Skip to main content
Top
Published in: Inflammation Research 9/2019

01-09-2019 | Arterial Occlusive Disease | Original Research Paper

Macrophage lipid accumulation in the presence of immunosuppressive drugs mycophenolate mofetil and cyclosporin A

Authors: Iryna Voloshyna, Isaac Teboul, Lora J. Kasselman, Michael Salama, Steven E. Carsons, Joshua DeLeon, Joseph Mattana, Nobuyuki Miyawaki, Allison B. Reiss

Published in: Inflammation Research | Issue 9/2019

Login to get access

Abstract

Objective

Mycophenolate (MPA) and cyclosporin A (CsA) are two immunosuppressive agents currently used for the treatment of autoimmune diseases. However, reports regarding their effects on inflammation and lipid handling are controversial. Here, we compare the effect of these two drugs on the expression of proteins involved in cholesterol handling and lipid accumulation in a macrophage cell system utilizing M0, M1 and M2 human macrophages and in murine bone marrow-derived macrophages (BMDM).

Methods

Differentiated M0, M1 and M2 subsets of THP-1 human macrophages were subjected to various concentrations of either MPA or CsA. Expression of proteins involved in reverse cholesterol transport (ABCA1 and 27-hydroxylase) and scavenger receptors, responsible for uptake of modified lipids (CD36, ScR-A1, CXCL16 and LOX-1), were evaluated by real-time PCR and confirmed with Western blot. DiI-oxidized LDL internalization assay was used to assess foam cell formation. The influence of MPA was also evaluated in BMDM obtained from atherosclerosis-prone transgenic mice, ApoE−/− and ApoE−/−Fas−/−.

Results

In M0 macrophages, MPA increased expression of ABCA1 and CXCL16 in a concentration-dependent manner. In M1 THP-1 macrophages, MPA caused a significant increase of 27-hydroxylase mRNA and CD36 and SR-A1 receptor mRNAs. Exposure of M2 macrophages to MPA also stimulated expression of 27-hydroxylase, while downregulating all evaluated scavenger receptors. In contrast, CsA had no impact on cholesterol efflux in M0 and M1 macrophages, but significantly augmented expression of ABCA1 and 27-hydroxylase in M2 macrophages. CsA significantly increased expression of the LOX1 receptor in naïve macrophages, downregulated expression of CD36 and SR-A1 in the M1 subpopulation and upregulated expression of all evaluated scavenger receptors. However, CsA enhanced foam cell transformation in M0 and M2 macrophages, while MPA had no effect on foam cell formation unless used at a high concentration in the M2 subtype.

Conclusions

Our results clearly underline the importance of further evaluation of the effects of these drugs when used in atherosclerosis-prone patients with autoimmune or renal disease.
Appendix
Available only for authorised users
Literature
1.
go back to reference Frostegård J. SLE, atherosclerosis and cardiovascular disease. J Intern Med. 2005;257(6):485–95.CrossRef Frostegård J. SLE, atherosclerosis and cardiovascular disease. J Intern Med. 2005;257(6):485–95.CrossRef
2.
go back to reference Iaccarino L, Bettio S, Zen M, Nalotto L, Gatto M, Ramonda R, Punzi L, Doria A. Premature coronary heart disease in SLE: can we prevent progression? Lupus. 2013;22(12):1232–42.CrossRef Iaccarino L, Bettio S, Zen M, Nalotto L, Gatto M, Ramonda R, Punzi L, Doria A. Premature coronary heart disease in SLE: can we prevent progression? Lupus. 2013;22(12):1232–42.CrossRef
3.
go back to reference Manger K, Kalden JR, Manger B. Cyclosporin A in the treatment of systemic lupus erythematosus: results of an open clinical study. Br J Rheumatol. 1996;35:669–75.CrossRef Manger K, Kalden JR, Manger B. Cyclosporin A in the treatment of systemic lupus erythematosus: results of an open clinical study. Br J Rheumatol. 1996;35:669–75.CrossRef
4.
5.
go back to reference Glomsda BA, Blaheta RA, Hailer NP. Inhibition of monocyte/endothelial cell interactions and monocyte adhesion molecule expression by the immunosuppressant mycophenolate mofetil. Spinal Cord. 2003;41(11):610–9.CrossRef Glomsda BA, Blaheta RA, Hailer NP. Inhibition of monocyte/endothelial cell interactions and monocyte adhesion molecule expression by the immunosuppressant mycophenolate mofetil. Spinal Cord. 2003;41(11):610–9.CrossRef
6.
go back to reference Senda M, DeLustro B, Eugui E, Natsumeda Y. Mycophenolic acid, an inhibitor of IMP dehydrogenase that is also an immunosuppressive agent, suppresses the cytokine-induced nitric oxide production in mouse and rat vascular endothelial cells. Transplantation. 1995;60(10):1143–8.CrossRef Senda M, DeLustro B, Eugui E, Natsumeda Y. Mycophenolic acid, an inhibitor of IMP dehydrogenase that is also an immunosuppressive agent, suppresses the cytokine-induced nitric oxide production in mouse and rat vascular endothelial cells. Transplantation. 1995;60(10):1143–8.CrossRef
7.
go back to reference Xu Y, Lai F, Xu Y, Wu Y, Liu Q, Li N, Wei Y, Feng T, Zheng Z, Jiang W, Yu L, Hong B, Si S. Mycophenolic acid induces ATP-binding cassette transporter A1 (ABCA1) expression through the PPARc-LXRa-ABCA1 pathway. Biochem Biophys Res Commun. 2011;414(4):779–82.CrossRef Xu Y, Lai F, Xu Y, Wu Y, Liu Q, Li N, Wei Y, Feng T, Zheng Z, Jiang W, Yu L, Hong B, Si S. Mycophenolic acid induces ATP-binding cassette transporter A1 (ABCA1) expression through the PPARc-LXRa-ABCA1 pathway. Biochem Biophys Res Commun. 2011;414(4):779–82.CrossRef
8.
go back to reference von Vietinghoff S, Koltsova EK, Mestas J, Diehl CJ, Witztum JL, Ley K. Mycophenolate mofetil decreases atherosclerotic lesion size by depression of aortic T-lymphocyte and interleukin-17-mediated macrophage accumulation. J Am Coll Cardiol. 2011;57(21):2194–204.CrossRef von Vietinghoff S, Koltsova EK, Mestas J, Diehl CJ, Witztum JL, Ley K. Mycophenolate mofetil decreases atherosclerotic lesion size by depression of aortic T-lymphocyte and interleukin-17-mediated macrophage accumulation. J Am Coll Cardiol. 2011;57(21):2194–204.CrossRef
9.
go back to reference van Leuven SI, Mendez-Fernandez YV, Wilhelm AJ, Wade NS, Gabriel CL, Kastelein JJ, Stroes ES, Tak PP, Major AS. Mycophenolate mofetil but not atorvastatin attenuates atherosclerosis in lupus-prone LDLr−/− mice. Ann Rheum Dis. 2012;71:408–14.CrossRef van Leuven SI, Mendez-Fernandez YV, Wilhelm AJ, Wade NS, Gabriel CL, Kastelein JJ, Stroes ES, Tak PP, Major AS. Mycophenolate mofetil but not atorvastatin attenuates atherosclerosis in lupus-prone LDLr−/− mice. Ann Rheum Dis. 2012;71:408–14.CrossRef
10.
go back to reference Richez C, Richards RJ, Duffau P, Weitzner Z, Andry CD, Rifkin IR, Aprahamian T. The effect of mycophenolate mofetil on disease development in the gldapoE(−/−) mouse model of accelerated atherosclerosis and systemic lupus erythematosus. PLoS One. 2013;8(4):e61042.CrossRef Richez C, Richards RJ, Duffau P, Weitzner Z, Andry CD, Rifkin IR, Aprahamian T. The effect of mycophenolate mofetil on disease development in the gldapoE(−/−) mouse model of accelerated atherosclerosis and systemic lupus erythematosus. PLoS One. 2013;8(4):e61042.CrossRef
11.
go back to reference Romero F, Rodriguez-Iturbe B, Pons H, Parra G, Quiroz Y, Rincon J, Gonzalez L. Mycophenolate mofetil treatment reduces cholesterol-induced atherosclerosis in the rabbit. Atherosclerosis. 2000;152(1):127–33.CrossRef Romero F, Rodriguez-Iturbe B, Pons H, Parra G, Quiroz Y, Rincon J, Gonzalez L. Mycophenolate mofetil treatment reduces cholesterol-induced atherosclerosis in the rabbit. Atherosclerosis. 2000;152(1):127–33.CrossRef
12.
go back to reference Drew AF, Tipping PG. Cyclosporine treatment reduces early atherosclerosis in the cholesterol-fed rabbit. Atherosclerosis. 1995;116(2):181–9.CrossRef Drew AF, Tipping PG. Cyclosporine treatment reduces early atherosclerosis in the cholesterol-fed rabbit. Atherosclerosis. 1995;116(2):181–9.CrossRef
13.
go back to reference Zanotti I, Greco D, Lusardi G, Zimetti F, Potì F, Arnaboldi L, et al. Cyclosporine A impairs the macrophage reverse cholesterol transport in mice by reducing sterol fecal excretion. PLoS One. 2013;8(8):e71572.CrossRef Zanotti I, Greco D, Lusardi G, Zimetti F, Potì F, Arnaboldi L, et al. Cyclosporine A impairs the macrophage reverse cholesterol transport in mice by reducing sterol fecal excretion. PLoS One. 2013;8(8):e71572.CrossRef
14.
go back to reference Zahr N, Arnaud L, Marquet P, Haroche J, Costedoat-Chalumeau N, Hulot JS, Funck-Brentano C, Piette JC, Amoura Z. Mycophenolic acid area under the curve correlates with disease activity in lupus patients treated with mycophenolate mofetil. Arthritis Rheum. 2010;62(7):2047–54. https://doi.org/10.1002/art.27495.CrossRefPubMed Zahr N, Arnaud L, Marquet P, Haroche J, Costedoat-Chalumeau N, Hulot JS, Funck-Brentano C, Piette JC, Amoura Z. Mycophenolic acid area under the curve correlates with disease activity in lupus patients treated with mycophenolate mofetil. Arthritis Rheum. 2010;62(7):2047–54. https://​doi.​org/​10.​1002/​art.​27495.CrossRefPubMed
18.
go back to reference Kockx M, Jessup W, Kritharides L. Cyclosporin A and atherosclerosis—cellular pathways in atherogenesis. Pharmacol Ther. 2010;128:106–18.CrossRef Kockx M, Jessup W, Kritharides L. Cyclosporin A and atherosclerosis—cellular pathways in atherogenesis. Pharmacol Ther. 2010;128:106–18.CrossRef
20.
go back to reference Wang X, Hu YC, Zhang RY, Jin DX, Jiang Y, Zhang HN, Cong HL. Effect of cyclosporin A intervention on the immunological mechanisms of coronary heart disease and restenosis. Exp Ther Med. 2016;12(5):3242–8.CrossRef Wang X, Hu YC, Zhang RY, Jin DX, Jiang Y, Zhang HN, Cong HL. Effect of cyclosporin A intervention on the immunological mechanisms of coronary heart disease and restenosis. Exp Ther Med. 2016;12(5):3242–8.CrossRef
21.
go back to reference Oryoji K, Kiyohara C, Horiuchi T, et al. Reduced carotid intima-media thickness in systemic lupus erythematosus patients treated with cyclosporine A. Mod Rheumatol. 2014;24(1):86–92.CrossRef Oryoji K, Kiyohara C, Horiuchi T, et al. Reduced carotid intima-media thickness in systemic lupus erythematosus patients treated with cyclosporine A. Mod Rheumatol. 2014;24(1):86–92.CrossRef
22.
go back to reference Qin Z. The use of THP-1 cells as a model for mimicking the function and regulation of monocytes and macrophages in the vasculature. Atherosclerosis. 2012;221(1):2–11.CrossRef Qin Z. The use of THP-1 cells as a model for mimicking the function and regulation of monocytes and macrophages in the vasculature. Atherosclerosis. 2012;221(1):2–11.CrossRef
23.
go back to reference Murray PJ, Allen JE, Biswas SK, Fisher EA, Gilroy DW, Goerdt S, Gordon S, et al. Macrophage activation and polarization: nomenclature and experimental guidelines. J Immunity. 2014;06:008. Murray PJ, Allen JE, Biswas SK, Fisher EA, Gilroy DW, Goerdt S, Gordon S, et al. Macrophage activation and polarization: nomenclature and experimental guidelines. J Immunity. 2014;06:008.
24.
go back to reference Feng X, Li H, Rumbin AA, Wang X, La Cava A, Brechtelsbauer K, Castellani LW, Witztum JL, Lusis AJ, Tsao BP. ApoE−/−Fas−/− C57BL/6 mice: a novel murine model simultaneously exhibits lupus nephritis, atherosclerosis, and osteopenia. J Lipid Res. 2007;48(4):794–805.CrossRef Feng X, Li H, Rumbin AA, Wang X, La Cava A, Brechtelsbauer K, Castellani LW, Witztum JL, Lusis AJ, Tsao BP. ApoE−/−Fas−/− C57BL/6 mice: a novel murine model simultaneously exhibits lupus nephritis, atherosclerosis, and osteopenia. J Lipid Res. 2007;48(4):794–805.CrossRef
25.
go back to reference Engström A, Erlandsson A, Delbro D, Wijkander J. Conditioned media from macrophages of M1, but not M2 phenotype, inhibit the proliferation of the colon cancer cell lines HT-29 and CACO-2. Int J Oncol. 2014;44(2):385–92.CrossRef Engström A, Erlandsson A, Delbro D, Wijkander J. Conditioned media from macrophages of M1, but not M2 phenotype, inhibit the proliferation of the colon cancer cell lines HT-29 and CACO-2. Int J Oncol. 2014;44(2):385–92.CrossRef
26.
go back to reference Martinez FO, Helming L, Milde R, Varin A, Melgert BN, Draijer C, Thomas B, et al. Genetic programs expressed in resting and IL-4 alternatively activated mouse and human macrophages: similarities and differences. Blood. 2013;9:121. Martinez FO, Helming L, Milde R, Varin A, Melgert BN, Draijer C, Thomas B, et al. Genetic programs expressed in resting and IL-4 alternatively activated mouse and human macrophages: similarities and differences. Blood. 2013;9:121.
27.
go back to reference Jager N, Teteloshvili N, Zeebregts C, Westra J, Bijl M. Macrophage folate receptor-β (FR- β) expression in auto-immune inflammatory rheumatic diseases: a forthcoming marker for cardiovascular risk? Autoimmun Rev. 2012;11(9):621–6.CrossRef Jager N, Teteloshvili N, Zeebregts C, Westra J, Bijl M. Macrophage folate receptor-β (FR- β) expression in auto-immune inflammatory rheumatic diseases: a forthcoming marker for cardiovascular risk? Autoimmun Rev. 2012;11(9):621–6.CrossRef
28.
go back to reference Voloshyna I, Teboul I, Littlefield MJ, Siegart NM, et al. Resveratrol counters systemic lupus erythematosus-associated atherogenicity by normalizing cholesterol efflux. Exp Biol Med. 2016;241(14):1611–9.CrossRef Voloshyna I, Teboul I, Littlefield MJ, Siegart NM, et al. Resveratrol counters systemic lupus erythematosus-associated atherogenicity by normalizing cholesterol efflux. Exp Biol Med. 2016;241(14):1611–9.CrossRef
29.
go back to reference Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta C(T)) Method. Methods. 2001;25(4):402–8.CrossRef Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta C(T)) Method. Methods. 2001;25(4):402–8.CrossRef
30.
go back to reference Cali JJ, Hsieh C, Francke U, Russell DW. Mutations in the bile acid biosynthetic enzyme sterol 27-hydroxylase underlie cerebrotendinous xanthomatosis. J Biol Chem. 1991;266:7779–83.PubMedPubMedCentral Cali JJ, Hsieh C, Francke U, Russell DW. Mutations in the bile acid biosynthetic enzyme sterol 27-hydroxylase underlie cerebrotendinous xanthomatosis. J Biol Chem. 1991;266:7779–83.PubMedPubMedCentral
31.
go back to reference Teixeira V, Tam L. Novel insights in systemic lupus erythematosus and atherosclerosis. Front Med. 2018;4:262.CrossRef Teixeira V, Tam L. Novel insights in systemic lupus erythematosus and atherosclerosis. Front Med. 2018;4:262.CrossRef
32.
go back to reference Reiss AB, Anwar K, Merrill JT, Chan ES, Awadallah NW, Cronstein BN, Michael Belmont H, Belilos E, Rosenblum G, Belostocki K, Bonetti L, Hasneen K, Carsons SE. Plasma from systemic lupus patients compromises cholesterol homeostasis: a potential mechanism linking autoimmunity to atherosclerotic cardiovascular disease. Rheumatol Int. 2010;30:591–8.CrossRef Reiss AB, Anwar K, Merrill JT, Chan ES, Awadallah NW, Cronstein BN, Michael Belmont H, Belilos E, Rosenblum G, Belostocki K, Bonetti L, Hasneen K, Carsons SE. Plasma from systemic lupus patients compromises cholesterol homeostasis: a potential mechanism linking autoimmunity to atherosclerotic cardiovascular disease. Rheumatol Int. 2010;30:591–8.CrossRef
33.
34.
go back to reference Orme J, Mohan C. Macrophage subpopulations in systemic lupus erythematosus. Discov Med. 2012;13(69):151–8.PubMed Orme J, Mohan C. Macrophage subpopulations in systemic lupus erythematosus. Discov Med. 2012;13(69):151–8.PubMed
36.
go back to reference Han S, Zhuang H, Shumyak S, Wu J, Xie C, Li H, Yang LJ, Reeves WH. Liver X receptor agonist therapy prevents diffuse alveolar hemorrhage in murine lupus by repolarizing macrophages. Front Immunol. 2018;9:135.CrossRef Han S, Zhuang H, Shumyak S, Wu J, Xie C, Li H, Yang LJ, Reeves WH. Liver X receptor agonist therapy prevents diffuse alveolar hemorrhage in murine lupus by repolarizing macrophages. Front Immunol. 2018;9:135.CrossRef
37.
go back to reference Reiss AB, Anwar K, Merrill JT, Chan ES, Awadallah NW, Cronstein BN, Michael Belmont H, Belilos E, Rosenblum G, Belostocki K, Bonetti L, Hasneen K, Carsons SE. Plasma from systemic lupus patients compromises cholesterol homeostasis: a potential mechanism linking autoimmunity to atherosclerotic cardiovascular disease. Rheumatol Int. 2010;30(5):591–8.CrossRef Reiss AB, Anwar K, Merrill JT, Chan ES, Awadallah NW, Cronstein BN, Michael Belmont H, Belilos E, Rosenblum G, Belostocki K, Bonetti L, Hasneen K, Carsons SE. Plasma from systemic lupus patients compromises cholesterol homeostasis: a potential mechanism linking autoimmunity to atherosclerotic cardiovascular disease. Rheumatol Int. 2010;30(5):591–8.CrossRef
38.
go back to reference Steinbrecher UP. Receptors for oxidized low density lipoprotein. Biochim Biophys Acta. 1999;1436:279–98.CrossRef Steinbrecher UP. Receptors for oxidized low density lipoprotein. Biochim Biophys Acta. 1999;1436:279–98.CrossRef
39.
go back to reference Pirillo A, Catapano AL. Soluble lectin-like oxidized low density lipoprotein receptor-1 as a biochemical marker for atherosclerosis-related diseases. Dis Markers. 2013;35(5):413–8.CrossRef Pirillo A, Catapano AL. Soluble lectin-like oxidized low density lipoprotein receptor-1 as a biochemical marker for atherosclerosis-related diseases. Dis Markers. 2013;35(5):413–8.CrossRef
40.
go back to reference Lehrke M, Millington SC, Lefterova M, Cumaranatunge RG, Szapary P, Wilensky R, Rader DJ, Lazar MA, Reilly MP. CXCL16 is a marker of inflammation, atherosclerosis, and acute coronary syndromes in humans. J Am Coll Cardiol. 2007;49(4):442–9.CrossRef Lehrke M, Millington SC, Lefterova M, Cumaranatunge RG, Szapary P, Wilensky R, Rader DJ, Lazar MA, Reilly MP. CXCL16 is a marker of inflammation, atherosclerosis, and acute coronary syndromes in humans. J Am Coll Cardiol. 2007;49(4):442–9.CrossRef
41.
go back to reference Moore KJ, Sheedy FJ, Fisher EA. Macrophages in atherosclerosis: a dynamic balance. Nat Rev Immunol. 2013;13(10):709–21.CrossRef Moore KJ, Sheedy FJ, Fisher EA. Macrophages in atherosclerosis: a dynamic balance. Nat Rev Immunol. 2013;13(10):709–21.CrossRef
42.
go back to reference Voloshyna I, Reiss AB. The ABC transporters in lipid flux and atherosclerosis. Prog Lipid Res. 2011;50:213–24.CrossRef Voloshyna I, Reiss AB. The ABC transporters in lipid flux and atherosclerosis. Prog Lipid Res. 2011;50:213–24.CrossRef
43.
go back to reference Quinn CM, Jessup W, Wong J, Kritharides L, Brown AJ. Expression and regulation of sterol 27-hydroxylase (CYP27A1) in human macrophages: a role for RXR and PPAR gamma ligands. Biochem J. 2005;385(Pt 3):823–30.CrossRef Quinn CM, Jessup W, Wong J, Kritharides L, Brown AJ. Expression and regulation of sterol 27-hydroxylase (CYP27A1) in human macrophages: a role for RXR and PPAR gamma ligands. Biochem J. 2005;385(Pt 3):823–30.CrossRef
44.
go back to reference Navaneethan SD, Viswanathan G, Strippoli GFM. Treatment options for proliferative lupus nephritis: an update of clinical trial evidence. Drugs. 2008;68:2095–104.CrossRef Navaneethan SD, Viswanathan G, Strippoli GFM. Treatment options for proliferative lupus nephritis: an update of clinical trial evidence. Drugs. 2008;68:2095–104.CrossRef
45.
go back to reference Chowdhary VR. Broad concepts in management of systemic lupus erythematosus. Mayo Clin Proc. 2017;92(5):744–61.CrossRef Chowdhary VR. Broad concepts in management of systemic lupus erythematosus. Mayo Clin Proc. 2017;92(5):744–61.CrossRef
46.
go back to reference Germano V, Diamanti AP, Ferlito C, Podestà E, Salemi S, Migliore A, D’Amelio R, Laganà B. Cyclosporine A in the long-term management of systemic lupus erythematosus. J Biol Regul Homeost Agents. 2011;25(3):397–403.PubMed Germano V, Diamanti AP, Ferlito C, Podestà E, Salemi S, Migliore A, D’Amelio R, Laganà B. Cyclosporine A in the long-term management of systemic lupus erythematosus. J Biol Regul Homeost Agents. 2011;25(3):397–403.PubMed
47.
go back to reference Chighizola CB, Ong VH, Meroni PL. The use of cyclosporine A in rheumatology: a 2016 comprehensive review. Clin Rev Allergy Immunol. 2017;52(3):401–23.CrossRef Chighizola CB, Ong VH, Meroni PL. The use of cyclosporine A in rheumatology: a 2016 comprehensive review. Clin Rev Allergy Immunol. 2017;52(3):401–23.CrossRef
48.
go back to reference Yang TH, Wu TH, Chang YL, Liao HT, Hsu CC, Tsai CY, Chou YC. Cyclosporine for the treatment of lupus nephritis in patients with systemic lupus erythematosus. Clin Nephrol. 2018;89(4):277–85.CrossRef Yang TH, Wu TH, Chang YL, Liao HT, Hsu CC, Tsai CY, Chou YC. Cyclosporine for the treatment of lupus nephritis in patients with systemic lupus erythematosus. Clin Nephrol. 2018;89(4):277–85.CrossRef
50.
go back to reference Jesus D, Rodrigues M, da Silva JAP, Inês L. Multitarget therapy of mycophenolate mofetil and cyclosporine A for induction treatment of refractory lupus nephritis. Lupus. 2018;27(8):1358–62.CrossRef Jesus D, Rodrigues M, da Silva JAP, Inês L. Multitarget therapy of mycophenolate mofetil and cyclosporine A for induction treatment of refractory lupus nephritis. Lupus. 2018;27(8):1358–62.CrossRef
51.
go back to reference Xu F, Chen ZL, Jin WJ, Xie QD, Shi XH. Ideal therapeutic range of cyclosporine in whole blood in kidney-transplanted patients. Int J Clin Pharmacol Res. 1993;13(4):221–4.PubMed Xu F, Chen ZL, Jin WJ, Xie QD, Shi XH. Ideal therapeutic range of cyclosporine in whole blood in kidney-transplanted patients. Int J Clin Pharmacol Res. 1993;13(4):221–4.PubMed
52.
go back to reference Van Gelder T, Meur YL, Shaw LM, et al. Therapeutic drug monitoring of mycophenolate mofetil in transplantation. Ther Drug Monit. 2006;28(2):145–54.CrossRef Van Gelder T, Meur YL, Shaw LM, et al. Therapeutic drug monitoring of mycophenolate mofetil in transplantation. Ther Drug Monit. 2006;28(2):145–54.CrossRef
53.
go back to reference van Leuven SI, Kastelein JJ, Allison AC, Hayden MR, Stroes ES. Mycophenolate mofetil (MMF): firing at the atherosclerotic plaque from different angles? Cardiovasc Res. 2006;69(2):341–7.CrossRef van Leuven SI, Kastelein JJ, Allison AC, Hayden MR, Stroes ES. Mycophenolate mofetil (MMF): firing at the atherosclerotic plaque from different angles? Cardiovasc Res. 2006;69(2):341–7.CrossRef
54.
go back to reference Olejarz W, Bryk D, Zapolska-Downar D. Mycophenolate mofetil—a new atheropreventive drug? Acta Pol Pharm. 2014;71(3):353–61.PubMed Olejarz W, Bryk D, Zapolska-Downar D. Mycophenolate mofetil—a new atheropreventive drug? Acta Pol Pharm. 2014;71(3):353–61.PubMed
55.
go back to reference Le Goff W, Peng DQ, Settle M, Brubaker G, Morton RE, Smith JD. Cyclosporin A traps ABCA1 at the plasma membrane and inhibits ABCA1-mediated lipid efflux to apolipoprotein A-I. Arterioscler Thromb Vasc Biol. 2004;24(11):2155–61.CrossRef Le Goff W, Peng DQ, Settle M, Brubaker G, Morton RE, Smith JD. Cyclosporin A traps ABCA1 at the plasma membrane and inhibits ABCA1-mediated lipid efflux to apolipoprotein A-I. Arterioscler Thromb Vasc Biol. 2004;24(11):2155–61.CrossRef
56.
go back to reference Emeson EE, Shen ML. Accelerated atherosclerosis in hyperlipidemic C57BL/6 mice treated with cyclosporin A. Am J Pathol. 1993;142(6):1906–15.PubMedPubMedCentral Emeson EE, Shen ML. Accelerated atherosclerosis in hyperlipidemic C57BL/6 mice treated with cyclosporin A. Am J Pathol. 1993;142(6):1906–15.PubMedPubMedCentral
57.
go back to reference Ditiatkovski M, Neelisetti VN, Cui HL, Malesevic M, Fischer G, Bukrinsky M, Sviridov D. Inhibition of extracellular cyclophilins with cyclosporine analog and development of atherosclerosis in apolipoprotein E-deficient mice. J Pharmacol Exp Ther. 2015;353(3):490–5.CrossRef Ditiatkovski M, Neelisetti VN, Cui HL, Malesevic M, Fischer G, Bukrinsky M, Sviridov D. Inhibition of extracellular cyclophilins with cyclosporine analog and development of atherosclerosis in apolipoprotein E-deficient mice. J Pharmacol Exp Ther. 2015;353(3):490–5.CrossRef
58.
go back to reference Jin S, Mathis AS, Rosenblatt J, Minko T, Friedman GS, Gioia K, Serur DS, Knipp GT. Insights into cyclosporine A-induced atherosclerotic risk in transplant recipients: macrophage scavenger receptor regulation. Transplantation. 2004;77(4):497–504.CrossRef Jin S, Mathis AS, Rosenblatt J, Minko T, Friedman GS, Gioia K, Serur DS, Knipp GT. Insights into cyclosporine A-induced atherosclerotic risk in transplant recipients: macrophage scavenger receptor regulation. Transplantation. 2004;77(4):497–504.CrossRef
59.
go back to reference Gueguen Y, Ferrari L, Souidi M, Batt AM, Lutton C, Siest G, Visvikis S. Compared effect of immunosuppressive drugs cyclosporine A and rapamycin on cholesterol homeostasis key enzymes CYP27A1 and HMG-CoA reductase. Basic Clin Pharmacol Toxicol. 2007;100(6):392–7.CrossRef Gueguen Y, Ferrari L, Souidi M, Batt AM, Lutton C, Siest G, Visvikis S. Compared effect of immunosuppressive drugs cyclosporine A and rapamycin on cholesterol homeostasis key enzymes CYP27A1 and HMG-CoA reductase. Basic Clin Pharmacol Toxicol. 2007;100(6):392–7.CrossRef
60.
go back to reference Nagao K, Maeda M, Manucat NB, Ueda K. Cyclosporine A and PSC833 inhibit ABCA1 function via direct binding. Biochim Biophys Acta. 2013;1831:398–406.CrossRef Nagao K, Maeda M, Manucat NB, Ueda K. Cyclosporine A and PSC833 inhibit ABCA1 function via direct binding. Biochim Biophys Acta. 2013;1831:398–406.CrossRef
61.
go back to reference Wong BX, Kyle RA, Myhill PC, Croft KD, Quinn CM, Jessup W, Yeap BB. Dyslipidemic diabetic serum increases lipid accumulation and expression of stearoyl-CoA desaturase in human macrophages. Lipids. 2011;46(10):931–41.CrossRef Wong BX, Kyle RA, Myhill PC, Croft KD, Quinn CM, Jessup W, Yeap BB. Dyslipidemic diabetic serum increases lipid accumulation and expression of stearoyl-CoA desaturase in human macrophages. Lipids. 2011;46(10):931–41.CrossRef
Metadata
Title
Macrophage lipid accumulation in the presence of immunosuppressive drugs mycophenolate mofetil and cyclosporin A
Authors
Iryna Voloshyna
Isaac Teboul
Lora J. Kasselman
Michael Salama
Steven E. Carsons
Joshua DeLeon
Joseph Mattana
Nobuyuki Miyawaki
Allison B. Reiss
Publication date
01-09-2019
Publisher
Springer International Publishing
Published in
Inflammation Research / Issue 9/2019
Print ISSN: 1023-3830
Electronic ISSN: 1420-908X
DOI
https://doi.org/10.1007/s00011-019-01262-8

Other articles of this Issue 9/2019

Inflammation Research 9/2019 Go to the issue