Skip to main content
Top
Published in: Inflammation Research 6/2013

01-06-2013 | Review

Polymorphonuclear neutrophils and instability of the atherosclerotic plaque: a causative role?

Authors: Roberta Della Bona, Maria Teresa Cardillo, Milena Leo, Gina Biasillo, Massimo Gustapane, Francesco Trotta, Luigi M. Biasucci

Published in: Inflammation Research | Issue 6/2013

Login to get access

Abstract

Objective

The aim of this review is to examine the role of polymorphonuclear neutrophils (PMNs) in the evolution of atherosclerosis.

Introduction

While the role of PMNs in the evolution of atherosclerosic process has failed until recently to attract much attention, a body of research carried out over the last decade has disclosed the unexpectedly complex behavior of these cells, unraveling an unexpected key role for PMNs in the onset and progression of atheroma.

Methods

A PubMed database search was performed for studies providing evidences on the role of PMNs in the development and progression of atherosclerotic lesion.

Results and Conclusions

Activated PMNs were shown to produce and release reactive oxygen species, inflammatory leukotrienes and proteolytic lysosomal enzymes, directly inducing vascular damage. Activated PMNs also secrete myeloperoxidase, involved in lipoprotein oxidation. PMNs have a finite lifespan and typically die through apoptosis, which thus represents a counter-regulatory mechanism limiting the toxic potential of these short-lived, terminally differentiated cells. Dysregulation of this process probably contributes to the pathogenesis and progression of several inflammatory diseases. Moreover, high circulating levels of PMN–platelet aggregates have been reported in patients with clinical atherosclerosis, and recent studies suggest that these aggregates may play a role in vascular response to injury. It has been suggested that this heterotypic interaction between platelets and leukocytes might represent a link between hemostasis/thrombosis and the inflammatory response.
Literature
1.
go back to reference Hansson GK. Inflammation, atherosclerosis, and coronary artery disease. N Engl J Med. 2005;352:1685–95.PubMedCrossRef Hansson GK. Inflammation, atherosclerosis, and coronary artery disease. N Engl J Med. 2005;352:1685–95.PubMedCrossRef
2.
go back to reference Smith JD, Trogan E, Ginsberg M, Grigaux C, Tian J, Miyata M. Decreased atherosclerosis in mice deficient in both macrophage colony-stimulating factor (op) and apolipoprotein E. Proc Natl Acad Sci USA. 1995;92(18):8264–8.PubMedCrossRef Smith JD, Trogan E, Ginsberg M, Grigaux C, Tian J, Miyata M. Decreased atherosclerosis in mice deficient in both macrophage colony-stimulating factor (op) and apolipoprotein E. Proc Natl Acad Sci USA. 1995;92(18):8264–8.PubMedCrossRef
3.
go back to reference Peiser L, Mukhopadhyay S, Gordon S. Scavenger receptors in innate immunity. Curr Opin Immunol. 2002;14(1):123–8.PubMedCrossRef Peiser L, Mukhopadhyay S, Gordon S. Scavenger receptors in innate immunity. Curr Opin Immunol. 2002;14(1):123–8.PubMedCrossRef
4.
5.
go back to reference Libby P, Nahrendorf M, Pittet MJ, Swirski FK. Diversity of denizens of the atherosclerotic plaque: not all monocytes are created equal. Circulation. 2008;117(25):3168–70.PubMedCrossRef Libby P, Nahrendorf M, Pittet MJ, Swirski FK. Diversity of denizens of the atherosclerotic plaque: not all monocytes are created equal. Circulation. 2008;117(25):3168–70.PubMedCrossRef
6.
go back to reference Liuzzo G, Goronzy JJ, Yang H, et al. Monoclonal T-cell proliferation and plaque instability in acute coronary syndromes. Circulation. 2000;101(25):2883–8.PubMedCrossRef Liuzzo G, Goronzy JJ, Yang H, et al. Monoclonal T-cell proliferation and plaque instability in acute coronary syndromes. Circulation. 2000;101(25):2883–8.PubMedCrossRef
7.
go back to reference De Palma R, Del Galdo F, Abbate G, et al. Patients with acute coronary syndrome show oligoclonal T-cell recruitment within unstable plaque: evidence for a local, intracoronary immunologic mechanism. Circulation. 2006;113:640–6.PubMedCrossRef De Palma R, Del Galdo F, Abbate G, et al. Patients with acute coronary syndrome show oligoclonal T-cell recruitment within unstable plaque: evidence for a local, intracoronary immunologic mechanism. Circulation. 2006;113:640–6.PubMedCrossRef
8.
go back to reference Liuzzo G, Kopecky SL, Frye RL, et al. Perturbation of the T-cell repertoire in patients with unstable angina. Circulation. 1999;100(21):2135–9.PubMedCrossRef Liuzzo G, Kopecky SL, Frye RL, et al. Perturbation of the T-cell repertoire in patients with unstable angina. Circulation. 1999;100(21):2135–9.PubMedCrossRef
9.
go back to reference Zal B, Kaski JC, Arno G, et al. Heat-shock protein 60-reactive CD4+CD28null T cells in patients with acute coronary syndromes. Circulation. 2004;109(10):1230–5.PubMedCrossRef Zal B, Kaski JC, Arno G, et al. Heat-shock protein 60-reactive CD4+CD28null T cells in patients with acute coronary syndromes. Circulation. 2004;109(10):1230–5.PubMedCrossRef
10.
go back to reference Nakajima T, Schulte S, Warrington KJ, et al. T-cell-mediated lysis of endothelial cells in acute coronary syndromes. Circulation. 2002;105(5):570–5.PubMedCrossRef Nakajima T, Schulte S, Warrington KJ, et al. T-cell-mediated lysis of endothelial cells in acute coronary syndromes. Circulation. 2002;105(5):570–5.PubMedCrossRef
11.
go back to reference Pryshchep S, Sato K, Goronzy JJ, Weyand CM. T cell recognition and killing of vascular smooth muscle cells in acute coronary syndrome. Circ Res. 2006;98(9):1168–76.PubMedCrossRef Pryshchep S, Sato K, Goronzy JJ, Weyand CM. T cell recognition and killing of vascular smooth muscle cells in acute coronary syndrome. Circ Res. 2006;98(9):1168–76.PubMedCrossRef
12.
go back to reference Han SF, Liu P, Zhang W, et al. The opposite-direction modulation of CD4+CD25+ Tregs and T helper 1 cells in acute coronary syndromes. Clin Immunol. 2007;124(1):90–7.PubMedCrossRef Han SF, Liu P, Zhang W, et al. The opposite-direction modulation of CD4+CD25+ Tregs and T helper 1 cells in acute coronary syndromes. Clin Immunol. 2007;124(1):90–7.PubMedCrossRef
13.
go back to reference Cheng X, Yu X, Ding YJ, et al. The Th17/Treg imbalance in patients with acute coronary syndrome. Clin Immunol. 2008;127(1):89–97.PubMedCrossRef Cheng X, Yu X, Ding YJ, et al. The Th17/Treg imbalance in patients with acute coronary syndrome. Clin Immunol. 2008;127(1):89–97.PubMedCrossRef
14.
go back to reference Weber C, Zernecke A, Libby P. The multifaceted contributions of leukocyte subsets to atherosclerosis: lessons from mouse models. Nat Rev Immunol. 2008;8:802–15.PubMedCrossRef Weber C, Zernecke A, Libby P. The multifaceted contributions of leukocyte subsets to atherosclerosis: lessons from mouse models. Nat Rev Immunol. 2008;8:802–15.PubMedCrossRef
15.
16.
go back to reference Collins RG, Velji R, Guevara NV, Hicks MJ, Chan L, Beaudet AL. P-Selectin or intercellular adhesion molecule (ICAM)-1 deficiency substantially protects against atherosclerosis in apolipoprotein E-deficient mice. J Exp Med. 2000;191:189–94.PubMedCrossRef Collins RG, Velji R, Guevara NV, Hicks MJ, Chan L, Beaudet AL. P-Selectin or intercellular adhesion molecule (ICAM)-1 deficiency substantially protects against atherosclerosis in apolipoprotein E-deficient mice. J Exp Med. 2000;191:189–94.PubMedCrossRef
17.
go back to reference Soehnlein O, Weber C, Lindbom L. Neutrophil granule proteins tune monocytic cell function. Trends Immunol. 2009;30:538–46.PubMedCrossRef Soehnlein O, Weber C, Lindbom L. Neutrophil granule proteins tune monocytic cell function. Trends Immunol. 2009;30:538–46.PubMedCrossRef
18.
go back to reference Borregaard N, Sorensen OE, Theilgaard-Monch K. Neutrophil granules: a library of innate immunity proteins. Trends Immunol. 2007;28:340–5.PubMedCrossRef Borregaard N, Sorensen OE, Theilgaard-Monch K. Neutrophil granules: a library of innate immunity proteins. Trends Immunol. 2007;28:340–5.PubMedCrossRef
19.
20.
go back to reference Cassatella MA, Costantini C, Jaillon S. Neutrophils in the activation and regulation of innate and adaptive immunity. Nat Rev Immunol. 2011;11(8):519–31.PubMedCrossRef Cassatella MA, Costantini C, Jaillon S. Neutrophils in the activation and regulation of innate and adaptive immunity. Nat Rev Immunol. 2011;11(8):519–31.PubMedCrossRef
21.
go back to reference Soehnlein O, Lindbom L, Weber C. Mechanisms underlying neutrophil-mediated monocyte recruitment. Blood. 2009;114(21):4613–23.PubMedCrossRef Soehnlein O, Lindbom L, Weber C. Mechanisms underlying neutrophil-mediated monocyte recruitment. Blood. 2009;114(21):4613–23.PubMedCrossRef
22.
go back to reference Borgeat P, Hamberg M, Samuelsson B. Transformation of arachidonic acid and homo-gamma-linolenic acid by rabbit polymorphonuclear leukocytes. Monohydroxy acids from novel lipoxygenases. J Biol Chem. 1976;251:7816–20.PubMed Borgeat P, Hamberg M, Samuelsson B. Transformation of arachidonic acid and homo-gamma-linolenic acid by rabbit polymorphonuclear leukocytes. Monohydroxy acids from novel lipoxygenases. J Biol Chem. 1976;251:7816–20.PubMed
23.
go back to reference Di Gennaro A, Kenne E, Wan M, Soehnlein O, Lindbom L, Haeggström JZ. Leukotriene B4-induced changes in vascular permeability are mediated by neutrophil release of heparin-binding protein (HBP/CAP37/azurocidin). FASEB J. 2009;23:1750–7.PubMedCrossRef Di Gennaro A, Kenne E, Wan M, Soehnlein O, Lindbom L, Haeggström JZ. Leukotriene B4-induced changes in vascular permeability are mediated by neutrophil release of heparin-binding protein (HBP/CAP37/azurocidin). FASEB J. 2009;23:1750–7.PubMedCrossRef
24.
go back to reference Taekema-Roelvink ME, Kooten C, Kooij SV, Heemskerk E, Daha MR. Proteinase 3 enhances endothelial monocyte chemoattractant protein-1 production and induces increased adhesion of neutrophils to endothelial cells by upregulating intercellular cell adhesion molecule-1. J Am Soc Nephrol. 2001;12(5):932–40.PubMed Taekema-Roelvink ME, Kooten C, Kooij SV, Heemskerk E, Daha MR. Proteinase 3 enhances endothelial monocyte chemoattractant protein-1 production and induces increased adhesion of neutrophils to endothelial cells by upregulating intercellular cell adhesion molecule-1. J Am Soc Nephrol. 2001;12(5):932–40.PubMed
25.
go back to reference Soehnlein O, Xie X, Ulbrich H, et al. Neutrophil-derived heparin-binding protein (HBP/CAP37) deposited on endothelium enhances monocyte arrest under flow conditions. J Immunol. 2005;174(10):6399–405.PubMed Soehnlein O, Xie X, Ulbrich H, et al. Neutrophil-derived heparin-binding protein (HBP/CAP37) deposited on endothelium enhances monocyte arrest under flow conditions. J Immunol. 2005;174(10):6399–405.PubMed
26.
go back to reference Chertov O, Ueda H, Xu LL, et al. Identification of human neutrophil-derived cathepsin G and azurocidin/CAP37 as chemoattractants for mononuclear cells and neutrophils. J Exp Med. 1997;186(5):739–47.PubMedCrossRef Chertov O, Ueda H, Xu LL, et al. Identification of human neutrophil-derived cathepsin G and azurocidin/CAP37 as chemoattractants for mononuclear cells and neutrophils. J Exp Med. 1997;186(5):739–47.PubMedCrossRef
27.
go back to reference Kai-Larsen Y, Agerberth B. The role of the multifunctional peptide LL-37 in host defense. Front Biosci. 2008;13:3760–7.PubMedCrossRef Kai-Larsen Y, Agerberth B. The role of the multifunctional peptide LL-37 in host defense. Front Biosci. 2008;13:3760–7.PubMedCrossRef
28.
go back to reference Soehnlein O, Weber C. Myeloid cells in atherosclerosis: initiators and decision shapers. Semin Immunopathol. 2009;31(1):35–47.PubMedCrossRef Soehnlein O, Weber C. Myeloid cells in atherosclerosis: initiators and decision shapers. Semin Immunopathol. 2009;31(1):35–47.PubMedCrossRef
29.
go back to reference Mocatta TJ, Pilbrow AP, Cameron VA, et al. Plasma concentrations of myeloperoxidase predict mortality after myocardial infarction. J Am Coll Cardiol. 2007;49:1993–2000.PubMedCrossRef Mocatta TJ, Pilbrow AP, Cameron VA, et al. Plasma concentrations of myeloperoxidase predict mortality after myocardial infarction. J Am Coll Cardiol. 2007;49:1993–2000.PubMedCrossRef
30.
go back to reference Tavakoli S, Asmis R. Reactive oxygen species and thiol redox signaling in the macrophage biology of atherosclerosis. Antioxid Redox Signal. 2012;17(12):1785–95.PubMedCrossRef Tavakoli S, Asmis R. Reactive oxygen species and thiol redox signaling in the macrophage biology of atherosclerosis. Antioxid Redox Signal. 2012;17(12):1785–95.PubMedCrossRef
31.
go back to reference Woloszynek JC, Hu Y, Pham CT. Cathepsin G-regulated release of formyl peptide receptor agonists modulate neutrophil effector functions. J Biol Chem. 2012;287(41):34101–9.PubMedCrossRef Woloszynek JC, Hu Y, Pham CT. Cathepsin G-regulated release of formyl peptide receptor agonists modulate neutrophil effector functions. J Biol Chem. 2012;287(41):34101–9.PubMedCrossRef
32.
go back to reference Yang D, Chen Q, Chertov O, Oppenheim JJ. Human neutrophil defensins selectively chemoattract naive T and immature dendritic cells. J Leukoc Biol. 2000;68(1):9–14.PubMed Yang D, Chen Q, Chertov O, Oppenheim JJ. Human neutrophil defensins selectively chemoattract naive T and immature dendritic cells. J Leukoc Biol. 2000;68(1):9–14.PubMed
33.
go back to reference Lande R, Gregorio J, Facchinetti V, et al. Plasmacytoid dendritic cells sense self-DNA coupled with antimicrobial peptide. Nature. 2007;449(7162):564–9.PubMedCrossRef Lande R, Gregorio J, Facchinetti V, et al. Plasmacytoid dendritic cells sense self-DNA coupled with antimicrobial peptide. Nature. 2007;449(7162):564–9.PubMedCrossRef
34.
go back to reference Ganguly D, Chamilos G, Lande R, et al. Self-RNA-antimicrobial peptide complexes activate human dendritic cells through TLR7 and TLR8. J Exp Med. 2009;206(9):1983–94.PubMedCrossRef Ganguly D, Chamilos G, Lande R, et al. Self-RNA-antimicrobial peptide complexes activate human dendritic cells through TLR7 and TLR8. J Exp Med. 2009;206(9):1983–94.PubMedCrossRef
35.
go back to reference Tedgui A, Mallat Z. Cytokines in atherosclerosis: pathogenic and regulatory pathways. Physiol Rev. 2006;86:515–81.PubMedCrossRef Tedgui A, Mallat Z. Cytokines in atherosclerosis: pathogenic and regulatory pathways. Physiol Rev. 2006;86:515–81.PubMedCrossRef
36.
go back to reference DiStasi MR, Ley K. Opening the flood-gates: how neutrophil-endothelial interactions regulate permeability. Trends Immunol. 2009;30:547–56.PubMedCrossRef DiStasi MR, Ley K. Opening the flood-gates: how neutrophil-endothelial interactions regulate permeability. Trends Immunol. 2009;30:547–56.PubMedCrossRef
37.
go back to reference Raines EW, Ferri N. Thematic review series: the immune system and atherogenesis. Cytokines affecting endothelial and smooth muscle cells in vascular disease. J Lipid Res. 2005;46:1081–92.PubMedCrossRef Raines EW, Ferri N. Thematic review series: the immune system and atherogenesis. Cytokines affecting endothelial and smooth muscle cells in vascular disease. J Lipid Res. 2005;46:1081–92.PubMedCrossRef
38.
go back to reference Eltzschig HK, Eckle T, Mager A, et al. ATP release from activated neutrophils occurs via connexin 43 and modulates adenosine-dependent endothelial cell function. Circ Res. 2006;99(10):1100–8.PubMedCrossRef Eltzschig HK, Eckle T, Mager A, et al. ATP release from activated neutrophils occurs via connexin 43 and modulates adenosine-dependent endothelial cell function. Circ Res. 2006;99(10):1100–8.PubMedCrossRef
39.
go back to reference Eiserich JP, Baldus S, Brennan ML, et al. Myeloperoxidase, a leukocyte-derived vascular NO oxidase. Science. 2002;296:2391–4.PubMedCrossRef Eiserich JP, Baldus S, Brennan ML, et al. Myeloperoxidase, a leukocyte-derived vascular NO oxidase. Science. 2002;296:2391–4.PubMedCrossRef
40.
go back to reference Gündüz D, Aslam M, Krieger U, et al. Opposing effects of ATP and adenosine on barrier function of rat coronary microvasculature. J Mol Cell Cardiol. 2012;52(5):962–70.PubMedCrossRef Gündüz D, Aslam M, Krieger U, et al. Opposing effects of ATP and adenosine on barrier function of rat coronary microvasculature. J Mol Cell Cardiol. 2012;52(5):962–70.PubMedCrossRef
41.
go back to reference Drechsler M, Döring Y, Megens RT, Soehnlein O. Neutrophilic granulocytes—promiscuous accelerators of atherosclerosis. Thromb Haemost. 2011;106(5):839–48.PubMedCrossRef Drechsler M, Döring Y, Megens RT, Soehnlein O. Neutrophilic granulocytes—promiscuous accelerators of atherosclerosis. Thromb Haemost. 2011;106(5):839–48.PubMedCrossRef
42.
go back to reference Serhan CN, Yacoubian S, Yang R. Anti-inflammatory and proresolving lipid mediators. Annu Rev Pathol. 2008;3:279–312.PubMedCrossRef Serhan CN, Yacoubian S, Yang R. Anti-inflammatory and proresolving lipid mediators. Annu Rev Pathol. 2008;3:279–312.PubMedCrossRef
43.
go back to reference Bengtsson E, To F, Hakansson K, et al. Lack of the cysteine protease inhibitor cystatin C promotes atherosclerosis in apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol. 2005;25:2151–6.PubMedCrossRef Bengtsson E, To F, Hakansson K, et al. Lack of the cysteine protease inhibitor cystatin C promotes atherosclerosis in apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol. 2005;25:2151–6.PubMedCrossRef
44.
go back to reference Cullen P, Baetta R, Bellosta S, et al. Rupture of the atherosclerotic plaque: does a good animal model exist? Arterioscler Thromb Vasc Biol. 2003;23:535–42.PubMedCrossRef Cullen P, Baetta R, Bellosta S, et al. Rupture of the atherosclerotic plaque: does a good animal model exist? Arterioscler Thromb Vasc Biol. 2003;23:535–42.PubMedCrossRef
45.
go back to reference Soehnlein O, Wantha S, Simsekyilmaz S, et al. Neutrophil-derived cathelicidin protects from neointimal hyperplasia. Sci Transl Med. 2011;3(103):103ra98. Soehnlein O, Wantha S, Simsekyilmaz S, et al. Neutrophil-derived cathelicidin protects from neointimal hyperplasia. Sci Transl Med. 2011;3(103):103ra98.
46.
go back to reference Yvan-Charvet L, Welch C, Pagler TA, et al. Increased inflammatory gene expression in ABC transporter-deficient macrophages: free cholesterol accumulation, increased signaling via Toll-like receptors, and neutrophil infiltration of atherosclerotic lesions. Circulation. 2008;118(18):1837–47.PubMedCrossRef Yvan-Charvet L, Welch C, Pagler TA, et al. Increased inflammatory gene expression in ABC transporter-deficient macrophages: free cholesterol accumulation, increased signaling via Toll-like receptors, and neutrophil infiltration of atherosclerotic lesions. Circulation. 2008;118(18):1837–47.PubMedCrossRef
47.
go back to reference Sasaki T, Kuzuya M, Nakamura K, et al. A simple method of plaque rupture induction in apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol. 2006;26:1304–9.PubMedCrossRef Sasaki T, Kuzuya M, Nakamura K, et al. A simple method of plaque rupture induction in apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol. 2006;26:1304–9.PubMedCrossRef
48.
go back to reference Van Leeuwen M, Gijbels MJ, Duijvestijn A, et al. Accumulation of myeloperoxidase-positive neutrophils in atherosclerotic lesions in LDLR-/-mice. Arterioscler Thromb Vasc Biol. 2008;28:84–9.PubMedCrossRef Van Leeuwen M, Gijbels MJ, Duijvestijn A, et al. Accumulation of myeloperoxidase-positive neutrophils in atherosclerotic lesions in LDLR-/-mice. Arterioscler Thromb Vasc Biol. 2008;28:84–9.PubMedCrossRef
49.
go back to reference Zernecke A, Bot I, Djalali-Talab Y, et al. Protective role of CXC receptor 4/CXC ligand 12 unveils the importance of neutrophils in atherosclerosis. Circ Res. 2008;102:209–17.PubMedCrossRef Zernecke A, Bot I, Djalali-Talab Y, et al. Protective role of CXC receptor 4/CXC ligand 12 unveils the importance of neutrophils in atherosclerosis. Circ Res. 2008;102:209–17.PubMedCrossRef
50.
go back to reference Drechsler M, Megens R, van Zandvoort M, Weber C, Soehnlein O. Hyperlipidemia-triggered neutrophilia promotes early atherosclerosis. Circulation. 2010;122:1837–45.PubMedCrossRef Drechsler M, Megens R, van Zandvoort M, Weber C, Soehnlein O. Hyperlipidemia-triggered neutrophilia promotes early atherosclerosis. Circulation. 2010;122:1837–45.PubMedCrossRef
51.
go back to reference Rotzius P, Thams S, Soehnlein O, et al. Distinct infiltration of neutrophils in lesion shoulders in ApoE-/- mice. Am J Pathol. 2010;177(1):493–500.PubMedCrossRef Rotzius P, Thams S, Soehnlein O, et al. Distinct infiltration of neutrophils in lesion shoulders in ApoE-/- mice. Am J Pathol. 2010;177(1):493–500.PubMedCrossRef
52.
go back to reference Döring Y, Manthey HD, Drechsler M, et al. Auto-antigenic protein-DNA complexes stimulate plasmacytoid dendritic cells to promote atherosclerosis. Circulation. 2012;125:1673–83.PubMedCrossRef Döring Y, Manthey HD, Drechsler M, et al. Auto-antigenic protein-DNA complexes stimulate plasmacytoid dendritic cells to promote atherosclerosis. Circulation. 2012;125:1673–83.PubMedCrossRef
53.
go back to reference Soehnlein O, Zernecke A, Eriksson EE, et al. Neutrophil secretion products pave the way for inflammatory monocytes. Blood. 2008;112(4):1461–71.PubMedCrossRef Soehnlein O, Zernecke A, Eriksson EE, et al. Neutrophil secretion products pave the way for inflammatory monocytes. Blood. 2008;112(4):1461–71.PubMedCrossRef
54.
go back to reference Freidman GD, Klatsky AL, Siegelaub AB. The leukocyte count as a predictor of myocardial infarction. N Engl J Med. 1974;290:1275–8.CrossRef Freidman GD, Klatsky AL, Siegelaub AB. The leukocyte count as a predictor of myocardial infarction. N Engl J Med. 1974;290:1275–8.CrossRef
55.
go back to reference Furman MI, Becker RC, Yarzebski J, Savegeau J, Gore JM, Goldberg RJ. Effect of elevated leukocyte count on in-hospital mortality following acute myocardial infarction. Am J Cardiol. 1996;78:945–8.PubMedCrossRef Furman MI, Becker RC, Yarzebski J, Savegeau J, Gore JM, Goldberg RJ. Effect of elevated leukocyte count on in-hospital mortality following acute myocardial infarction. Am J Cardiol. 1996;78:945–8.PubMedCrossRef
56.
go back to reference Gillum RF, Mussolino ME, Madans JH. Counts of neutrophils, lymphocytes, and monocytes, cause-specific mortality and coronary heart disease: the NHANES-I epidemiologic follow-up study. Ann Epidemiol. 2005;15:266–71.PubMedCrossRef Gillum RF, Mussolino ME, Madans JH. Counts of neutrophils, lymphocytes, and monocytes, cause-specific mortality and coronary heart disease: the NHANES-I epidemiologic follow-up study. Ann Epidemiol. 2005;15:266–71.PubMedCrossRef
57.
go back to reference Nijm J, Wikby A, Tompa A, Olsson AG, Jonasson L. Circulating levels of proinflammatory cytokines and neutrophil-platelet aggregates in patients with coronary artery disease. Am J Cardiol. 2005;95:452–6.PubMedCrossRef Nijm J, Wikby A, Tompa A, Olsson AG, Jonasson L. Circulating levels of proinflammatory cytokines and neutrophil-platelet aggregates in patients with coronary artery disease. Am J Cardiol. 2005;95:452–6.PubMedCrossRef
58.
go back to reference Avanzas P, Arroyo-Espliguero R, Cosin-Sales J, Quiles J, Zouridakis E, Kaski JC. Multiple complex stenoses, high neutrophil count and C-reactive protein levels in patients with chronic stable angina. Atherosclerosis. 2004;175:151–7.PubMedCrossRef Avanzas P, Arroyo-Espliguero R, Cosin-Sales J, Quiles J, Zouridakis E, Kaski JC. Multiple complex stenoses, high neutrophil count and C-reactive protein levels in patients with chronic stable angina. Atherosclerosis. 2004;175:151–7.PubMedCrossRef
59.
go back to reference Avanzas P, Arroyo-Espliguero R, Cosin-Sales J, et al. Markers of inflammation and multiple complex stenoses (pancoronary plaque vulnerability) in patients with non-ST segment elevation acute coronary syndromes. Heart. 2004;90:847–52.PubMedCrossRef Avanzas P, Arroyo-Espliguero R, Cosin-Sales J, et al. Markers of inflammation and multiple complex stenoses (pancoronary plaque vulnerability) in patients with non-ST segment elevation acute coronary syndromes. Heart. 2004;90:847–52.PubMedCrossRef
60.
go back to reference Mehta J, Dinerman J, Mehta P, et al. Neutrophil function in ischemic heart disease. Circulation. 1989;79:549–56.PubMedCrossRef Mehta J, Dinerman J, Mehta P, et al. Neutrophil function in ischemic heart disease. Circulation. 1989;79:549–56.PubMedCrossRef
61.
go back to reference Buffon A, Biasucci LM, Liuzzo G, D’Onofrio G, Crea F, Maseri A. Widespread coronary inflammation in unstable angina. N Engl J Med. 2002;347:5–12.PubMedCrossRef Buffon A, Biasucci LM, Liuzzo G, D’Onofrio G, Crea F, Maseri A. Widespread coronary inflammation in unstable angina. N Engl J Med. 2002;347:5–12.PubMedCrossRef
62.
go back to reference Biasucci LM, D’Onofrio G, Liuzzo G, et al. Intracellular neutrophil myeloperoxidase is reduced in unstable angina and acute myocardial infarction, but its reduction is not related to ischemia. J Am Coll Cardiol. 1996;27:611–6.PubMedCrossRef Biasucci LM, D’Onofrio G, Liuzzo G, et al. Intracellular neutrophil myeloperoxidase is reduced in unstable angina and acute myocardial infarction, but its reduction is not related to ischemia. J Am Coll Cardiol. 1996;27:611–6.PubMedCrossRef
63.
go back to reference Mazzone A, De Servi S, Ricevuti G, et al. Increased expression of neutrophils and monocyte adhesion molecules in unstable coronary artery disease. Circulation. 1993;88:358–63.PubMedCrossRef Mazzone A, De Servi S, Ricevuti G, et al. Increased expression of neutrophils and monocyte adhesion molecules in unstable coronary artery disease. Circulation. 1993;88:358–63.PubMedCrossRef
64.
go back to reference Naruko T, Ueda M, Haze K, et al. Neutrophil infiltration of culprit lesions in acute coronary syndromes. Circulation. 2002;106:2894–900.PubMedCrossRef Naruko T, Ueda M, Haze K, et al. Neutrophil infiltration of culprit lesions in acute coronary syndromes. Circulation. 2002;106:2894–900.PubMedCrossRef
65.
go back to reference Ionita MG, van den Borne P, Catanzariti LM, et al. High neutrophil numbers in human carotid atherosclerotic plaques are associated with characteristics of rupture-prone lesions. Arterioscler Thromb Vasc Biol. 2010;30(9):1842–8.PubMedCrossRef Ionita MG, van den Borne P, Catanzariti LM, et al. High neutrophil numbers in human carotid atherosclerotic plaques are associated with characteristics of rupture-prone lesions. Arterioscler Thromb Vasc Biol. 2010;30(9):1842–8.PubMedCrossRef
66.
go back to reference Ferrante G, Nakano M, Prati F, et al. High levels of systemic myeloperoxidase are associated with coronary plaque erosion in patients with acute coronary syndromes. Circulation. 2010;122:2505–13.PubMedCrossRef Ferrante G, Nakano M, Prati F, et al. High levels of systemic myeloperoxidase are associated with coronary plaque erosion in patients with acute coronary syndromes. Circulation. 2010;122:2505–13.PubMedCrossRef
67.
go back to reference Lau D, Baldus S. Myeloperoxidase and its contributory role in inflammatory vascular disease. Pharm Therap. 2006;111:16–26.CrossRef Lau D, Baldus S. Myeloperoxidase and its contributory role in inflammatory vascular disease. Pharm Therap. 2006;111:16–26.CrossRef
68.
go back to reference Nicholls SJ, Hazen SL. Myeloperoxidase and cardiovascular disease. Arterioscler Thromb Vasc Biol. 2005;25:1102–11.PubMedCrossRef Nicholls SJ, Hazen SL. Myeloperoxidase and cardiovascular disease. Arterioscler Thromb Vasc Biol. 2005;25:1102–11.PubMedCrossRef
69.
go back to reference Kumar V, Sharma A. Neutrophils: Cinderella of innate immune system. Int Immunopharmacol. 2010;10(11):1325–34.PubMedCrossRef Kumar V, Sharma A. Neutrophils: Cinderella of innate immune system. Int Immunopharmacol. 2010;10(11):1325–34.PubMedCrossRef
70.
go back to reference Malle E, Marsche G, Panzenboeck U, Sattler W. Myeloperoxidase-mediated oxidation of high-density lipoproteins: fingerprints of newly recognized potential proatherogenic lipoproteins. Arch Biochem Biophys. 2006;445:245–55.PubMedCrossRef Malle E, Marsche G, Panzenboeck U, Sattler W. Myeloperoxidase-mediated oxidation of high-density lipoproteins: fingerprints of newly recognized potential proatherogenic lipoproteins. Arch Biochem Biophys. 2006;445:245–55.PubMedCrossRef
71.
go back to reference Daugherty A, Dunn JL, Rateri DL, Heinecke JW. Myeloperoxidase, a catalyst for lipoprotein oxidation, is expressed in human atherosclerotic lesions. J Clin Invest. 1994;94:437–44.PubMedCrossRef Daugherty A, Dunn JL, Rateri DL, Heinecke JW. Myeloperoxidase, a catalyst for lipoprotein oxidation, is expressed in human atherosclerotic lesions. J Clin Invest. 1994;94:437–44.PubMedCrossRef
72.
go back to reference Podrez EA, Schmitt D, Hoff HF, Hazen SL. Myeloperoxidase-generated reactive nitrogen species convert LDL into an atherogenic form in vitro. J Clin Invest. 1999;103:1547–60.PubMedCrossRef Podrez EA, Schmitt D, Hoff HF, Hazen SL. Myeloperoxidase-generated reactive nitrogen species convert LDL into an atherogenic form in vitro. J Clin Invest. 1999;103:1547–60.PubMedCrossRef
73.
go back to reference Mohiuddin I, Chai H, Lin PH, Lumsden AB, Yao Q, Chen C. Nitrotyrosine and chlorotirosine: clinical significance and biological functions in the vascular system. J Surg Res. 2006;133(143):149. Mohiuddin I, Chai H, Lin PH, Lumsden AB, Yao Q, Chen C. Nitrotyrosine and chlorotirosine: clinical significance and biological functions in the vascular system. J Surg Res. 2006;133(143):149.
74.
go back to reference Zheng L, Nukuna B, Brennan ML, et al. Apolipoprotein A-I is a selective target for myeloperoxidase-catalyzed oxidation and functional impairment in subjects with cardiovascular disease. J Clin Invest. 2004; 114: 529–541. Zheng L, Nukuna B, Brennan ML, et al. Apolipoprotein A-I is a selective target for myeloperoxidase-catalyzed oxidation and functional impairment in subjects with cardiovascular disease. J Clin Invest. 2004; 114: 529–541.
75.
go back to reference Abu-Soud HM, Hazen SL. Nitric oxide is a physiological substrate for mammalian peroxidases. J Biol Chem. 2000;275:37524–32.PubMedCrossRef Abu-Soud HM, Hazen SL. Nitric oxide is a physiological substrate for mammalian peroxidases. J Biol Chem. 2000;275:37524–32.PubMedCrossRef
76.
go back to reference Yang J, Ji R, Cheng Y, Sun JZ, Jennings LK, Zhang C. l-Arginine chlorination results in the formation of a nonselective nitric-oxide synthase inhibitor. J Pharmacol Exp Ther. 2006;318:1044–9.PubMedCrossRef Yang J, Ji R, Cheng Y, Sun JZ, Jennings LK, Zhang C. l-Arginine chlorination results in the formation of a nonselective nitric-oxide synthase inhibitor. J Pharmacol Exp Ther. 2006;318:1044–9.PubMedCrossRef
77.
go back to reference Xu J, Xie Z, Reece R, Pimental D, Zou MH. Uncoupling of endothelial nitric oxidase synthase by hypochlorous acid: role of NAD(P)H oxidase-derived superoxide and peroxynitrite. Arterioscler Thromb Vasc Biol. 2006;26:2688–95.PubMedCrossRef Xu J, Xie Z, Reece R, Pimental D, Zou MH. Uncoupling of endothelial nitric oxidase synthase by hypochlorous acid: role of NAD(P)H oxidase-derived superoxide and peroxynitrite. Arterioscler Thromb Vasc Biol. 2006;26:2688–95.PubMedCrossRef
78.
go back to reference Baldus S, Rudolph V, Roiss M, et al. Heparins increase endothelial nitric oxide bioavailability by liberating vessel immobilized myeloperoxidase. Circulation. 2006;113:1871–8.PubMedCrossRef Baldus S, Rudolph V, Roiss M, et al. Heparins increase endothelial nitric oxide bioavailability by liberating vessel immobilized myeloperoxidase. Circulation. 2006;113:1871–8.PubMedCrossRef
79.
go back to reference Hazen SL. Myeloperoxidase and plaque vulnerability. Arterioscler Thromb Vasc Biol. 2004;24(1143–6):26. Hazen SL. Myeloperoxidase and plaque vulnerability. Arterioscler Thromb Vasc Biol. 2004;24(1143–6):26.
80.
go back to reference Koeffler HP, Ranyard J, Pertcheck M. Myeloperoxidase: its structure and expression during myeloid differentiation. Blood. 1985;65:484–91.PubMed Koeffler HP, Ranyard J, Pertcheck M. Myeloperoxidase: its structure and expression during myeloid differentiation. Blood. 1985;65:484–91.PubMed
81.
go back to reference Owen CA, Campbell MA, Boukedes SS, Stockley RA, Campbell EJ. A discrete subpopulation of human monocytes expresses a neutrophil-like proinflammatory (P) phenotype. Am J Physiol. 1994;267(6 Pt 1):L775–85.PubMed Owen CA, Campbell MA, Boukedes SS, Stockley RA, Campbell EJ. A discrete subpopulation of human monocytes expresses a neutrophil-like proinflammatory (P) phenotype. Am J Physiol. 1994;267(6 Pt 1):L775–85.PubMed
82.
go back to reference Zhang R, Shen Z, Nauseef WM, Hazen SL. Defects in leukocyte-mediated initiation of lipid peroxidation in plasma as studied in myeloperoxidase-deficient subjects: systematic identification of multiple endogenous diffusible substrates for myeloperoxidase in plasma. Blood. 2002;99(5):1802–10.PubMed Zhang R, Shen Z, Nauseef WM, Hazen SL. Defects in leukocyte-mediated initiation of lipid peroxidation in plasma as studied in myeloperoxidase-deficient subjects: systematic identification of multiple endogenous diffusible substrates for myeloperoxidase in plasma. Blood. 2002;99(5):1802–10.PubMed
83.
go back to reference Penn MS, Patel CV, Cui MZ, DiCorleto PE, Chisolm GM. LDL increases inactive tissue factor on vascular smooth muscle cell surfaces: hydrogen peroxide activates latent cell surface tissue factor. Circulation. 1999;99(13):1753–9.PubMedCrossRef Penn MS, Patel CV, Cui MZ, DiCorleto PE, Chisolm GM. LDL increases inactive tissue factor on vascular smooth muscle cell surfaces: hydrogen peroxide activates latent cell surface tissue factor. Circulation. 1999;99(13):1753–9.PubMedCrossRef
84.
go back to reference Lesnik P, Dentan C, Vonica A, Moreau M, Chapman MJ. Tissue factor pathway inhibitor activity associated with LDL is inactivated by cell- and copper-mediated oxidation. Arterioscler Thromb Vasc Biol. 1995;15(8):1121–30.PubMedCrossRef Lesnik P, Dentan C, Vonica A, Moreau M, Chapman MJ. Tissue factor pathway inhibitor activity associated with LDL is inactivated by cell- and copper-mediated oxidation. Arterioscler Thromb Vasc Biol. 1995;15(8):1121–30.PubMedCrossRef
85.
go back to reference Rees MD, Pattison DI, Davies MJ. Oxidation of heparan sulphate by hypochlorite: role of N-chloro derivatives and dichloramine-dependent fragmentation. Biochem J. 2005;391(Pt 1):125–34.PubMed Rees MD, Pattison DI, Davies MJ. Oxidation of heparan sulphate by hypochlorite: role of N-chloro derivatives and dichloramine-dependent fragmentation. Biochem J. 2005;391(Pt 1):125–34.PubMed
86.
go back to reference Fu X, Kassim SY, Parks WC, Heinecke JW. Hypochlorous acid oxygenates the cysteine switch domain of pro-matrilysin (MMP-7): a mechanism for matrix metalloproteinase activation and atherosclerotic plaque rupture by myeloperoxidase. J Biol Chem. 2001;276:41279–87.PubMedCrossRef Fu X, Kassim SY, Parks WC, Heinecke JW. Hypochlorous acid oxygenates the cysteine switch domain of pro-matrilysin (MMP-7): a mechanism for matrix metalloproteinase activation and atherosclerotic plaque rupture by myeloperoxidase. J Biol Chem. 2001;276:41279–87.PubMedCrossRef
87.
go back to reference Sugiyama S, Okada Y, Sukhova GK, Virmani R, Heinecke JW, Libby P. Macrophage myeloperoxidase regulation by granulocyte macrophage colony-stimulating factor in human atherosclerosis and implications in acute coronary syndromes. Am J Pathol. 2001;158:879–91.PubMedCrossRef Sugiyama S, Okada Y, Sukhova GK, Virmani R, Heinecke JW, Libby P. Macrophage myeloperoxidase regulation by granulocyte macrophage colony-stimulating factor in human atherosclerosis and implications in acute coronary syndromes. Am J Pathol. 2001;158:879–91.PubMedCrossRef
88.
go back to reference Hazen SL, Heinecke JW. 3-Chlorotyrosine, a specific marker of myeloperoxidase-catalyzed oxidation, is markedly elevated in low density lipoprotein isolated from human atherosclerotic intima. J Clin Invest. 1997;99(9):2075–81.PubMedCrossRef Hazen SL, Heinecke JW. 3-Chlorotyrosine, a specific marker of myeloperoxidase-catalyzed oxidation, is markedly elevated in low density lipoprotein isolated from human atherosclerotic intima. J Clin Invest. 1997;99(9):2075–81.PubMedCrossRef
89.
go back to reference Sugiyama S, Kugiyama K, Aikawa M, Nakamura S, Ogawa H, Libby P. Hypochlorous acid, a macrophage product, induces endothelial apoptosis and tissue factor expression: involvement of myeloperoxidase-mediated oxidant in plaque erosion and thrombogenesis. Arterioscler Thromb Vasc Biol. 2004;24:1309–14.PubMedCrossRef Sugiyama S, Kugiyama K, Aikawa M, Nakamura S, Ogawa H, Libby P. Hypochlorous acid, a macrophage product, induces endothelial apoptosis and tissue factor expression: involvement of myeloperoxidase-mediated oxidant in plaque erosion and thrombogenesis. Arterioscler Thromb Vasc Biol. 2004;24:1309–14.PubMedCrossRef
90.
go back to reference Zhang R, Brennan ML, Fu X, et al. Association between MPO levels and risk of coronary artery disease. JAMA. 2001;286:2136–42.PubMedCrossRef Zhang R, Brennan ML, Fu X, et al. Association between MPO levels and risk of coronary artery disease. JAMA. 2001;286:2136–42.PubMedCrossRef
91.
go back to reference Meuwese MC, Stroes ESG, Hazen SL, et al. Serum myeloperoxidase levels are associated with the future risk of coronary artery disease in apparently healthy individuals. The EPIC-Norfolk prospective population study. JACC. 2007;50:159–65.PubMedCrossRef Meuwese MC, Stroes ESG, Hazen SL, et al. Serum myeloperoxidase levels are associated with the future risk of coronary artery disease in apparently healthy individuals. The EPIC-Norfolk prospective population study. JACC. 2007;50:159–65.PubMedCrossRef
92.
go back to reference Li S-H, Xing Y-W, Li Z–Z, Bai SG, Wang J. Clinical implications of relationship between myeloperoxidase and acute coronary syndromes [in Chinese]. Zhonghua Xin Xue Guan Bing Za Zhi. 2007;35:241–4.PubMed Li S-H, Xing Y-W, Li Z–Z, Bai SG, Wang J. Clinical implications of relationship between myeloperoxidase and acute coronary syndromes [in Chinese]. Zhonghua Xin Xue Guan Bing Za Zhi. 2007;35:241–4.PubMed
93.
go back to reference Luo HR, Loison F. Constitutive neutrophil apoptosis: mechanisms and regulation. Am J Hematol. 2008;83:288–95.PubMedCrossRef Luo HR, Loison F. Constitutive neutrophil apoptosis: mechanisms and regulation. Am J Hematol. 2008;83:288–95.PubMedCrossRef
94.
go back to reference Simon HU. Neutrophil apoptosis pathways and their modifications in inflammation. Immunol Rev. 2003;193:101–10.PubMedCrossRef Simon HU. Neutrophil apoptosis pathways and their modifications in inflammation. Immunol Rev. 2003;193:101–10.PubMedCrossRef
95.
go back to reference Cartwright GE, Athens JW, Wintrobe MM. The kinetics of granulopoiesis in normal man. Blood. 1964;24:780–803.PubMed Cartwright GE, Athens JW, Wintrobe MM. The kinetics of granulopoiesis in normal man. Blood. 1964;24:780–803.PubMed
96.
go back to reference Kamata H, Honda S, Maeda S, Chang L, Hirata H, Karin M. Reactive oxygen species promote TNFα-induced death and sustained JNK activation by inhibiting MAP kinase phosphatases. Cell 2005; 120:649–61. Kamata H, Honda S, Maeda S, Chang L, Hirata H, Karin M. Reactive oxygen species promote TNFα-induced death and sustained JNK activation by inhibiting MAP kinase phosphatases. Cell 2005; 120:649–61.
97.
go back to reference Daigle I, Simon HU. Critical role for caspases 3 and 8 in neutrophil but not in eosinophil apoptosis. Int Arch Allergy Immunol. 2001;126:147–56.PubMedCrossRef Daigle I, Simon HU. Critical role for caspases 3 and 8 in neutrophil but not in eosinophil apoptosis. Int Arch Allergy Immunol. 2001;126:147–56.PubMedCrossRef
98.
go back to reference Gardai SJ, Hildeman DA, Frankel SK, et al. Phosphorylation of Bax Ser184 by Akt regulates its activity and apoptosis in neutrophils. J Biol Chem. 2004;279:21085–95.PubMedCrossRef Gardai SJ, Hildeman DA, Frankel SK, et al. Phosphorylation of Bax Ser184 by Akt regulates its activity and apoptosis in neutrophils. J Biol Chem. 2004;279:21085–95.PubMedCrossRef
99.
go back to reference Renshaw SA, Timmons SJ, Eaton V, et al. Inflammatory neutrophils retain susceptibility to apoptosis mediated via the Fas death receptor. J Leukoc Biol. 2000;67:662–8.PubMed Renshaw SA, Timmons SJ, Eaton V, et al. Inflammatory neutrophils retain susceptibility to apoptosis mediated via the Fas death receptor. J Leukoc Biol. 2000;67:662–8.PubMed
100.
go back to reference Kamohara H, Matsuyama W, Shimozato O, et al. Regulation of tumor necrosis factor related apoptosis inducing ligand (TRAIL) and TRAIL receptor expression in human neutrophils. Immunology. 2004;111:186–94.PubMedCrossRef Kamohara H, Matsuyama W, Shimozato O, et al. Regulation of tumor necrosis factor related apoptosis inducing ligand (TRAIL) and TRAIL receptor expression in human neutrophils. Immunology. 2004;111:186–94.PubMedCrossRef
101.
go back to reference Daigle I, Yousefi S, Colonna M, Green DR, Simon HU. Death receptors and SHP-1 and block cytokine-induced antiapoptotic signalling in neutrophils. Nat Med. 2002;8:61–7.PubMedCrossRef Daigle I, Yousefi S, Colonna M, Green DR, Simon HU. Death receptors and SHP-1 and block cytokine-induced antiapoptotic signalling in neutrophils. Nat Med. 2002;8:61–7.PubMedCrossRef
102.
go back to reference Sakamoto E, Hato F, Kato T, et al. Type I and II interferon delay human neutrophil apoptosis via activation of STAT3 and upregulation of cellular inhibitor of apoptosis 2. J Leukoc Biol. 2005;78:301–9.PubMedCrossRef Sakamoto E, Hato F, Kato T, et al. Type I and II interferon delay human neutrophil apoptosis via activation of STAT3 and upregulation of cellular inhibitor of apoptosis 2. J Leukoc Biol. 2005;78:301–9.PubMedCrossRef
103.
go back to reference Kobayashi SD, Voylch JM, Whithney AR, DeLeo FR. Spontaneous neutrophil apoptosis and regulation of cell survival by GM-CSF. J Leukoc Biol. 2005;78:1408–18.PubMedCrossRef Kobayashi SD, Voylch JM, Whithney AR, DeLeo FR. Spontaneous neutrophil apoptosis and regulation of cell survival by GM-CSF. J Leukoc Biol. 2005;78:1408–18.PubMedCrossRef
104.
go back to reference Andonegui G, Trevani AS, Lopez DH, Raiden S, Giordano M, Geffner JR. Inhibition of human neutrophil apoptosis by platelets. J Immunol. 1997;158:3372–7.PubMed Andonegui G, Trevani AS, Lopez DH, Raiden S, Giordano M, Geffner JR. Inhibition of human neutrophil apoptosis by platelets. J Immunol. 1997;158:3372–7.PubMed
105.
106.
go back to reference Megens RT, Vijayan S, Lievens D, Döring Y, van Zandvoort M, Grommes J, Weber C, Soehnlein O. Presence of luminal neutrophil extracellular traps in atherosclerosis. Thromb Haemost. 2012;107(3):597–8. Megens RT, Vijayan S, Lievens D, Döring Y, van Zandvoort M, Grommes J, Weber C, Soehnlein O. Presence of luminal neutrophil extracellular traps in atherosclerosis. Thromb Haemost. 2012;107(3):597–8.
107.
go back to reference Zhao M, Song B, Pu J, et al. Electrical signals control wound healing through phosphatidylinositol-3-OH kinase-gamma and PTEN. Nature. 2006;442:457–60.PubMedCrossRef Zhao M, Song B, Pu J, et al. Electrical signals control wound healing through phosphatidylinositol-3-OH kinase-gamma and PTEN. Nature. 2006;442:457–60.PubMedCrossRef
108.
go back to reference Cross A, Barnes T, Bucknall RC, Edwards SW, Moots RJ. Neutrophil apoptosis in rheumatoid arthritis is regulated by local oxygen tensions within joints. J Leukoc Biol. 2006;80:521–6.PubMedCrossRef Cross A, Barnes T, Bucknall RC, Edwards SW, Moots RJ. Neutrophil apoptosis in rheumatoid arthritis is regulated by local oxygen tensions within joints. J Leukoc Biol. 2006;80:521–6.PubMedCrossRef
109.
go back to reference Bailey SM, Murnane JP. Telomeres, chromosome instability and cancer. Nucleic Acids Res. 2006;34:2408–17.PubMedCrossRef Bailey SM, Murnane JP. Telomeres, chromosome instability and cancer. Nucleic Acids Res. 2006;34:2408–17.PubMedCrossRef
110.
go back to reference Yang J, Chang E, Cherry AM, et al. Human endothelial cell life extension by telomerase expression. J Biol Chem. 1999;274:26141–8.PubMedCrossRef Yang J, Chang E, Cherry AM, et al. Human endothelial cell life extension by telomerase expression. J Biol Chem. 1999;274:26141–8.PubMedCrossRef
111.
go back to reference Hiyama K, Hirai Y, Kyoizumi S, et al. Activation of telomerase in human lymphocytes and haematopoietic cells. J Immunol. 1995;155:3711–5.PubMed Hiyama K, Hirai Y, Kyoizumi S, et al. Activation of telomerase in human lymphocytes and haematopoietic cells. J Immunol. 1995;155:3711–5.PubMed
112.
go back to reference Narducci ML, Grasselli A, Biasucci LM, et al. High telomerase activity in neutrophils from unstable coronary plaques. J Am Coll Cardiol. 2007;50:2369–74.PubMedCrossRef Narducci ML, Grasselli A, Biasucci LM, et al. High telomerase activity in neutrophils from unstable coronary plaques. J Am Coll Cardiol. 2007;50:2369–74.PubMedCrossRef
113.
go back to reference Biffl WL, Moore EE, Moore FA, Barnett CC Jr, Carl VS, Peterson VN. IL-6 delays neutrophil apoptosis. Arch Surg. 1996;131:24–30.PubMedCrossRef Biffl WL, Moore EE, Moore FA, Barnett CC Jr, Carl VS, Peterson VN. IL-6 delays neutrophil apoptosis. Arch Surg. 1996;131:24–30.PubMedCrossRef
114.
go back to reference Colotta F, Re F, Polentarutti N, Sozzani S, Mantovani A. Modulation of granulocyte survival and programmed cell death by cytokines and bacterial products. Blood. 1992;80:2012–20.PubMed Colotta F, Re F, Polentarutti N, Sozzani S, Mantovani A. Modulation of granulocyte survival and programmed cell death by cytokines and bacterial products. Blood. 1992;80:2012–20.PubMed
115.
go back to reference Robertson JD, Gale RE, Wynn RF, et al. Dynamic of telomere shortening in neutrophils and T lymphocytes during ageing and the relationship to skewed X chromosome inactivation patterns. Br J Haematol. 2000;109:272–9.PubMedCrossRef Robertson JD, Gale RE, Wynn RF, et al. Dynamic of telomere shortening in neutrophils and T lymphocytes during ageing and the relationship to skewed X chromosome inactivation patterns. Br J Haematol. 2000;109:272–9.PubMedCrossRef
116.
go back to reference Norrback KF, Enblad G, Erlanson M, Sundström C, Roos G. Telomerase activity in Hodgkin’s disease. Blood. 1998;92:566–73. Norrback KF, Enblad G, Erlanson M, Sundström C, Roos G. Telomerase activity in Hodgkin’s disease. Blood. 1998;92:566–73.
117.
go back to reference Kim NW, Piatyszek MA, Prowse KR, et al. Specific association of human telomerase activity with immortal cells and cancer. Science. 1994;266:2011–5.PubMedCrossRef Kim NW, Piatyszek MA, Prowse KR, et al. Specific association of human telomerase activity with immortal cells and cancer. Science. 1994;266:2011–5.PubMedCrossRef
119.
go back to reference Biasucci LM, Liuzzo G, Giubilato S, et al. Delayed neutrophil apoptosis in patients with unstable angina: relation to C-reactive protein and recurrence of instability. Eur Heart J. 2009;30:2220–5.PubMedCrossRef Biasucci LM, Liuzzo G, Giubilato S, et al. Delayed neutrophil apoptosis in patients with unstable angina: relation to C-reactive protein and recurrence of instability. Eur Heart J. 2009;30:2220–5.PubMedCrossRef
120.
go back to reference Springer TA. Traffic signals for lymphocyte recirculation and leukocyte emigration: a multistep paradigm. Cell. 1994;76:301–14.PubMedCrossRef Springer TA. Traffic signals for lymphocyte recirculation and leukocyte emigration: a multistep paradigm. Cell. 1994;76:301–14.PubMedCrossRef
121.
go back to reference Marcus AJ. Thrombosis and inflammation as multicellular processes: significance of cell–cell interactions. Semin Hematol. 1994;31:261–9.PubMed Marcus AJ. Thrombosis and inflammation as multicellular processes: significance of cell–cell interactions. Semin Hematol. 1994;31:261–9.PubMed
122.
go back to reference Larsen E, Celi A, Gilbert GE, et al. PADGEM protein: a receptor that mediates the interaction of activated platelets with neutrophils and monocytes. Cell. 1989;59:305–12.PubMedCrossRef Larsen E, Celi A, Gilbert GE, et al. PADGEM protein: a receptor that mediates the interaction of activated platelets with neutrophils and monocytes. Cell. 1989;59:305–12.PubMedCrossRef
123.
go back to reference Hamburger SA, McEver RP. GMP-140 mediates adhesion of stimulated platelets to neutrophils. Blood. 1990;75:550–4.PubMed Hamburger SA, McEver RP. GMP-140 mediates adhesion of stimulated platelets to neutrophils. Blood. 1990;75:550–4.PubMed
124.
go back to reference Diacovo TG, Roth SJ, Buccola JM, Bainton DF, Springer TA. Neutrophil rolling, arrest, and transmigration across activated, surface-adherent platelets via sequential action of P-selectin and the beta 2-integrin CD11b/CD18. Blood. 1996;88:146–57.PubMed Diacovo TG, Roth SJ, Buccola JM, Bainton DF, Springer TA. Neutrophil rolling, arrest, and transmigration across activated, surface-adherent platelets via sequential action of P-selectin and the beta 2-integrin CD11b/CD18. Blood. 1996;88:146–57.PubMed
125.
go back to reference Evangelista V, Manarini S, Rontondo S, et al. Platelet/polymorphonuclear leukocyte interaction in dynamic conditions: evidence of adhesion cascade and cross talk between P-selectin and the b2 integrin CD11b/CD18. Blood. 1996;88:4183–94.PubMed Evangelista V, Manarini S, Rontondo S, et al. Platelet/polymorphonuclear leukocyte interaction in dynamic conditions: evidence of adhesion cascade and cross talk between P-selectin and the b2 integrin CD11b/CD18. Blood. 1996;88:4183–94.PubMed
126.
go back to reference Wang Y, Sakuma M, Chen Z, et al. Leukocyte engagement of platelet glycoprotein Ibalpha via the integrin Mac-1 is critical for the biological response to vascular injury. Circulation. 2005;112:2993–3000. Wang Y, Sakuma M, Chen Z, et al. Leukocyte engagement of platelet glycoprotein Ibalpha via the integrin Mac-1 is critical for the biological response to vascular injury. Circulation. 2005;112:2993–3000.
127.
go back to reference Ott I, Neumann F, Gawaz M, Schmitt M, Schömig A. Increased neutrophil-platelet adhesion in patients with unstable angina. Circulation. 1996;94:1239–46.PubMedCrossRef Ott I, Neumann F, Gawaz M, Schmitt M, Schömig A. Increased neutrophil-platelet adhesion in patients with unstable angina. Circulation. 1996;94:1239–46.PubMedCrossRef
128.
go back to reference Weyrich AS, McIntyre TM, McEver RP, Prescott SM, Zimmerman GA. Monocyte tethering by P-selectin regulates monocyte chemotactic protein-1 and tumor necrosis factor-a secretion. J Clin Invest. 1995;95:2297–303.PubMedCrossRef Weyrich AS, McIntyre TM, McEver RP, Prescott SM, Zimmerman GA. Monocyte tethering by P-selectin regulates monocyte chemotactic protein-1 and tumor necrosis factor-a secretion. J Clin Invest. 1995;95:2297–303.PubMedCrossRef
129.
go back to reference Weyrich AS, Elstad MR, McEver RP, et al. Activated platelets signal chemokine synthesis by human monocytes. J Clin Invest. 1996;97:1525–34.PubMedCrossRef Weyrich AS, Elstad MR, McEver RP, et al. Activated platelets signal chemokine synthesis by human monocytes. J Clin Invest. 1996;97:1525–34.PubMedCrossRef
130.
go back to reference Fuchs TA, Brill A, Duerschmied D, et al. Extracellular DNA traps promote thrombosis. Proc Natl Acad Sci USA. 2010;107:15880–5.PubMedCrossRef Fuchs TA, Brill A, Duerschmied D, et al. Extracellular DNA traps promote thrombosis. Proc Natl Acad Sci USA. 2010;107:15880–5.PubMedCrossRef
131.
go back to reference Merhi Y, Provost P, Chauvet P, Théorêt JF, Phillips ML, Latour JG. Selectin blockade reduces neutrophil interaction with platelets at the site of deep arterial injury by angioplasty in pigs. Arterioscler Thromb Vasc Biol. 1999;19:372–7.PubMedCrossRef Merhi Y, Provost P, Chauvet P, Théorêt JF, Phillips ML, Latour JG. Selectin blockade reduces neutrophil interaction with platelets at the site of deep arterial injury by angioplasty in pigs. Arterioscler Thromb Vasc Biol. 1999;19:372–7.PubMedCrossRef
132.
go back to reference Von Brühl ML, Stark K, Steinhart A, et al. Monocytes, neutrophils, and platelets cooperate to initiate and propagate venous thrombosis in mice in vivo. J Exp Med. 2012;209(4):819–35.CrossRef Von Brühl ML, Stark K, Steinhart A, et al. Monocytes, neutrophils, and platelets cooperate to initiate and propagate venous thrombosis in mice in vivo. J Exp Med. 2012;209(4):819–35.CrossRef
133.
go back to reference Michelson AD, Barnard MR, Krueger LA, Valeri CR, Furman MI. Circulating monocyte-platelet aggregates are a more sensitive marker of in vivo platelet activation than platelet surface P-selectin: studies in baboons, human coronary intervention, and human acute myocardial infarction. Circulation. 2001;104(13):1533–7.PubMedCrossRef Michelson AD, Barnard MR, Krueger LA, Valeri CR, Furman MI. Circulating monocyte-platelet aggregates are a more sensitive marker of in vivo platelet activation than platelet surface P-selectin: studies in baboons, human coronary intervention, and human acute myocardial infarction. Circulation. 2001;104(13):1533–7.PubMedCrossRef
134.
go back to reference Garlichs CD, Eskafi S, Cicha I, et al. Delay of neutrophil apoptosis in acute coronary syndromes. J Leukoc Biol. 2004;75:828–35.PubMedCrossRef Garlichs CD, Eskafi S, Cicha I, et al. Delay of neutrophil apoptosis in acute coronary syndromes. J Leukoc Biol. 2004;75:828–35.PubMedCrossRef
135.
go back to reference Lefer AM, Campbell B, Scalia R, Lefer DJ. Synergism between platelets and neutrophils in provoking cardiac dysfunction after ischemia and reperfusion: role of selectins. Circulation. 1998;98:1322–8.PubMedCrossRef Lefer AM, Campbell B, Scalia R, Lefer DJ. Synergism between platelets and neutrophils in provoking cardiac dysfunction after ischemia and reperfusion: role of selectins. Circulation. 1998;98:1322–8.PubMedCrossRef
136.
go back to reference Maugeri N, Rovere-Querini P, Evangelista V, et al. An intense and short-lasting burst of neutrophil activation differentiates early acute myocardial infarction from systemic inflammatory syndromes. PLoS ONE. 2012;7(6):e39484.PubMedCrossRef Maugeri N, Rovere-Querini P, Evangelista V, et al. An intense and short-lasting burst of neutrophil activation differentiates early acute myocardial infarction from systemic inflammatory syndromes. PLoS ONE. 2012;7(6):e39484.PubMedCrossRef
137.
go back to reference Maugeri N, Rovere-Querini P, Evangelista V, et al. Neutrophils phagocytose activated platelets in vivo: a phosphatidylserine, P-selectin, and ß2 integrin-dependent cell clearance program. Blood. 2009;113:5254–65.PubMedCrossRef Maugeri N, Rovere-Querini P, Evangelista V, et al. Neutrophils phagocytose activated platelets in vivo: a phosphatidylserine, P-selectin, and ß2 integrin-dependent cell clearance program. Blood. 2009;113:5254–65.PubMedCrossRef
138.
go back to reference Maugeri N, Malato S, Femia EA, et al. Clearance of circulating activated platelets in polycythemia vera and essential thrombocythemia. Blood. 2011;118:3359–66.PubMedCrossRef Maugeri N, Malato S, Femia EA, et al. Clearance of circulating activated platelets in polycythemia vera and essential thrombocythemia. Blood. 2011;118:3359–66.PubMedCrossRef
Metadata
Title
Polymorphonuclear neutrophils and instability of the atherosclerotic plaque: a causative role?
Authors
Roberta Della Bona
Maria Teresa Cardillo
Milena Leo
Gina Biasillo
Massimo Gustapane
Francesco Trotta
Luigi M. Biasucci
Publication date
01-06-2013
Publisher
SP Birkhäuser Verlag Basel
Published in
Inflammation Research / Issue 6/2013
Print ISSN: 1023-3830
Electronic ISSN: 1420-908X
DOI
https://doi.org/10.1007/s00011-013-0617-0

Other articles of this Issue 6/2013

Inflammation Research 6/2013 Go to the issue