hendrickson WA, Wyatt R, Sodroski J, Doyle ML. Energetics of the HIV gp120-CD4 binding reaction. Proc Natl Acad Sci USA. 2000;97:9026–31.PubMedPubMedCentral
32.
go back to reference Finzi D, Siliciano RF. Viral dynamics in HIV-1 infection. Cell. 1998;93:665–71.PubMed Finzi D, Siliciano RF. Viral dynamics in HIV-1 infection. Cell. 1998;93:665–71.PubMed
33.
go back to reference Overbaugh J, Morris L. The antibody response against HIV-1 Cold Spring Harb. Perspect Med. 2012;2:7–39. Overbaugh J, Morris L. The antibody response against HIV-1 Cold Spring Harb. Perspect Med. 2012;2:7–39.
34.
go back to reference Brown BK, Wieczorek L, Sanders-Buell E, Rosa Borges A, Robb ML, Birx DL, Michael NL, McCutchan FE, Polonis VR. Cross-clade neutralization patterns among HIV-1 strains from the six major clades of the pandemic evaluated and compared in two different models. Virology. 2008;375:529–38.PubMed Brown BK, Wieczorek L, Sanders-Buell E, Rosa Borges A, Robb ML, Birx DL, Michael NL, McCutchan FE, Polonis VR. Cross-clade neutralization patterns among HIV-1 strains from the six major clades of the pandemic evaluated and compared in two different models. Virology. 2008;375:529–38.PubMed
35.
go back to reference Dreja H, O’Sullivan E, Pade C, Greene KM, Gao H, Aubin K, Hand J, Isaksen A, D’Souza C, Leber W, et al. Neutralization activity in a geographically diverse East London cohort of human immunodeficiency virus type 1-infected patients: Clade C infection results in a stronger and broader humoral immune response than clade B infection. J Gen Virol. 2010;91:2794–803.PubMed Dreja H, O’Sullivan E, Pade C, Greene KM, Gao H, Aubin K, Hand J, Isaksen A, D’Souza C, Leber W, et al. Neutralization activity in a geographically diverse East London cohort of human immunodeficiency virus type 1-infected patients: Clade C infection results in a stronger and broader humoral immune response than clade B infection. J Gen Virol. 2010;91:2794–803.PubMed
36.
go back to reference Preston BD. Reverse transcriptase fidelity and HIV-1 variation. Science. 1997;275:228–9.PubMed Preston BD. Reverse transcriptase fidelity and HIV-1 variation. Science. 1997;275:228–9.PubMed
37.
go back to reference Ho DD, Neumann AU, Perelson AS, Chen W, Leonard JM, Markowitz M. Rapid turnover of plasma virions and CD4 lymphocytes in HIV-1 infection. Nature. 1995;373:123–6.PubMed Ho DD, Neumann AU, Perelson AS, Chen W, Leonard JM, Markowitz M. Rapid turnover of plasma virions and CD4 lymphocytes in HIV-1 infection. Nature. 1995;373:123–6.PubMed
38.
go back to reference Evans DT, O'Connor DH, Jing P, Dzuris JL, Sidney J, da Silva J, Allen TM, Horton H, Venham JE, Rudersdorf JA, Vogel T, Pauza CD, Bontrop RE, DeMars R, Sette A, Hughes AL, Watkins DI. Virus-specific cytotoxic T-lymphocyte responses select for amino-acid variation in simian immunodeficiency virus. Env Nef Nat Med. 1999;5:1270–6.PubMed Evans DT, O'Connor DH, Jing P, Dzuris JL, Sidney J, da Silva J, Allen TM, Horton H, Venham JE, Rudersdorf JA, Vogel T, Pauza CD, Bontrop RE, DeMars R, Sette A, Hughes AL, Watkins DI. Virus-specific cytotoxic T-lymphocyte responses select for amino-acid variation in simian immunodeficiency virus. Env Nef Nat Med. 1999;5:1270–6.PubMed
39.
go back to reference Parren PW, Moore JP, Burton DR, Sattentau QJ. The neutralizing antibody response to HIV-1: viral evasion and escape from humoral immunity. AIDS. 1999;13:137–62. Parren PW, Moore JP, Burton DR, Sattentau QJ. The neutralizing antibody response to HIV-1: viral evasion and escape from humoral immunity. AIDS. 1999;13:137–62.
40.
go back to reference Korber B, Gaschen B, Yusim K, Thakallapally R, Kesmir C, Detours V. Evolutionary and immunological implications of contemporary HIV-1 variation. Br Med Bull. 2001;58:19–42.PubMed Korber B, Gaschen B, Yusim K, Thakallapally R, Kesmir C, Detours V. Evolutionary and immunological implications of contemporary HIV-1 variation. Br Med Bull. 2001;58:19–42.PubMed
41.
go back to reference McCutchan FE. Understanding the genetic diversity of HIV-1. AIDS. 2000;14(3):31–44. McCutchan FE. Understanding the genetic diversity of HIV-1. AIDS. 2000;14(3):31–44.
42.
go back to reference Forns X, Bukh J, Purcell RH. The challenge of developing a vaccine against hepatitis C virus. J Hepatol. 2002;37:684–95.PubMed Forns X, Bukh J, Purcell RH. The challenge of developing a vaccine against hepatitis C virus. J Hepatol. 2002;37:684–95.PubMed
43.
go back to reference Pybus OG, Theze J. Hepacivirus cross-species transmission and the origins of the hepatitis C virus. Curr Opin Virol. 2006;16:1–7. Pybus OG, Theze J. Hepacivirus cross-species transmission and the origins of the hepatitis C virus. Curr Opin Virol. 2006;16:1–7.
44.
go back to reference Drexler JF, Corman VM, Müller MA, Lukashev AN, Gmyl A, Coutard B, Adam A, Ritz D, Leijten LM, van Riel D, Kallies R, Klose SM, Gloza-Rausch F, Binger T, Annan A, Adu-Sarkodie Y, Oppong S, Bourgarel M, Rupp D, Hoffmann B, Schlegel M, Kümmerer BM, Krüger DH, Schmidt-Chanasit J, Setién AA, Cottontail VM, Hemachudha T, Wacharapluesadee S, Osterrieder K, Bartenschlager R, Matthee S, Beer M, Kuiken T, Reusken C, Leroy EM, Ulrich RG, Drosten C. Evidence for novel hepaciviruses in rodents. PLoS Pathog. 2013;9:e1003438.PubMedPubMedCentral Drexler JF, Corman VM, Müller MA, Lukashev AN, Gmyl A, Coutard B, Adam A, Ritz D, Leijten LM, van Riel D, Kallies R, Klose SM, Gloza-Rausch F, Binger T, Annan A, Adu-Sarkodie Y, Oppong S, Bourgarel M, Rupp D, Hoffmann B, Schlegel M, Kümmerer BM, Krüger DH, Schmidt-Chanasit J, Setién AA, Cottontail VM, Hemachudha T, Wacharapluesadee S, Osterrieder K, Bartenschlager R, Matthee S, Beer M, Kuiken T, Reusken C, Leroy EM, Ulrich RG, Drosten C. Evidence for novel hepaciviruses in rodents. PLoS Pathog. 2013;9:e1003438.PubMedPubMedCentral
45.
go back to reference Baechlein C, Fischer N, Grundhoff A, et al. Identification of a Novel Hepacivirus in Domestic Cattle from Germany. J Virol. 2015;89(14):7007–155.PubMedPubMedCentral Baechlein C, Fischer N, Grundhoff A, et al. Identification of a Novel Hepacivirus in Domestic Cattle from Germany. J Virol. 2015;89(14):7007–155.PubMedPubMedCentral
46.
go back to reference Lauck M, Sibley SD, Lara J, Purdy MA, Khudyakov Y, Hyeroba D, et al. A novel hepacivirus with an unusually long and intrinsically disordered NS5A protein in a wild Old World primate. J of Virol. 2013;87:8971–81. Lauck M, Sibley SD, Lara J, Purdy MA, Khudyakov Y, Hyeroba D, et al. A novel hepacivirus with an unusually long and intrinsically disordered NS5A protein in a wild Old World primate. J of Virol. 2013;87:8971–81.
47.
go back to reference Pawlotsky JM, Feld JJ, Zeuzem S, Hoofnagle JH. From non-A, non-B hepatitis to hepatitis C virus cure. J Hepatol. 2015;62:87–99. Pawlotsky JM, Feld JJ, Zeuzem S, Hoofnagle JH. From non-A, non-B hepatitis to hepatitis C virus cure. J Hepatol. 2015;62:87–99.
48.
go back to reference Falade-Nwulia O, Suarez-Cuervo C, Nelson DR, Fried MW, Segal JB, Sulkowski MS. Oral direct-acting agent therapy for hepatitis C virus infection: a systematic review. Ann Intern Med. 2017;166(9):637–48.PubMedPubMedCentral Falade-Nwulia O, Suarez-Cuervo C, Nelson DR, Fried MW, Segal JB, Sulkowski MS. Oral direct-acting agent therapy for hepatitis C virus infection: a systematic review. Ann Intern Med. 2017;166(9):637–48.PubMedPubMedCentral
49.
go back to reference WHO. Global Hepatitis Report Geneva. Switzerland: WHO; 2017. WHO. Global Hepatitis Report Geneva. Switzerland: WHO; 2017.
50.
go back to reference Gravitz L. Introduction: a smouldering public-health crisis. Nature. 2011;474:2–4. Gravitz L. Introduction: a smouldering public-health crisis. Nature. 2011;474:2–4.
51.
go back to reference Cox AL. MEDICINE. Global control of hepatitis C virus. Science. 2015;349:790–1.PubMed Cox AL. MEDICINE. Global control of hepatitis C virus. Science. 2015;349:790–1.PubMed
52.
go back to reference Falade-Nwulia O, Sulkowski MS, Merkow A, Latkin C, Mehta SH. Understanding and addressing hepatitis C reinfection in the oral direct-acting antiviral era. J Viral Hepat. 2018;25:220–7.PubMedPubMedCentral Falade-Nwulia O, Sulkowski MS, Merkow A, Latkin C, Mehta SH. Understanding and addressing hepatitis C reinfection in the oral direct-acting antiviral era. J Viral Hepat. 2018;25:220–7.PubMedPubMedCentral
53.
go back to reference Frey SE, Houghton M, Coates S, Abrignani S, Chien D, Rosa D, et al. Safety and immunogenicity of HCV E1E2 vaccine adjuvanted with MF59 administered to healthy adults. Vaccine. 2010;28:6367–73.PubMedPubMedCentral Frey SE, Houghton M, Coates S, Abrignani S, Chien D, Rosa D, et al. Safety and immunogenicity of HCV E1E2 vaccine adjuvanted with MF59 administered to healthy adults. Vaccine. 2010;28:6367–73.PubMedPubMedCentral
54.
go back to reference Law JL, Chen C, Wong J, Hockman D, Santer DM, Frey SE, et al. A hepatitis C virus (HCV) vaccine comprising envelope glycoproteins gpE1/gpE2 derived from a single isolate elicits broad cross-genotype neutralizing antibodies in humans. PLoS ONE. 2013;8:e59776.PubMedPubMedCentral Law JL, Chen C, Wong J, Hockman D, Santer DM, Frey SE, et al. A hepatitis C virus (HCV) vaccine comprising envelope glycoproteins gpE1/gpE2 derived from a single isolate elicits broad cross-genotype neutralizing antibodies in humans. PLoS ONE. 2013;8:e59776.PubMedPubMedCentral
55.
go back to reference Shoukry NH, Hepatitis C. Vaccines, antibodies, and T Cells. Front Immunol. 2018;9:9. Shoukry NH, Hepatitis C. Vaccines, antibodies, and T Cells. Front Immunol. 2018;9:9.
56.
57.
go back to reference Badr G, Bedard N, Abdel-Hakeem MS, Trautmann L, Willems B, Villeneuve JP, et al. Early interferon therapy for hepatitis C virus infection rescues polyfunctional, long-lived CD8+ memory T cells. J Virol. 2008;82:5. Badr G, Bedard N, Abdel-Hakeem MS, Trautmann L, Willems B, Villeneuve JP, et al. Early interferon therapy for hepatitis C virus infection rescues polyfunctional, long-lived CD8+ memory T cells. J Virol. 2008;82:5.
59.
go back to reference Bengsch B, Spangenberg HC, Kersting N, Neumann-Haefelin C, Panther E, Von Weizsacker F, et al. Analysis of CD127 and KLRG1 expression on hepatitis C virus-specific CD8+ T cells reveals the existence of different memory T-cell subsets in the peripheral blood and liver. J Virol. 2007;81:945–53.PubMed Bengsch B, Spangenberg HC, Kersting N, Neumann-Haefelin C, Panther E, Von Weizsacker F, et al. Analysis of CD127 and KLRG1 expression on hepatitis C virus-specific CD8+ T cells reveals the existence of different memory T-cell subsets in the peripheral blood and liver. J Virol. 2007;81:945–53.PubMed
60.
go back to reference Shin EC, Park SH, Nascimbeni M, Major M, Caggiari L, De Re V, et al. The frequency of CD127+ HCV-specific T cells but not the expression of exhaustion markers predict the outcome of acute hepatitis C virus infection. J Virol. 2013;87(8):4772–7.PubMedPubMedCentral Shin EC, Park SH, Nascimbeni M, Major M, Caggiari L, De Re V, et al. The frequency of CD127+ HCV-specific T cells but not the expression of exhaustion markers predict the outcome of acute hepatitis C virus infection. J Virol. 2013;87(8):4772–7.PubMedPubMedCentral
61.
go back to reference Gupta PK, Godec J, Wolski D, Adland E, Yates K, Pauken KE, et al. CD39 expression identifies terminally exhausted CD8+ T cells. PLoS Pathog. 2015;11:e1005177.PubMedPubMedCentral Gupta PK, Godec J, Wolski D, Adland E, Yates K, Pauken KE, et al. CD39 expression identifies terminally exhausted CD8+ T cells. PLoS Pathog. 2015;11:e1005177.PubMedPubMedCentral
62.
go back to reference Ball JK, Tarr AW, McKeating JA. The past, present and future of neutralizing antibodies for hepatitis C virus. Antiviral Res. 2014;105(100):100–11.PubMedPubMedCentral Ball JK, Tarr AW, McKeating JA. The past, present and future of neutralizing antibodies for hepatitis C virus. Antiviral Res. 2014;105(100):100–11.PubMedPubMedCentral
63.
go back to reference Law M, Maruyama T, Lewis J, Giang E, Tarr AW, Stamataki Z, et al. Broadly neutralizing antibodies protect against hepatitis C virus quasispecies challenge. Nat Med. 2008;14:25–7.PubMed Law M, Maruyama T, Lewis J, Giang E, Tarr AW, Stamataki Z, et al. Broadly neutralizing antibodies protect against hepatitis C virus quasispecies challenge. Nat Med. 2008;14:25–7.PubMed
64.
go back to reference Giang E, Dorner M, Prentoe JC, Dreux M, Evans MJ, Bukh J, et al. Human broadly neutralizing antibodies to the envelope glycoprotein complex of hepatitis C virus. Proc Natl Acad Sci USA. 2012;109:6205–10.PubMedPubMedCentral Giang E, Dorner M, Prentoe JC, Dreux M, Evans MJ, Bukh J, et al. Human broadly neutralizing antibodies to the envelope glycoprotein complex of hepatitis C virus. Proc Natl Acad Sci USA. 2012;109:6205–10.PubMedPubMedCentral
65.
go back to reference Bailey JR, Flyak AI, Cohen VJ, Li H, Wasilewski LN, Snider AE, et al. Broadly neutralizing antibodies with few somatic mutations and hepatitis C virus clearance. JCI Insight. 2017;2(9):e92872.PubMedCentral Bailey JR, Flyak AI, Cohen VJ, Li H, Wasilewski LN, Snider AE, et al. Broadly neutralizing antibodies with few somatic mutations and hepatitis C virus clearance. JCI Insight. 2017;2(9):e92872.PubMedCentral
66.
go back to reference Batista-Duharte A, Sendra L, Herrero MJ, Téllez-Martínez D, Carlos IZ, Aliño SF. Progress in the Use of Antisense Oligonucleotides for Vaccine Improvement. Biomolecules. 2020;10(2):316.PubMedCentral Batista-Duharte A, Sendra L, Herrero MJ, Téllez-Martínez D, Carlos IZ, Aliño SF. Progress in the Use of Antisense Oligonucleotides for Vaccine Improvement. Biomolecules. 2020;10(2):316.PubMedCentral
67.
go back to reference Myhr AI. DNA Vaccines: regulatory considerations and safety aspects. Curr Issues Mol Biol. 2017;22:79–88.PubMed Myhr AI. DNA Vaccines: regulatory considerations and safety aspects. Curr Issues Mol Biol. 2017;22:79–88.PubMed
68.
go back to reference Ghaffarifar F. Plasmid DNA vaccines: where are we now? Drugs Today Barc. 2018;54:315–33.PubMed Ghaffarifar F. Plasmid DNA vaccines: where are we now? Drugs Today Barc. 2018;54:315–33.PubMed
69.
go back to reference Geall AJ, Mandl CW, Ulmer JB. RNA: the new revolution in nucleic acid vaccines. Semin Immunol. 2013;25:152–9.PubMed Geall AJ, Mandl CW, Ulmer JB. RNA: the new revolution in nucleic acid vaccines. Semin Immunol. 2013;25:152–9.PubMed
70.
go back to reference Kramps T, Elbers K. Introduction to RNA vaccines. Methods Mol Biol. 2017;1499:1–11.PubMed Kramps T, Elbers K. Introduction to RNA vaccines. Methods Mol Biol. 2017;1499:1–11.PubMed
71.
go back to reference Bode C, Zhao G, Steinhagen F, Kinjo T, Klinman DM. CpG DNA as a vaccine adjuvant. Expert Rev Vaccines. 2011;10:499–511.PubMedPubMedCentral Bode C, Zhao G, Steinhagen F, Kinjo T, Klinman DM. CpG DNA as a vaccine adjuvant. Expert Rev Vaccines. 2011;10:499–511.PubMedPubMedCentral
72.
go back to reference Scheiermann J, Klinman DM. Clinical evaluation of CpG oligonucleotides as adjuvants for vaccines targeting infectious diseases and cancer. Vaccine. 2014;32:6377–89.PubMedPubMedCentral Scheiermann J, Klinman DM. Clinical evaluation of CpG oligonucleotides as adjuvants for vaccines targeting infectious diseases and cancer. Vaccine. 2014;32:6377–89.PubMedPubMedCentral
73.
go back to reference Yamamoto S, Yamamoto T, Shimada S, Kuramoto E, Yano O, Kataoka T, Tokunaga T. DNA from bacteria, but not from vertebrates, induces interferons, activates natural killer cells and inhibits tumor growth. Microbiol Immunol. 1992;36:983–97.PubMed Yamamoto S, Yamamoto T, Shimada S, Kuramoto E, Yano O, Kataoka T, Tokunaga T. DNA from bacteria, but not from vertebrates, induces interferons, activates natural killer cells and inhibits tumor growth. Microbiol Immunol. 1992;36:983–97.PubMed
74.
go back to reference Krieg AM, Yi AK, Matson S, Waldschmidt TJ, Bishop GA, Teasdale R, Koretzky GA, Klinman DM. CpG motifs in bacterial DNA trigger direct B-cell activation. Nature. 1995;374:546–9.PubMed Krieg AM, Yi AK, Matson S, Waldschmidt TJ, Bishop GA, Teasdale R, Koretzky GA, Klinman DM. CpG motifs in bacterial DNA trigger direct B-cell activation. Nature. 1995;374:546–9.PubMed
75.
go back to reference Janeway CA, Medzhitov R. Innate immune recognition. Annu Rev Immunol. 2020;20:197–21616. Janeway CA, Medzhitov R. Innate immune recognition. Annu Rev Immunol. 2020;20:197–21616.
76.
go back to reference Murad YM, Clay TM. CpG Oligodeoxynucleotides as TLR9 Agonists. BioDrugs. 2009;23:361–75.PubMed Murad YM, Clay TM. CpG Oligodeoxynucleotides as TLR9 Agonists. BioDrugs. 2009;23:361–75.PubMed
77.
go back to reference Vollmer J, Krieg AM. Immunotherapeutic applications of CpG oligodeoxynucleotide TLR9 agonists. Adv Drug Deliv Rev. 2009;61:195–204.PubMed Vollmer J, Krieg AM. Immunotherapeutic applications of CpG oligodeoxynucleotide TLR9 agonists. Adv Drug Deliv Rev. 2009;61:195–204.PubMed
78.
go back to reference Campbell JD. Development of the CpG adjuvant 1018: a case study. Methods Mol Biol. 2017;1494:15–27.PubMed Campbell JD. Development of the CpG adjuvant 1018: a case study. Methods Mol Biol. 2017;1494:15–27.PubMed
79.
go back to reference Guerrier T, Youinou P, Pers JO, Jamin C. TLR9 drives the development of transitional B cells towards the marginal zone pathway and promotes autoimmunity. J Autoimmun. 2012;39:173–9.PubMed Guerrier T, Youinou P, Pers JO, Jamin C. TLR9 drives the development of transitional B cells towards the marginal zone pathway and promotes autoimmunity. J Autoimmun. 2012;39:173–9.PubMed
80.
go back to reference Sacher T, Knolle P, Nichterlein T, Arnold B, Hämmerling GJ, Limmer A. CpG-ODN-induced inflammation is sufficient to cause T-cell-mediated autoaggression against hepatocytes. Eur J Immunol. 2002;32:3628–37.PubMed Sacher T, Knolle P, Nichterlein T, Arnold B, Hämmerling GJ, Limmer A. CpG-ODN-induced inflammation is sufficient to cause T-cell-mediated autoaggression against hepatocytes. Eur J Immunol. 2002;32:3628–37.PubMed
81.
go back to reference Channappanavar R, Zhao J, Perlman S. T cell-mediated immune response to respiratory coronaviruses. Immunol Res. 2014;59(1–3):118–28.PubMedPubMedCentral Channappanavar R, Zhao J, Perlman S. T cell-mediated immune response to respiratory coronaviruses. Immunol Res. 2014;59(1–3):118–28.PubMedPubMedCentral
83.
go back to reference Murasko DM, Jiang J. Response of aged mice to primary virus infections. Immunol Rev. 2005;205:285–96.PubMed Murasko DM, Jiang J. Response of aged mice to primary virus infections. Immunol Rev. 2005;205:285–96.PubMed
84.
go back to reference Gardner EM, Gonzalez EW, Nogusa S, Murasko DM. Age-related changes in the immune response to influenza vaccination in a racially diverse, healthy elderly population. Vaccine. 2006;24:1609–14.PubMed Gardner EM, Gonzalez EW, Nogusa S, Murasko DM. Age-related changes in the immune response to influenza vaccination in a racially diverse, healthy elderly population. Vaccine. 2006;24:1609–14.PubMed
85.
go back to reference Roberts A, Deming D, Paddock CD, Cheng A, Yount B, Vogel L, Herman BD, Sheahan T, Heise M, Genrich GL, Zaki SR, Baric R, Subbarao K. A mouse-adapted SARS-coronavirus causes disease and mortality in BALB/c mice. PLoS Pathog. 2007;3:e5.PubMedPubMedCentral Roberts A, Deming D, Paddock CD, Cheng A, Yount B, Vogel L, Herman BD, Sheahan T, Heise M, Genrich GL, Zaki SR, Baric R, Subbarao K. A mouse-adapted SARS-coronavirus causes disease and mortality in BALB/c mice. PLoS Pathog. 2007;3:e5.PubMedPubMedCentral
86.
go back to reference Williamson JS, Stohlman SA. Effective clearance of mouse hepatitis virus from the central nervous system requires both CD4+ and CD8+ T cells. J Virol. 1990;64:4589–92.PubMedPubMedCentral Williamson JS, Stohlman SA. Effective clearance of mouse hepatitis virus from the central nervous system requires both CD4+ and CD8+ T cells. J Virol. 1990;64:4589–92.PubMedPubMedCentral
87.
go back to reference Roth Y, Chapnik JS, Cole P. Feasibility of aerosol vaccination in humans. Ann Otol Rhinol Laryngol. 2003;112:264–70.PubMed Roth Y, Chapnik JS, Cole P. Feasibility of aerosol vaccination in humans. Ann Otol Rhinol Laryngol. 2003;112:264–70.PubMed
88.
go back to reference Manjaly Thomas ZR, McShane H. Aerosol immunisation for TB: matching route of vaccination to route of infection. Trans R Soc Trop Med Hyg. 2015;109:175–81.PubMedPubMedCentral Manjaly Thomas ZR, McShane H. Aerosol immunisation for TB: matching route of vaccination to route of infection. Trans R Soc Trop Med Hyg. 2015;109:175–81.PubMedPubMedCentral
89.
go back to reference Hodgson J. The pandemic pipeline. Nat Biotechnol. 2020;4:8. Hodgson J. The pandemic pipeline. Nat Biotechnol. 2020;4:8.
90.
go back to reference Gottlieb J, Zamora MR, Hodges T, Musk AW, Sommerwerk U, Dilling D, Arcasoy S, DeVincenzo J, Karsten V, Shah S, et al. ALN-RSV01 for prevention of bronchiolitis obliterans syndrome after respiratory syncytial virus infection in lung transplant recipients. J Heart Lung Transplant. 2016;35:213–21.PubMed Gottlieb J, Zamora MR, Hodges T, Musk AW, Sommerwerk U, Dilling D, Arcasoy S, DeVincenzo J, Karsten V, Shah S, et al. ALN-RSV01 for prevention of bronchiolitis obliterans syndrome after respiratory syncytial virus infection in lung transplant recipients. J Heart Lung Transplant. 2016;35:213–21.PubMed
91.
go back to reference Latz E, Schoenemeyer A, Visintin A, Fitzgerald KA, Monks BG, Knetter CF, Lien E, Nilsen NJ, Espevik T, Golenbock DT. TLR9 signals after translocating from the ER to CpG DNA in the lysosome. Nat Immunol. 2004;5:190–8.PubMed Latz E, Schoenemeyer A, Visintin A, Fitzgerald KA, Monks BG, Knetter CF, Lien E, Nilsen NJ, Espevik T, Golenbock DT. TLR9 signals after translocating from the ER to CpG DNA in the lysosome. Nat Immunol. 2004;5:190–8.PubMed
92.
go back to reference Yasuda K, Yu P, Kirschning CJ, Schlatter B, Schmitz F, Heit A, Bauer S, Hochrein H, Wagner H. Endosomal translocation of vertebrate DNA activates dendritic cells via TLR9-dependent and -independent pathways. J Immunol. 2005;174:6129–36.PubMed Yasuda K, Yu P, Kirschning CJ, Schlatter B, Schmitz F, Heit A, Bauer S, Hochrein H, Wagner H. Endosomal translocation of vertebrate DNA activates dendritic cells via TLR9-dependent and -independent pathways. J Immunol. 2005;174:6129–36.PubMed
93.
go back to reference Haas T, Metzger J, Schmitz F, Heit A, Muller T, Latz E, Wagner H. The DNA sugar backbone 2′ deoxyribose determines toll-like receptor 9 activation. Immunity. 2008;28:315–23.PubMed Haas T, Metzger J, Schmitz F, Heit A, Muller T, Latz E, Wagner H. The DNA sugar backbone 2′ deoxyribose determines toll-like receptor 9 activation. Immunity. 2008;28:315–23.PubMed
94.
go back to reference Wagner H. The sweetness of the DNA backbone drives Toll-like receptor 9. Curr Opin Immunol. 2008;20:396–400.PubMed Wagner H. The sweetness of the DNA backbone drives Toll-like receptor 9. Curr Opin Immunol. 2008;20:396–400.PubMed
95.
go back to reference Ashman RF, Goeken JA, Latz E, Lenert P. Optimal oligonucleotide sequences for TLR9 inhibitory activity in human cells: lack of correlation with TLR9 binding. Int Immunol. 2011;23:203–14.PubMedPubMedCentral Ashman RF, Goeken JA, Latz E, Lenert P. Optimal oligonucleotide sequences for TLR9 inhibitory activity in human cells: lack of correlation with TLR9 binding. Int Immunol. 2011;23:203–14.PubMedPubMedCentral
96.
go back to reference Glasspool-Malone J, Steenland PR, McDonald RJ, Sanchez RA, Watts TL, Zabner J, Malone RW. DNA transfection of macaque and murine respiratory tissue is greatly enhanced by use of a nuclease inhibitor. J Gene Med. 2002;4:323–32.PubMed Glasspool-Malone J, Steenland PR, McDonald RJ, Sanchez RA, Watts TL, Zabner J, Malone RW. DNA transfection of macaque and murine respiratory tissue is greatly enhanced by use of a nuclease inhibitor. J Gene Med. 2002;4:323–32.PubMed
97.
go back to reference Dias N, Stein CA. Antisense oligonucleotides: basic concepts and mechanisms. Mol Cancer Ther. 2002;1:347–55.PubMed Dias N, Stein CA. Antisense oligonucleotides: basic concepts and mechanisms. Mol Cancer Ther. 2002;1:347–55.PubMed
98.
go back to reference Haas T, et al. The DNA sugar backbone 2′ deoxyribose determines toll-like receptor 9 activation. Immunity. 2008;28:315–23.PubMed Haas T, et al. The DNA sugar backbone 2′ deoxyribose determines toll-like receptor 9 activation. Immunity. 2008;28:315–23.PubMed
99.
go back to reference Atkinson NJ, Witteveldt J, Evans DJ, Simmonds P. The influence of CpG and UpA dinucleotide frequencies on RNA virus replication and characterization of the innate cellular pathways underlying virus attenuation and enhanced replication. Nucleic Acids Res. 2014;42:4527–45.PubMedPubMedCentral Atkinson NJ, Witteveldt J, Evans DJ, Simmonds P. The influence of CpG and UpA dinucleotide frequencies on RNA virus replication and characterization of the innate cellular pathways underlying virus attenuation and enhanced replication. Nucleic Acids Res. 2014;42:4527–45.PubMedPubMedCentral
100.
go back to reference Greenbaum BD, Rabadan R, Levine AJ. Patterns of oligonucleotide sequences in viral and host cell RNA identify mediators of the host innate immune system. PLoS ONE. 2009;4(6):e5969.PubMedPubMedCentral Greenbaum BD, Rabadan R, Levine AJ. Patterns of oligonucleotide sequences in viral and host cell RNA identify mediators of the host innate immune system. PLoS ONE. 2009;4(6):e5969.PubMedPubMedCentral
101.
go back to reference Lobo FP, Mota BE, Pena SD, Azevedo V, Macedo AM, Tauch A, Machado CR, Franco GR. Virus-host coevolution: common patterns of nucleotide motif usage in Flaviviridae and their hosts. PLoS ONE. 2009;4(7):e6282.PubMedPubMedCentral Lobo FP, Mota BE, Pena SD, Azevedo V, Macedo AM, Tauch A, Machado CR, Franco GR. Virus-host coevolution: common patterns of nucleotide motif usage in Flaviviridae and their hosts. PLoS ONE. 2009;4(7):e6282.PubMedPubMedCentral
102.
go back to reference Greenbaum BD, Levine AJ, Bhanot G, Rabadan R. Patterns of evolution and host gene mimicry in influenza and other RNA viruses. PLoS Pathog. 2008;4:e1000079.PubMedPubMedCentral Greenbaum BD, Levine AJ, Bhanot G, Rabadan R. Patterns of evolution and host gene mimicry in influenza and other RNA viruses. PLoS Pathog. 2008;4:e1000079.PubMedPubMedCentral
103.
go back to reference Jimenez-Baranda S, Greenbaum B, Manches O, Handler J, Rabadán R, et al. Oligonucleotide motifs that disappear during the evolution of influenza virus in humans increase alpha interferon secretion by plasmacytoid dendritic cells. J Virol. 2011;85:3893–904.PubMedPubMedCentral Jimenez-Baranda S, Greenbaum B, Manches O, Handler J, Rabadán R, et al. Oligonucleotide motifs that disappear during the evolution of influenza virus in humans increase alpha interferon secretion by plasmacytoid dendritic cells. J Virol. 2011;85:3893–904.PubMedPubMedCentral
104.
go back to reference Krieg AM, Wagner H. Causing a commotion in the blood: immunotherapy progresses from bacteria to bacterial DNA. Immunol Today. 2000;21:521–6.PubMed Krieg AM, Wagner H. Causing a commotion in the blood: immunotherapy progresses from bacteria to bacterial DNA. Immunol Today. 2000;21:521–6.PubMed
105.
go back to reference Ballas ZK, Rasmussen WL, Krieg AM. Induction of NK activity in murine and human cells by CpG motifs in oligodeoxynucleotides and bacterial DNA. J Immunol. 1996;157(5):1840–5.PubMed Ballas ZK, Rasmussen WL, Krieg AM. Induction of NK activity in murine and human cells by CpG motifs in oligodeoxynucleotides and bacterial DNA. J Immunol. 1996;157(5):1840–5.PubMed
106.
go back to reference Yamamoto S, Yamamoto T, Kataoka T, Kuramoto E, Yano O, Tokunaga T. Unique palindromic sequences in synthetic oligonucleotides are required to induce IFN [correction of INF] and augment IFN-mediated [correction of INF] natural killer activity. J Immunol. 1992;148(12):4072–6.PubMed Yamamoto S, Yamamoto T, Kataoka T, Kuramoto E, Yano O, Tokunaga T. Unique palindromic sequences in synthetic oligonucleotides are required to induce IFN [correction of INF] and augment IFN-mediated [correction of INF] natural killer activity. J Immunol. 1992;148(12):4072–6.PubMed
107.
go back to reference Rankin R, Pontarollo R, Iannou X, Krieg AM, Hecker R. CpG motif identification for veterinary and laboratory species demonstrates that sequence recognition is highly conserved. Antisense Nucleic Acid Drug Dev. 2001;11:333–40.PubMed Rankin R, Pontarollo R, Iannou X, Krieg AM, Hecker R. CpG motif identification for veterinary and laboratory species demonstrates that sequence recognition is highly conserved. Antisense Nucleic Acid Drug Dev. 2001;11:333–40.PubMed
108.
go back to reference Hartmann G, Krieg AM. Mechanism and function of a newly identified CpG DNA motif in human primary B cells. J Immunol. 2000;164(2):944–53.PubMed Hartmann G, Krieg AM. Mechanism and function of a newly identified CpG DNA motif in human primary B cells. J Immunol. 2000;164(2):944–53.PubMed
109.
go back to reference Hartmann G, Weeratna RD, Ballas ZK, Payette P, Blackwell S, Suparto I, Rasmussen WL, Waldschmidt M, Sajuthi D, Purcell H, Davis HL, Krieg AM. Delineation of a CpG phosphorothioate oligodeoxynucleotide for activating primate immune responses in vitro and in vivo. J Immunol. 2000;164(3):1617–24.PubMed Hartmann G, Weeratna RD, Ballas ZK, Payette P, Blackwell S, Suparto I, Rasmussen WL, Waldschmidt M, Sajuthi D, Purcell H, Davis HL, Krieg AM. Delineation of a CpG phosphorothioate oligodeoxynucleotide for activating primate immune responses in vitro and in vivo. J Immunol. 2000;164(3):1617–24.PubMed
110.
go back to reference Liang H, Nishioka Y, Reich CF, Pisetsky DS, Lipsky PE. Activation of human B cells by phosphorothioate oligodeoxynucleotides. J Clin Invest. 1996;98(5):1119–29.PubMedPubMedCentral Liang H, Nishioka Y, Reich CF, Pisetsky DS, Lipsky PE. Activation of human B cells by phosphorothioate oligodeoxynucleotides. J Clin Invest. 1996;98(5):1119–29.PubMedPubMedCentral
111.
go back to reference Krieg AM. CpG Motifs in Bacterial DNA and Their Immune Effects. Ann Rev Immunol. 2002;20:709–60. Krieg AM. CpG Motifs in Bacterial DNA and Their Immune Effects. Ann Rev Immunol. 2002;20:709–60.
112.
go back to reference Bird AP. CpG islands as gene markers in the vertebrate nucleus. Trends Genet. 1987;3:342–7. Bird AP. CpG islands as gene markers in the vertebrate nucleus. Trends Genet. 1987;3:342–7.
113.
go back to reference Han J, Zhu Z, Hsu C, Finley WH. Selection of antisense oligonucleotides on the basis of genomic frequency of the target sequence. Antisense Res Dev. 1994;4(1):53–655.PubMed Han J, Zhu Z, Hsu C, Finley WH. Selection of antisense oligonucleotides on the basis of genomic frequency of the target sequence. Antisense Res Dev. 1994;4(1):53–655.PubMed
114.
go back to reference Shpaer EG, Mullins JI. Selection against CpG dinucleotides in lentiviral genes: a possible role of methylation in regulation of viral expression. Nucleic Acids Res. 1990;18(19):5793–7.PubMedPubMedCentral Shpaer EG, Mullins JI. Selection against CpG dinucleotides in lentiviral genes: a possible role of methylation in regulation of viral expression. Nucleic Acids Res. 1990;18(19):5793–7.PubMedPubMedCentral
115.
go back to reference Krieg AM. Lymphocyte activation by CpG dinucleotide motifs in prokaryotic DNA. Trends Microbiol. 1996;4(2):73–6.PubMed Krieg AM. Lymphocyte activation by CpG dinucleotide motifs in prokaryotic DNA. Trends Microbiol. 1996;4(2):73–6.PubMed
116.
go back to reference Stein CA, Cheng YC. Antisense oligonucleotides as therapeutic agents–is the bullet really magical? Science. 1993;261(5124):1004–122.PubMed Stein CA, Cheng YC. Antisense oligonucleotides as therapeutic agents–is the bullet really magical? Science. 1993;261(5124):1004–122.PubMed
117.
go back to reference Stein CA, Krieg AM. Problems in interpretation of data derived from in vitro and in vivo use of antisense oligodeoxynucleotides [editorial]. Antisense Res Dev. 1994;4(2):67–9.PubMed Stein CA, Krieg AM. Problems in interpretation of data derived from in vitro and in vivo use of antisense oligodeoxynucleotides [editorial]. Antisense Res Dev. 1994;4(2):67–9.PubMed
118.
go back to reference Prompetchara E, Ketloy C, Palaga T. Immune responses in COVID-19 and potential vaccines: Lessons learned from SARS and MERS epidemic. Asian Pac J Allergy Immunol. 2020;38(1):1–9.PubMed Prompetchara E, Ketloy C, Palaga T. Immune responses in COVID-19 and potential vaccines: Lessons learned from SARS and MERS epidemic. Asian Pac J Allergy Immunol. 2020;38(1):1–9.PubMed
119.
go back to reference Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan. China Lancet. 2020;395:497–506.PubMed Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan. China Lancet. 2020;395:497–506.PubMed
120.
go back to reference Perrone LA, Plowden JK, Garcia-Sastre A, Katz JM, Tumpey TM. H5N1 and 1918 pandemic influenza virus infection results in early and excessive infiltration of macrophages and neutrophils in the lungs of mice. PLoS Pathog. 2008;4:e1000115.PubMedPubMedCentral Perrone LA, Plowden JK, Garcia-Sastre A, Katz JM, Tumpey TM. H5N1 and 1918 pandemic influenza virus infection results in early and excessive infiltration of macrophages and neutrophils in the lungs of mice. PLoS Pathog. 2008;4:e1000115.PubMedPubMedCentral
121.
go back to reference Wang SY, Le TQ, Kurihara N, Chida J, Cisse Y, Yano M, Kido H. Influenza virus-cytokine-protease cycle in the pathogenesis of vascular hyperpermeability in severe influenza. J Infect Dis. 2010;202:991–1001.PubMed Wang SY, Le TQ, Kurihara N, Chida J, Cisse Y, Yano M, Kido H. Influenza virus-cytokine-protease cycle in the pathogenesis of vascular hyperpermeability in severe influenza. J Infect Dis. 2010;202:991–1001.PubMed
122.
go back to reference Cheng XW, Lu JA, Wu CL, Yi LN, Xie X, Shi XD, Fang SS, Zan H, Kung HF, He ML. Three fatal cases of pandemic 2009 influenza A virus infection in Shenzhen are associated with cytokine storm. Respir Physiol Neurobiol. 2011;175:185–7.PubMed Cheng XW, Lu JA, Wu CL, Yi LN, Xie X, Shi XD, Fang SS, Zan H, Kung HF, He ML. Three fatal cases of pandemic 2009 influenza A virus infection in Shenzhen are associated with cytokine storm. Respir Physiol Neurobiol. 2011;175:185–7.PubMed
Metadata
Title
SARS-CoV-2 will constantly sweep its tracks: a vaccine containing CpG motifs in ‘lasso’ for the multi-faced virus
Authors
V. V. Oberemok
K. V. Laikova
K. A. Yurchenko
N. A. Marochkin
I. I. Fomochkina
A. V. Kubyshkin
Publication date
01-09-2020
Publisher
Springer International Publishing
Published in
Inflammation Research / Issue 9/2020
Print ISSN: 1023-3830
Electronic ISSN: 1420-908X
DOI
https://doi.org/10.1007/s00011-020-01377-3

Other articles of this Issue 9/2020

Inflammation Research 9/2020 Go to the issue