Skip to main content
Top
Published in: Inflammation Research 1/2014

01-01-2014 | Review

Role of Angptl4 in vascular permeability and inflammation

Authors: Liang Guo, Shao-Ying Li, Fu-Yun Ji, Yun-Feng Zhao, Yu Zhong, Xue-Jun Lv, Xue-Ling Wu, Gui-Sheng Qian

Published in: Inflammation Research | Issue 1/2014

Login to get access

Abstract

Background

Angptl4 is a secreted protein involved in the regulation of vascular permeability, angiogenesis, and inflammatory responses in different kinds of tissues. Increases of vascular permeability and abnormality changes in angiogenesis contribute to the pathogenesis of tumor metastasis, ischemic-reperfusion injury. Inflammatory response associated with Angptl4 also leads to minimal change glomerulonephritis, wound healing. However, the role of Angptl4 in vascular permeability, angiogenesis, and inflammation is controversy. Hence, an underlying mechanism of Angptl4 in different kind of tissues needs to be further clarified.

Methods

Keywords such as angptl4, vascular permeability, angiogenesis, inflammation, and endothelial cells were used in search tool of PUBMED, and then the literatures associated with Angptl4 were founded and read.

Results

Data have established Angptl4 as the key modulator of both vascular permeability and angiogenesis; furthermore, it may also be related to the progression of metastatic tumors, cardiovascular events, and inflammatory diseases. This view focuses on the recent advances in our understanding of the role of Angptl4 in vascular permeability, angiogenesis, inflammatory signaling and the link between Angptl4 and multiple diseases such as cancer, cardiovascular diseases, diabetic retinopathy, and kidney diseases.

Conclusions

Taken together, Angptl4 modulates vascular permeability, angiogenesis, inflammatory signaling, and associated diseases. The use of Angptl4-modulating agents such as certain drugs, food constituents (such as fatty acids), nuclear factor (such as PPARα), and bacteria may treat associated diseases such as tumor metastasis, ischemic-reperfusion injury, inflammation, and chronic low-grade inflammation. However, the diverse physiological functions of Angptl4 in different tissues can lead to potentially deleterious side effects when used as a therapeutic target. In this regard, a better understanding of the underlying mechanisms for Angptl4 in different tissues is necessary.
Literature
1.
go back to reference Goddard LM, Iruela-Arispe ML. Cellular and molecular regulation of vascular permeability. Thromb Haemost. 2013;109:407–15.PubMedCrossRef Goddard LM, Iruela-Arispe ML. Cellular and molecular regulation of vascular permeability. Thromb Haemost. 2013;109:407–15.PubMedCrossRef
2.
go back to reference Armulik A, Genové G, Mäe M, Nisancioglu MH, Wallgard E, Niaudet C, et al. Pericytes regulate the blood-brain barrier. Nature. 2010;468:557–61.PubMedCrossRef Armulik A, Genové G, Mäe M, Nisancioglu MH, Wallgard E, Niaudet C, et al. Pericytes regulate the blood-brain barrier. Nature. 2010;468:557–61.PubMedCrossRef
3.
4.
go back to reference Mehta D. Signalling mechanisms regulating endothelial permeability. Physiol Rev. 2006;86:279–367.PubMedCrossRef Mehta D. Signalling mechanisms regulating endothelial permeability. Physiol Rev. 2006;86:279–367.PubMedCrossRef
5.
go back to reference Dvorak AM, Feng D. The vesiculo-vacuolar organelle (VVO). A new endothelial cell permeability organelle. J Histochem Cytochem. 2001;49:419–32.PubMedCrossRef Dvorak AM, Feng D. The vesiculo-vacuolar organelle (VVO). A new endothelial cell permeability organelle. J Histochem Cytochem. 2001;49:419–32.PubMedCrossRef
6.
go back to reference Miyawaki-Shimizu K, Predescu D, Shimizu J, Broman M, Predescu S, Malik AB. siRNA-induced caveolin-1 knockdown in mice increases lung vascular permeability via the junctional pathway. Am J Physiol Lung Cell Mol Physiol. 2006;290:L405–13.PubMedCrossRef Miyawaki-Shimizu K, Predescu D, Shimizu J, Broman M, Predescu S, Malik AB. siRNA-induced caveolin-1 knockdown in mice increases lung vascular permeability via the junctional pathway. Am J Physiol Lung Cell Mol Physiol. 2006;290:L405–13.PubMedCrossRef
8.
go back to reference Sun Z, Li X, Massena S, Kutschera S, Padhan N, Gualandi L, et al. VEGFR2 induces c-Src signalling and vascular permeability in vivo via the adaptor protein TSAd. J Exp Med. 2012;209:1363–77.PubMedCentralPubMedCrossRef Sun Z, Li X, Massena S, Kutschera S, Padhan N, Gualandi L, et al. VEGFR2 induces c-Src signalling and vascular permeability in vivo via the adaptor protein TSAd. J Exp Med. 2012;209:1363–77.PubMedCentralPubMedCrossRef
9.
go back to reference Thibeault S, Rautureau Y, Oubaha M, Faubert D, Wilkes BC, Delisle C, et al. S-nitrosylation of beta-catenin by eNOS-derived NO promotes VEGF-induced endothelial cell permeability. Mol Cell. 2010;39:468–76.PubMedCrossRef Thibeault S, Rautureau Y, Oubaha M, Faubert D, Wilkes BC, Delisle C, et al. S-nitrosylation of beta-catenin by eNOS-derived NO promotes VEGF-induced endothelial cell permeability. Mol Cell. 2010;39:468–76.PubMedCrossRef
10.
go back to reference Mammoto T, Parikh SM, Mammoto A, Gallagher D, Chan B, Mostoslavsky G, et al. Angiopoietin-1 requires p190 RhoGAP to protect against vascular leakage in vivo. J Biol Chem. 2007;282:23910–8.PubMedCrossRef Mammoto T, Parikh SM, Mammoto A, Gallagher D, Chan B, Mostoslavsky G, et al. Angiopoietin-1 requires p190 RhoGAP to protect against vascular leakage in vivo. J Biol Chem. 2007;282:23910–8.PubMedCrossRef
11.
go back to reference Yao Q, Shin MK, Jun JC, Hernandez KL, Aggarwal NR, Mock FR, et al. Effect of chronic intermittment hypoxia on triglyceride uptake in different tissues. J Lipid Res. 2013;54:1058–65.PubMedCrossRef Yao Q, Shin MK, Jun JC, Hernandez KL, Aggarwal NR, Mock FR, et al. Effect of chronic intermittment hypoxia on triglyceride uptake in different tissues. J Lipid Res. 2013;54:1058–65.PubMedCrossRef
12.
go back to reference Zhu PC, GOH YY, Alison HF. Angiopoietin-like 4: a decade of research. Biosci Rep. 2011;32:211–9.CrossRef Zhu PC, GOH YY, Alison HF. Angiopoietin-like 4: a decade of research. Biosci Rep. 2011;32:211–9.CrossRef
13.
go back to reference Valenzuela DM, Griffiths JA, Rojas J, Aldrich TH, Jones PF, Zhou H, et al. Angiopoietins 3 and 4: diverging gene counterparts in mice and humans. Proc Natl Acad Sci USA. 1996;96:1904–9.CrossRef Valenzuela DM, Griffiths JA, Rojas J, Aldrich TH, Jones PF, Zhou H, et al. Angiopoietins 3 and 4: diverging gene counterparts in mice and humans. Proc Natl Acad Sci USA. 1996;96:1904–9.CrossRef
14.
go back to reference Wiesner G, Morash BA, Ur E, Wilkinson M. Food restriction regulates adipose-specific cytokines in pituitary gland but not in hypothalamus. J Endocrinol. 2004;180:R1–6.PubMedCrossRef Wiesner G, Morash BA, Ur E, Wilkinson M. Food restriction regulates adipose-specific cytokines in pituitary gland but not in hypothalamus. J Endocrinol. 2004;180:R1–6.PubMedCrossRef
15.
go back to reference Koliwad SK, Kuo T, Shipp LE, Gray NE, Backhed F, Wang JC, et al. Angiopoietin-like 4(ANGPTL4, fasting-induced adipose factor) is a direct glucocorticoid receptor target and participates in glucocorticoid-regulated triglyceride metabolism. J. BiolChem. 2009;284:25593–601. Koliwad SK, Kuo T, Shipp LE, Gray NE, Backhed F, Wang JC, et al. Angiopoietin-like 4(ANGPTL4, fasting-induced adipose factor) is a direct glucocorticoid receptor target and participates in glucocorticoid-regulated triglyceride metabolism. J. BiolChem. 2009;284:25593–601.
16.
go back to reference Kersten S, Mandard S, Tan NS, Escher P, Metzger D, Chambon P, et al. Characterization of the fasting-induced adipose factor FIAF, a novel peroxisome proliferators-activated receptor target gene. J Biol Chem. 2000;275:28488–93.PubMedCrossRef Kersten S, Mandard S, Tan NS, Escher P, Metzger D, Chambon P, et al. Characterization of the fasting-induced adipose factor FIAF, a novel peroxisome proliferators-activated receptor target gene. J Biol Chem. 2000;275:28488–93.PubMedCrossRef
17.
go back to reference Kersten S, Lichtenstein L, Steenbergen E, Mudde K, Hendriks HJ, Hesselink MK, et al. Caloric restriction and exercises increase plasma ANGPTL4 levels in humans via elevated free fatty acids. Arterioscler Thromb Vasc Biol. 2009;29:969–74.PubMedCrossRef Kersten S, Lichtenstein L, Steenbergen E, Mudde K, Hendriks HJ, Hesselink MK, et al. Caloric restriction and exercises increase plasma ANGPTL4 levels in humans via elevated free fatty acids. Arterioscler Thromb Vasc Biol. 2009;29:969–74.PubMedCrossRef
18.
go back to reference Padua D, Zhang XHF, Wang Q, Nadal C, Gerald WL, Gomis RR, et al. TGFbeta primes breast tumors for lung metastasis seeding through angiopoietin-like 4. Cell. 2008;133:66–77.PubMedCentralPubMedCrossRef Padua D, Zhang XHF, Wang Q, Nadal C, Gerald WL, Gomis RR, et al. TGFbeta primes breast tumors for lung metastasis seeding through angiopoietin-like 4. Cell. 2008;133:66–77.PubMedCentralPubMedCrossRef
19.
go back to reference Clement LC, Avila-Casado C, Mace C, Soria E, Bakker WW, Kersten S, et al. Podocyte-secreted angiopoietin-like-4 mediates proteinuria in glucocorticoid-sensitive nephrotic syndrome. Nat Med. 2011;17:117–22.PubMedCentralPubMedCrossRef Clement LC, Avila-Casado C, Mace C, Soria E, Bakker WW, Kersten S, et al. Podocyte-secreted angiopoietin-like-4 mediates proteinuria in glucocorticoid-sensitive nephrotic syndrome. Nat Med. 2011;17:117–22.PubMedCentralPubMedCrossRef
20.
go back to reference Galaup A, Cazes A, Le Jan S, Phlippe J, Connault E, CozE Le, et al. Angiopoietin-like 4 prevents metastasis through inhibition of vascular permeability and tumor cell motility and invasiveness. Proc Natl Acad Sci USA. 2006;103:18721–6.PubMedCrossRef Galaup A, Cazes A, Le Jan S, Phlippe J, Connault E, CozE Le, et al. Angiopoietin-like 4 prevents metastasis through inhibition of vascular permeability and tumor cell motility and invasiveness. Proc Natl Acad Sci USA. 2006;103:18721–6.PubMedCrossRef
21.
go back to reference Huang RL, Teo Z, Chong HC, Zhu P, Tan MJ, Tan CK, et al. ANGPTL4 modulates vascular junction integrity by integrin signaling and disruption of intercellular VE-cadherin and claudin-5 clusters. Blood. 2011;118:3990–4002.PubMedCrossRef Huang RL, Teo Z, Chong HC, Zhu P, Tan MJ, Tan CK, et al. ANGPTL4 modulates vascular junction integrity by integrin signaling and disruption of intercellular VE-cadherin and claudin-5 clusters. Blood. 2011;118:3990–4002.PubMedCrossRef
22.
go back to reference Katanasaka Y, Kodera Y, Kitamura Y, Morimoto T, Tamura T, Koizumi F. Epidermal growth factor receptor variant type III markedly accelerates angiogenesis and tumor growth via inducing c-myc mediated angiopoietin-like 4 expression in malignant glioma. Mol Cancer. 2013;25:12–31. Katanasaka Y, Kodera Y, Kitamura Y, Morimoto T, Tamura T, Koizumi F. Epidermal growth factor receptor variant type III markedly accelerates angiogenesis and tumor growth via inducing c-myc mediated angiopoietin-like 4 expression in malignant glioma. Mol Cancer. 2013;25:12–31.
23.
go back to reference Perdiguero EG, Galaup A, Durand M, Teillon J, Phillippe J, Valenzuela DM, et al. Alteration of developmental and pathological retinal angiogenesis in angptl4-deficient mice. J Biol Chem. 2011;286:36841–51.PubMedCrossRef Perdiguero EG, Galaup A, Durand M, Teillon J, Phillippe J, Valenzuela DM, et al. Alteration of developmental and pathological retinal angiogenesis in angptl4-deficient mice. J Biol Chem. 2011;286:36841–51.PubMedCrossRef
24.
go back to reference Mandard S, Zandbergen F, Tan NS, Escher P, Patsouris D, Koenig W, et al. The direct peroxisome proliferator-activated receptor target fasting-induced adipose factor (FIAF/PGAR/ANGPTL4) is present in blood plasma as a truncated protein that is increased by fenofibrate treatment. J Biol Chem. 2004;279:34411–20.PubMedCrossRef Mandard S, Zandbergen F, Tan NS, Escher P, Patsouris D, Koenig W, et al. The direct peroxisome proliferator-activated receptor target fasting-induced adipose factor (FIAF/PGAR/ANGPTL4) is present in blood plasma as a truncated protein that is increased by fenofibrate treatment. J Biol Chem. 2004;279:34411–20.PubMedCrossRef
25.
go back to reference Ge H, Yang G, Huang L, Motola DL, Pourbahrami T, Li C. Oligomerization and regulated proteolytic processing of angiopoietin-like protein 4. J Biol Chem. 2004;279:2038–45.PubMedCrossRef Ge H, Yang G, Huang L, Motola DL, Pourbahrami T, Li C. Oligomerization and regulated proteolytic processing of angiopoietin-like protein 4. J Biol Chem. 2004;279:2038–45.PubMedCrossRef
26.
go back to reference Lei X, Shi F, Basu D, Huq A, Routhier S, Day R, et al. Proteolytic processing of angiopoietin-like protein 4 by proprotein convertases modulates its inhibitory effects on lipoprotein lipase activity. J Biol Chem. 2011;286:15747–56.PubMedCrossRef Lei X, Shi F, Basu D, Huq A, Routhier S, Day R, et al. Proteolytic processing of angiopoietin-like protein 4 by proprotein convertases modulates its inhibitory effects on lipoprotein lipase activity. J Biol Chem. 2011;286:15747–56.PubMedCrossRef
27.
go back to reference Mandard S, Zandbergen F, Tan NS, Escher P, Patsouris D, Koenig W, et al. The direct peroxisome proliferator-activated receptor target fasting-induced adipose factor (FIAF/PGAR/ANGPTL4) is present in blood plasma as a truncated protein that is increased by fenofibrate treatment. J Biol Chem. 2004;279:34411–20.PubMedCrossRef Mandard S, Zandbergen F, Tan NS, Escher P, Patsouris D, Koenig W, et al. The direct peroxisome proliferator-activated receptor target fasting-induced adipose factor (FIAF/PGAR/ANGPTL4) is present in blood plasma as a truncated protein that is increased by fenofibrate treatment. J Biol Chem. 2004;279:34411–20.PubMedCrossRef
28.
go back to reference Stapleton CM, Joo JH, Kim Y-S, Liao G, Panettieri RA Jr, Jetten AM. Induction of ANGPTL4 expression in human airway smooth muscle cells by PMA through activation of PKC and MAPK pathways. Exp Cell Res. 2010;316:507–16.PubMedCentralPubMedCrossRef Stapleton CM, Joo JH, Kim Y-S, Liao G, Panettieri RA Jr, Jetten AM. Induction of ANGPTL4 expression in human airway smooth muscle cells by PMA through activation of PKC and MAPK pathways. Exp Cell Res. 2010;316:507–16.PubMedCentralPubMedCrossRef
29.
go back to reference Yang YH, Wang Y, Lam KS, Yau MH, Cheng KK, Zhang J, et al. Supression of the Raf/MEK/ERK signaling cascade and inhibition of angiogenesis by the carboxyl terminus of angiopoietin-like protein 4. Arterioscler Thromb Vasc Biol. 2008;28:835–40.PubMedCrossRef Yang YH, Wang Y, Lam KS, Yau MH, Cheng KK, Zhang J, et al. Supression of the Raf/MEK/ERK signaling cascade and inhibition of angiogenesis by the carboxyl terminus of angiopoietin-like protein 4. Arterioscler Thromb Vasc Biol. 2008;28:835–40.PubMedCrossRef
30.
go back to reference Ito Y, Olike Y, Yasunaga K, Hamada K, Miyata K, Matsumoto SI, et al. Inhibition of angiogenesis and vascular leakiness by angiopoietin-related protein 4. Cancer Res. 2003;63:6651–7.PubMed Ito Y, Olike Y, Yasunaga K, Hamada K, Miyata K, Matsumoto SI, et al. Inhibition of angiogenesis and vascular leakiness by angiopoietin-related protein 4. Cancer Res. 2003;63:6651–7.PubMed
31.
go back to reference Hutchings H, Ortega N, Plouet J. Extracellular matrix-bound vascular endothelial growth factor promotes endothelial cell adhesion, migration, and survival through integrin ligation. FASEB J. 2003;17:1520–2.PubMed Hutchings H, Ortega N, Plouet J. Extracellular matrix-bound vascular endothelial growth factor promotes endothelial cell adhesion, migration, and survival through integrin ligation. FASEB J. 2003;17:1520–2.PubMed
32.
go back to reference Okochi-Takada E, Hattori N, Tsukamoto T, Miyamoto K, Ando T, Ito S, et al. ANGPTL4 is a secreted tumor suppressor that inhibits angiogenesis. Oncogene. 2013; 174 [Epub ahead of print]. Okochi-Takada E, Hattori N, Tsukamoto T, Miyamoto K, Ando T, Ito S, et al. ANGPTL4 is a secreted tumor suppressor that inhibits angiogenesis. Oncogene. 2013; 174 [Epub ahead of print].
33.
go back to reference Le Jan S, Amy C, Cazes A, Monnot C, Lamande N, Favier J, et al. Angiopoietin-like 4 is a proangiogenic factor produced during ischemia and in conventional renal cell carcinoma. Am J Pathol. 2003;162:1521–8.PubMedCrossRef Le Jan S, Amy C, Cazes A, Monnot C, Lamande N, Favier J, et al. Angiopoietin-like 4 is a proangiogenic factor produced during ischemia and in conventional renal cell carcinoma. Am J Pathol. 2003;162:1521–8.PubMedCrossRef
34.
go back to reference Goh YY, Pal M, Chong HC, Zhu P, Tan MJ, Punugu L, et al. Angiopoietin-like 4 interacts with matrix proteins to modulate wound healing. J Biol Chem. 2010;285:32999–3009.PubMedCrossRef Goh YY, Pal M, Chong HC, Zhu P, Tan MJ, Punugu L, et al. Angiopoietin-like 4 interacts with matrix proteins to modulate wound healing. J Biol Chem. 2010;285:32999–3009.PubMedCrossRef
35.
go back to reference Galaup A, Gomez E, Souktani R, Durand M, Cazes A, Monnot C, et al. Protection aganist myocardial infarction and no-reflow through preservation of vascular integrity by angptl4. Circulation. 2012;125:140–9.PubMedCrossRef Galaup A, Gomez E, Souktani R, Durand M, Cazes A, Monnot C, et al. Protection aganist myocardial infarction and no-reflow through preservation of vascular integrity by angptl4. Circulation. 2012;125:140–9.PubMedCrossRef
36.
go back to reference Quintero P, Gonzalez-Muniesa P, Martinez JA. Influence of different oxygen supply on metabolic markers and gene response in murine adipocytes. J Biol Requl Homeost Agents. 2012;26:379–88. Quintero P, Gonzalez-Muniesa P, Martinez JA. Influence of different oxygen supply on metabolic markers and gene response in murine adipocytes. J Biol Requl Homeost Agents. 2012;26:379–88.
37.
go back to reference Lichtenstein L, Mattijssen F, de Wi NJ, Georgiadi A, Hooiveld GJ, van der Meer R, et al. ANGPTL4 protects against severe proinflammatory effects of saturated fat by inhibiting fatty acid uptake into mesenteric lymph node macrophages. Cell Metab. 2010;12:580–92.PubMedCentralPubMedCrossRef Lichtenstein L, Mattijssen F, de Wi NJ, Georgiadi A, Hooiveld GJ, van der Meer R, et al. ANGPTL4 protects against severe proinflammatory effects of saturated fat by inhibiting fatty acid uptake into mesenteric lymph node macrophages. Cell Metab. 2010;12:580–92.PubMedCentralPubMedCrossRef
38.
go back to reference Brown R, Imran SA, Wilkinson M. Lipopolysaccharide (LPS) stimulates adipokine and socs3 gene expression in mouse brain and pituitary gland in vivo, and in N-1 hypothalamic neurons in vitro. J Neuroimmunol. 2009;209:96–103.PubMedCrossRef Brown R, Imran SA, Wilkinson M. Lipopolysaccharide (LPS) stimulates adipokine and socs3 gene expression in mouse brain and pituitary gland in vivo, and in N-1 hypothalamic neurons in vitro. J Neuroimmunol. 2009;209:96–103.PubMedCrossRef
39.
go back to reference Lu B, Moser A, Shigenaga JK, Grunfeld C, Feingold KR. The acute phase response stimulates the expression of angiopoietin like protein 4. Biochem Biophys Res Commun. 2010;391:1737–41.PubMedCrossRef Lu B, Moser A, Shigenaga JK, Grunfeld C, Feingold KR. The acute phase response stimulates the expression of angiopoietin like protein 4. Biochem Biophys Res Commun. 2010;391:1737–41.PubMedCrossRef
40.
go back to reference Rummel C, Inoue W, Sachot C, Poole S, Hubschle T, Luheshi GN. Selective contribution of interleukin-6 and leptin to brain inflammatory signals induced by systemic LPS injection in mice. J Comp Neurol. 2008;511:373–95.PubMedCrossRef Rummel C, Inoue W, Sachot C, Poole S, Hubschle T, Luheshi GN. Selective contribution of interleukin-6 and leptin to brain inflammatory signals induced by systemic LPS injection in mice. J Comp Neurol. 2008;511:373–95.PubMedCrossRef
41.
go back to reference Zhu P, Tan MJ, Huang RL, Tan CK, Chong HC, Pal M, et al. Angiopoietin-like 4 protein elevates the prosurvival intracellular O2 −:H2O2 ratio and confers anoikis resistance to tumors. Cancer Cell. 2011;19:401–15.PubMedCrossRef Zhu P, Tan MJ, Huang RL, Tan CK, Chong HC, Pal M, et al. Angiopoietin-like 4 protein elevates the prosurvival intracellular O2 :H2O2 ratio and confers anoikis resistance to tumors. Cancer Cell. 2011;19:401–15.PubMedCrossRef
42.
go back to reference Nakayama T, Hirakawa H, Shibata K, Nazneen A, Abe K, Naqayasu T, et al. Expression of angiopoietin-like 4(ANGPTL4) in human colorectal cancer: ANGPTL4 promotes venous invasion and distant metastasis. Oncol Rep. 2011;25:929–35.PubMedCrossRef Nakayama T, Hirakawa H, Shibata K, Nazneen A, Abe K, Naqayasu T, et al. Expression of angiopoietin-like 4(ANGPTL4) in human colorectal cancer: ANGPTL4 promotes venous invasion and distant metastasis. Oncol Rep. 2011;25:929–35.PubMedCrossRef
43.
go back to reference Shibata K, Nakayama T, Hirakama H, Hidaka S, Naqayasu T. Clinicopathological significance of angiopoietin-like protein 4 expression in oesophageal squamous cell carcinoma. J Clin Pathol. 2010;63:1054–8.PubMedCrossRef Shibata K, Nakayama T, Hirakama H, Hidaka S, Naqayasu T. Clinicopathological significance of angiopoietin-like protein 4 expression in oesophageal squamous cell carcinoma. J Clin Pathol. 2010;63:1054–8.PubMedCrossRef
44.
go back to reference Ma T, Jham BC, Hu J, Friedman ER, Basile JR, Molinolo A, et al. Viral G protein-coupled receptor up-regulates angiopoietin-like 4 promoting angiogenesis and vascular permeability in Kaposi’s sarcoma. PNAS. 2010;107:14363–8.PubMedCrossRef Ma T, Jham BC, Hu J, Friedman ER, Basile JR, Molinolo A, et al. Viral G protein-coupled receptor up-regulates angiopoietin-like 4 promoting angiogenesis and vascular permeability in Kaposi’s sarcoma. PNAS. 2010;107:14363–8.PubMedCrossRef
46.
go back to reference Werner S, Grose R. Regulation of wound healing by growth factors and cytokines. Physiol Rev. 2003;83:835–70.PubMed Werner S, Grose R. Regulation of wound healing by growth factors and cytokines. Physiol Rev. 2003;83:835–70.PubMed
47.
go back to reference Goh YY, Pal M, Chong HC, Zhu P, Tan MJ, Punugu L, et al. Angiopoietin-like 4 interacts with integrins beta1 and beta5 to modulate keratinocyte migration. Am J Pathol. 2010;177:2791–803.PubMedCrossRef Goh YY, Pal M, Chong HC, Zhu P, Tan MJ, Punugu L, et al. Angiopoietin-like 4 interacts with integrins beta1 and beta5 to modulate keratinocyte migration. Am J Pathol. 2010;177:2791–803.PubMedCrossRef
48.
go back to reference Musso G, Gambino R, Cassader M. Interactions between gut microbiota and host metabolism predisposing to obesity and diabetes. Annu Rev Med. 2011;62:361–80.PubMedCrossRef Musso G, Gambino R, Cassader M. Interactions between gut microbiota and host metabolism predisposing to obesity and diabetes. Annu Rev Med. 2011;62:361–80.PubMedCrossRef
49.
go back to reference Lichtenstein L, Berbée JF, van Dijk SJ, van Dijk KW, Bensadoun A, Kema IP, et al. Angptl4 upregulates cholesterol synthesis in liver via inhibition of LPL- and HL-dependent hepatic cholesterol uptake. Arterioscler Thromb Vasc Biol. 2007;27:2420–7.PubMedCrossRef Lichtenstein L, Berbée JF, van Dijk SJ, van Dijk KW, Bensadoun A, Kema IP, et al. Angptl4 upregulates cholesterol synthesis in liver via inhibition of LPL- and HL-dependent hepatic cholesterol uptake. Arterioscler Thromb Vasc Biol. 2007;27:2420–7.PubMedCrossRef
50.
go back to reference Adachi H, Fujiwara Y, Kondo T, Nishikawa T, Ogawa R. Angptl 4 deficiency improves lipid metabolism, suppresses foam cell formation and protects against atherosclerosis. Biochem Biophys Res Commun. 2009;379:806–11.PubMedCrossRef Adachi H, Fujiwara Y, Kondo T, Nishikawa T, Ogawa R. Angptl 4 deficiency improves lipid metabolism, suppresses foam cell formation and protects against atherosclerosis. Biochem Biophys Res Commun. 2009;379:806–11.PubMedCrossRef
51.
go back to reference Romeo S, Pennacchio LA, Fu Y, Boerwinkle E, Tybjaerg-Hansen A, Hobbs HH, et al. Population-based resequencing of ANGPTL4 uncovers variations that reduce triglycerides and increase HDL. Nat Genet. 2007;39:513–6.PubMedCentralPubMedCrossRef Romeo S, Pennacchio LA, Fu Y, Boerwinkle E, Tybjaerg-Hansen A, Hobbs HH, et al. Population-based resequencing of ANGPTL4 uncovers variations that reduce triglycerides and increase HDL. Nat Genet. 2007;39:513–6.PubMedCentralPubMedCrossRef
52.
go back to reference Folsom AR, Peacock JM, Demerath E, Boerwinkle E. Variation in ANGPTL4 and risk of coronary heart disease: the atherosclerosis risk in communities study. Metabolism. 2008;57:1591–6.PubMedCentralPubMedCrossRef Folsom AR, Peacock JM, Demerath E, Boerwinkle E. Variation in ANGPTL4 and risk of coronary heart disease: the atherosclerosis risk in communities study. Metabolism. 2008;57:1591–6.PubMedCentralPubMedCrossRef
53.
go back to reference Jonker JT, Smit JW, Hammer S, Snel M, van der Meer RW, Lamb HJ, et al. Dietary modulation of plasma angiopoietin-like protein 4 concentrations in healthy volunteers and in patients with type 2 diabetes. Am J Clin Nutr. 2013;97:255–60.PubMedCrossRef Jonker JT, Smit JW, Hammer S, Snel M, van der Meer RW, Lamb HJ, et al. Dietary modulation of plasma angiopoietin-like protein 4 concentrations in healthy volunteers and in patients with type 2 diabetes. Am J Clin Nutr. 2013;97:255–60.PubMedCrossRef
54.
go back to reference Xu A, Lam MC, Chan KW, Wang Y, Zhang J. Angiopoietin-like protein 4 decreases blood glucose and improves glucose tolerance but induces hyperlipidemia and hepatic steatosis in mice. Proc Natl Acad Sci USA. 2005;102:6086–91.PubMedCrossRef Xu A, Lam MC, Chan KW, Wang Y, Zhang J. Angiopoietin-like protein 4 decreases blood glucose and improves glucose tolerance but induces hyperlipidemia and hepatic steatosis in mice. Proc Natl Acad Sci USA. 2005;102:6086–91.PubMedCrossRef
55.
go back to reference Yokouchi H, Eto K, Nishimura W, Takeda N, Kaburagi Y, Yamamoto S, et al. Angiopoietin-like protein 4 (ANGPTL4) is induced by high glucose in retinal pigment epithelial cells and exhibits potent angiogenic activity on retinal endothelial cells. Acta Ophthalmol. 2013;91:e289–97.PubMedCrossRef Yokouchi H, Eto K, Nishimura W, Takeda N, Kaburagi Y, Yamamoto S, et al. Angiopoietin-like protein 4 (ANGPTL4) is induced by high glucose in retinal pigment epithelial cells and exhibits potent angiogenic activity on retinal endothelial cells. Acta Ophthalmol. 2013;91:e289–97.PubMedCrossRef
56.
go back to reference Bouleti C, Mathivet T, Coqueran B, Serfaty JM, Lesaqe M, Berland E, et al. Protective effects of angiopoietin-like 4 on cerebrovascular and functional damages in ischaemic stroke. Eur Heart J. 2013; [Epub ahead of print]. Bouleti C, Mathivet T, Coqueran B, Serfaty JM, Lesaqe M, Berland E, et al. Protective effects of angiopoietin-like 4 on cerebrovascular and functional damages in ischaemic stroke. Eur Heart J. 2013; [Epub ahead of print].
Metadata
Title
Role of Angptl4 in vascular permeability and inflammation
Authors
Liang Guo
Shao-Ying Li
Fu-Yun Ji
Yun-Feng Zhao
Yu Zhong
Xue-Jun Lv
Xue-Ling Wu
Gui-Sheng Qian
Publication date
01-01-2014
Publisher
Springer Basel
Published in
Inflammation Research / Issue 1/2014
Print ISSN: 1023-3830
Electronic ISSN: 1420-908X
DOI
https://doi.org/10.1007/s00011-013-0678-0

Other articles of this Issue 1/2014

Inflammation Research 1/2014 Go to the issue