Skip to main content
Top
Published in: Inflammation Research 9/2019

01-09-2019 | Chronic Lymphocytic Leukemia | Original Research Paper

STAT3-induced SMYD3 transcription enhances chronic lymphocytic leukemia cell growth in vitro and in vivo

Authors: Fujia Lin, Danjuan Wu, Dan Fang, Yao Chen, Haitao Zhou, Caiwen Ou

Published in: Inflammation Research | Issue 9/2019

Login to get access

Abstract

Objective and design

The purpose of this study was to investigate the roles of SMYD3 and STAT3 in chronic lymphocytic leukemia (CLL) and the possible underlying mechanisms.

Materials

Blood samples were collected from 20 patients with CLL and 20 hematologically normal donors. Human cell lines K562, HL-60, MEG-1, and BALL-1 were performed in vitro and BALB/c nude mouse was used in subcutaneous tumor experiments.

Treatment

WP1066 (30 mg/kg) was also injected intratumorally two days after the first lentivirus treatment and then every four days for a total of four injections and 3 µM WP1066 was carried out for 48 h to downregulate STAT3 phosphorylation.

Methods

We performed studies using the human CLL cell line MEG-1 in vitro and nude mouse subcutaneous tumor experiments in vivo. Differential expression of RNAs was determined using qRT-PCR. The CCK-8 assay and colony formation assay were conducted to evaluate cell proliferation. Flow cytometry was performed to assess cell apoptosis. The relative protein levels were detected using western blotting. Chromatin immunoprecipitation (ChIP) assays, luciferase reporter assays and WP1066, a STAT3 inhibitor, were used to explore the regulatory mechanisms of proteases and transcription factors. A subcutaneous tumor model was constructed to verify the results in vivo.

Results

SMYD3 and STAT3 expressions positively correlated with the progression of CLL. Upregulation of SMYD3 significantly promoted the proliferation and inhibited the expression of apoptosis-related genes. The results of the ChIP assays and luciferase reporter assays suggested that STAT3 targeted the promoter region of SMYD3 and, thus, promoted SMYD3 transcription. Downregulation of the phosphorylation of STAT3 by WP1066 notably inhibited the binding of STAT3 to the SMYD3 promoter, and subsequently downregulated SMYD3 transcription. The STAT3 inhibitor inhibited CLL cell growth in vivo, and overexpression of SMYD3 promoted CLL cell growth. Furthermore, overexpression of SMYD3 reversed the inhibitory effects of the STAT3 inhibitor on CLL cell growth.

Conclusions

The STAT3-mediated transcription of SMYD3 plays a role in promoting the progression of chronic lymphocytic leukemia.
Literature
1.
go back to reference Foa R. Changes in the treatment landscape for chronic lymphoid leukemia. N Engl J Med. 2014;371:273–4.CrossRefPubMed Foa R. Changes in the treatment landscape for chronic lymphoid leukemia. N Engl J Med. 2014;371:273–4.CrossRefPubMed
2.
go back to reference Rozovski U, Hazan-Halevy I, Keating MJ, Estrov Z. Personalized medicine in CLL: current status and future perspectives. Cancer Lett. 2014;352:4–14.CrossRefPubMed Rozovski U, Hazan-Halevy I, Keating MJ, Estrov Z. Personalized medicine in CLL: current status and future perspectives. Cancer Lett. 2014;352:4–14.CrossRefPubMed
4.
go back to reference Lee H, Herrmann A, Deng JH, Kujawski M, Niu G, Li Z, et al. Persistently activated Stat3 maintains constitutive NF-kappaB activity in tumors. Cancer Cell. 2009;15:283–93.CrossRefPubMedPubMedCentral Lee H, Herrmann A, Deng JH, Kujawski M, Niu G, Li Z, et al. Persistently activated Stat3 maintains constitutive NF-kappaB activity in tumors. Cancer Cell. 2009;15:283–93.CrossRefPubMedPubMedCentral
5.
go back to reference Grivennikov S, Karin E, Terzic J, Mucida D, Yu GY, Vallabhapurapu S, et al. IL-6 and Stat3 are required for survival of intestinal epithelial cells and development of colitis-associated cancer. Cancer Cell. 2009;15:103–13.CrossRefPubMedPubMedCentral Grivennikov S, Karin E, Terzic J, Mucida D, Yu GY, Vallabhapurapu S, et al. IL-6 and Stat3 are required for survival of intestinal epithelial cells and development of colitis-associated cancer. Cancer Cell. 2009;15:103–13.CrossRefPubMedPubMedCentral
6.
go back to reference Buettner R, Mora LB, Jove R. Activated STAT signaling in human tumors provides novel molecular targets for therapeutic intervention. Clin Cancer Res. 2002;8:945–54.PubMed Buettner R, Mora LB, Jove R. Activated STAT signaling in human tumors provides novel molecular targets for therapeutic intervention. Clin Cancer Res. 2002;8:945–54.PubMed
7.
go back to reference Fathi N, Rashidi G, Khodadadi A, Shahi S, Sharifi S. STAT3 and apoptosis challenges in cancer. Int J Biol Macromol. 2018;117:993–1001.CrossRefPubMed Fathi N, Rashidi G, Khodadadi A, Shahi S, Sharifi S. STAT3 and apoptosis challenges in cancer. Int J Biol Macromol. 2018;117:993–1001.CrossRefPubMed
8.
go back to reference Mao J, Yang H, Cui T, Pan P, Kabir N, Chen D, et al. Combined treatment with sorafenib and silibinin synergistically targets both HCC cells and cancer stem cells by enhanced inhibition of the phosphorylation of STAT3/ERK/AKT. Eur J Pharmacol. 2018;832:39–49.CrossRefPubMed Mao J, Yang H, Cui T, Pan P, Kabir N, Chen D, et al. Combined treatment with sorafenib and silibinin synergistically targets both HCC cells and cancer stem cells by enhanced inhibition of the phosphorylation of STAT3/ERK/AKT. Eur J Pharmacol. 2018;832:39–49.CrossRefPubMed
9.
go back to reference Lu K, Fang XS, Feng LL, Jiang YJ, Zhou XX, Liu X, et al. The STAT3 inhibitor WP1066 reverses the resistance of chronic lymphocytic leukemia cells to histone deacetylase inhibitors induced by interleukin-6. Cancer Lett. 2015;359:250–8.CrossRefPubMed Lu K, Fang XS, Feng LL, Jiang YJ, Zhou XX, Liu X, et al. The STAT3 inhibitor WP1066 reverses the resistance of chronic lymphocytic leukemia cells to histone deacetylase inhibitors induced by interleukin-6. Cancer Lett. 2015;359:250–8.CrossRefPubMed
10.
go back to reference Hamamoto R, Furukawa Y, Morita M, Iimura Y, Silva FP, Li M, et al. SMYD3 encodes a histone methyltransferase involved in the proliferation of cancer cells. Nat Cell Biol. 2004;6:731–40.CrossRefPubMed Hamamoto R, Furukawa Y, Morita M, Iimura Y, Silva FP, Li M, et al. SMYD3 encodes a histone methyltransferase involved in the proliferation of cancer cells. Nat Cell Biol. 2004;6:731–40.CrossRefPubMed
11.
go back to reference He C, Xu J, Zhang J, Xie D, Ye H, Xiao Z, et al. High expression of trimethylated histone H3 lysine 4 is associated with poor prognosis in hepatocellular carcinoma. Hum Pathol. 2012;43:1425–35.CrossRefPubMed He C, Xu J, Zhang J, Xie D, Ye H, Xiao Z, et al. High expression of trimethylated histone H3 lysine 4 is associated with poor prognosis in hepatocellular carcinoma. Hum Pathol. 2012;43:1425–35.CrossRefPubMed
12.
go back to reference Chen LB, Xu JY, Yang Z, Wang GB. Silencing SMYD3 in hepatoma demethylates RIZI promoter induces apoptosis and inhibits cell proliferation and migration. World J Gastroenterol. 2007;13:5718–24.CrossRefPubMedPubMedCentral Chen LB, Xu JY, Yang Z, Wang GB. Silencing SMYD3 in hepatoma demethylates RIZI promoter induces apoptosis and inhibits cell proliferation and migration. World J Gastroenterol. 2007;13:5718–24.CrossRefPubMedPubMedCentral
13.
go back to reference Luo XG, Xi T, Guo S, Liu ZP, Wang N, Jiang Y, et al. Effects of SMYD3 overexpression on transformation, serum dependence, and apoptosis sensitivity in NIH3T3 cells. IUBMB Life. 2009;61:679–84.CrossRefPubMed Luo XG, Xi T, Guo S, Liu ZP, Wang N, Jiang Y, et al. Effects of SMYD3 overexpression on transformation, serum dependence, and apoptosis sensitivity in NIH3T3 cells. IUBMB Life. 2009;61:679–84.CrossRefPubMed
14.
go back to reference Liu Y, Deng J, Luo X, Pan Y, Zhang L, Zhang R, et al. Overexpression of SMYD3 was associated with increased STAT3 activation in gastric cancer. Med Oncol. 2015;32:404.CrossRefPubMed Liu Y, Deng J, Luo X, Pan Y, Zhang L, Zhang R, et al. Overexpression of SMYD3 was associated with increased STAT3 activation in gastric cancer. Med Oncol. 2015;32:404.CrossRefPubMed
15.
16.
go back to reference Bueso-Ramos CE, Ferrajoli A, Medeiros LJ, Keating MJ, Estrov Z. Aberrant morphology, proliferation, and apoptosis of B cell chronic lymphocytic leukemia cells. Hematology. 2004;9:279–86.CrossRefPubMed Bueso-Ramos CE, Ferrajoli A, Medeiros LJ, Keating MJ, Estrov Z. Aberrant morphology, proliferation, and apoptosis of B cell chronic lymphocytic leukemia cells. Hematology. 2004;9:279–86.CrossRefPubMed
17.
go back to reference Hazan-Halevy I, Harris D, Liu Z, Liu J, Li P, Chen X, et al. STAT3 is constitutively phosphorylated on serine 727 residues, binds DNA, and activates transcription in CLL cells. Blood. 2010;115:2852–63.CrossRefPubMedPubMedCentral Hazan-Halevy I, Harris D, Liu Z, Liu J, Li P, Chen X, et al. STAT3 is constitutively phosphorylated on serine 727 residues, binds DNA, and activates transcription in CLL cells. Blood. 2010;115:2852–63.CrossRefPubMedPubMedCentral
18.
go back to reference Hamamoto R, Silva FP, Tsuge M, Nishidate T, Katagiri T, Nakamura Y, et al. Enhanced SMYD3 expression is essential for the growth of breast cancer cells. Cancer Sci. 2006;97:113–8.CrossRefPubMed Hamamoto R, Silva FP, Tsuge M, Nishidate T, Katagiri T, Nakamura Y, et al. Enhanced SMYD3 expression is essential for the growth of breast cancer cells. Cancer Sci. 2006;97:113–8.CrossRefPubMed
19.
go back to reference Mazur PK, Reynoird N, Khatri P, Jansen PW, Wilkinson AW, Liu S, et al. SMYD3 links lysine methylation of MAP3K2 to Ras-driven cancer. Nature. 2014;510:283–7.CrossRefPubMedPubMedCentral Mazur PK, Reynoird N, Khatri P, Jansen PW, Wilkinson AW, Liu S, et al. SMYD3 links lysine methylation of MAP3K2 to Ras-driven cancer. Nature. 2014;510:283–7.CrossRefPubMedPubMedCentral
20.
go back to reference Wang SZ, Luo XG, Shen J, Zou JN, Lu YH, Xi T. Knockdown of SMYD3 by RNA interference inhibits cervical carcinoma cell growth and invasion in vitro. BMB Rep. 2008;41:294–9.CrossRefPubMed Wang SZ, Luo XG, Shen J, Zou JN, Lu YH, Xi T. Knockdown of SMYD3 by RNA interference inhibits cervical carcinoma cell growth and invasion in vitro. BMB Rep. 2008;41:294–9.CrossRefPubMed
21.
go back to reference Oliveira-Santos W, Rabello DA, Lucena-Araujo AR, de Oliveira FM, Rego EM, Pittella Silva F, et al. Residual expression of SMYD2 and SMYD3 is associated with the acquisition of complex karyotype in chronic lymphocytic leukemia. Tumour Biol. 2016;37:9473–81.CrossRefPubMed Oliveira-Santos W, Rabello DA, Lucena-Araujo AR, de Oliveira FM, Rego EM, Pittella Silva F, et al. Residual expression of SMYD2 and SMYD3 is associated with the acquisition of complex karyotype in chronic lymphocytic leukemia. Tumour Biol. 2016;37:9473–81.CrossRefPubMed
22.
go back to reference Shah NG, Trivedi TI, Tankshali RA, Goswami JA, Jetly DH, Kobawala TP, et al. Stat3 expression in oral squamous cell carcinoma: association with clinicopathological parameters and survival. Int J Biol Markers. 2006;21:175–83.CrossRefPubMed Shah NG, Trivedi TI, Tankshali RA, Goswami JA, Jetly DH, Kobawala TP, et al. Stat3 expression in oral squamous cell carcinoma: association with clinicopathological parameters and survival. Int J Biol Markers. 2006;21:175–83.CrossRefPubMed
23.
go back to reference Siveen KS, Sikka S, Surana R, Dai X, Zhang J, Kumar AP, et al. Targeting the STAT3 signaling pathway in cancer: role of synthetic and natural inhibitors. Biochim Biophys Acta. 2014;1845:136–54.PubMed Siveen KS, Sikka S, Surana R, Dai X, Zhang J, Kumar AP, et al. Targeting the STAT3 signaling pathway in cancer: role of synthetic and natural inhibitors. Biochim Biophys Acta. 2014;1845:136–54.PubMed
24.
go back to reference Gong W, Wang L, Yao JC, Ajani JA, Wei D, Aldape KD, et al. Expression of activated signal transducer and activator of transcription 3 predicts expression of vascular endothelial growth factor in and angiogenic phenotype of human gastric cancer. Clin Cancer Res. 2005;11:1386–93.CrossRefPubMed Gong W, Wang L, Yao JC, Ajani JA, Wei D, Aldape KD, et al. Expression of activated signal transducer and activator of transcription 3 predicts expression of vascular endothelial growth factor in and angiogenic phenotype of human gastric cancer. Clin Cancer Res. 2005;11:1386–93.CrossRefPubMed
25.
go back to reference Liu FT, Jia L, Wang P, Wang H, Farren TW, Agrawal SG. STAT3 and NF-kappaB cooperatively control in vitro spontaneous apoptosis and poor chemo-responsiveness in patients with chronic lymphocytic leukemia. Oncotarget. 2016;7:32031–45.PubMedPubMedCentral Liu FT, Jia L, Wang P, Wang H, Farren TW, Agrawal SG. STAT3 and NF-kappaB cooperatively control in vitro spontaneous apoptosis and poor chemo-responsiveness in patients with chronic lymphocytic leukemia. Oncotarget. 2016;7:32031–45.PubMedPubMedCentral
26.
go back to reference Assi HH, Paran C, VanderVeen N, Savakus J, Doherty R, Petruzzella E, et al. Preclinical characterization of signal transducer and activator of transcription 3 small molecule inhibitors for primary and metastatic brain cancer therapy. J Pharmacol Exp Ther. 2014;349:458–69.CrossRefPubMedPubMedCentral Assi HH, Paran C, VanderVeen N, Savakus J, Doherty R, Petruzzella E, et al. Preclinical characterization of signal transducer and activator of transcription 3 small molecule inhibitors for primary and metastatic brain cancer therapy. J Pharmacol Exp Ther. 2014;349:458–69.CrossRefPubMedPubMedCentral
27.
go back to reference Iwamaru A, Szymanski S, Iwado E, Aoki H, Yokoyama T, Fokt I, et al. A novel inhibitor of the STAT3 pathway induces apoptosis in malignant glioma cells both in vitro and in vivo. Oncogene. 2007;26:2435–44.CrossRefPubMed Iwamaru A, Szymanski S, Iwado E, Aoki H, Yokoyama T, Fokt I, et al. A novel inhibitor of the STAT3 pathway induces apoptosis in malignant glioma cells both in vitro and in vivo. Oncogene. 2007;26:2435–44.CrossRefPubMed
28.
go back to reference Zhu S, Phatarpekar PV, Denman CJ, Senyukov VV, Somanchi SS, Nguyen-Jackson HT, et al. Transcription of the activating receptor NKG2D in natural killer cells is regulated by STAT3 tyrosine phosphorylation. Blood. 2014;124:403–11.CrossRefPubMedPubMedCentral Zhu S, Phatarpekar PV, Denman CJ, Senyukov VV, Somanchi SS, Nguyen-Jackson HT, et al. Transcription of the activating receptor NKG2D in natural killer cells is regulated by STAT3 tyrosine phosphorylation. Blood. 2014;124:403–11.CrossRefPubMedPubMedCentral
Metadata
Title
STAT3-induced SMYD3 transcription enhances chronic lymphocytic leukemia cell growth in vitro and in vivo
Authors
Fujia Lin
Danjuan Wu
Dan Fang
Yao Chen
Haitao Zhou
Caiwen Ou
Publication date
01-09-2019
Publisher
Springer International Publishing
Published in
Inflammation Research / Issue 9/2019
Print ISSN: 1023-3830
Electronic ISSN: 1420-908X
DOI
https://doi.org/10.1007/s00011-019-01257-5

Other articles of this Issue 9/2019

Inflammation Research 9/2019 Go to the issue
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.