Skip to main content
Top
Published in: Clinical Pharmacokinetics 6/2019

Open Access 01-06-2019 | Tuberculosis | Original Research Article

Personalized Tuberculosis Treatment Through Model-Informed Dosing of Rifampicin

Authors: Stijn W. van Beek, Rob ter Heine, Ron J. Keizer, Cecile Magis-Escurra, Rob E. Aarnoutse, Elin M. Svensson

Published in: Clinical Pharmacokinetics | Issue 6/2019

Login to get access

Abstract

Background and objective

This study proposes a model-informed approach for therapeutic drug monitoring (TDM) of rifampicin to improve tuberculosis (TB) treatment.

Methods

Two datasets from pulmonary TB patients were used: a pharmacokinetic study (34 patients, 373 samples), and TDM data (96 patients, 391 samples) collected at Radboud University Medical Center, The Netherlands. Nine suitable population pharmacokinetic models of rifampicin were identified in the literature and evaluated on the datasets. A model developed by Svensson et al. was found to be the most suitable based on graphical goodness of fit, residual diagnostics, and predictive performance. Prediction of individual area under the concentration–time curve from time zero to 24 h (AUC24) and maximum concentration (Cmax) employing various sampling strategies was compared with a previously established linear regression TDM strategy, using sampling at 2, 4, and 6 h, in terms of bias and precision (mean error [ME] and root mean square error [RMSE]).

Results

A sampling strategy using 2- and 4-h blood collection was selected to be the most suitable. The bias and precision of the two strategies were comparable, except that the linear regression strategy was more biased in prediction of the AUC24 than the model-informed approach (ME of 9.9% and 1.5%, respectively). A comparison of resulting dose advice, using predictions on a simulated dataset, showed no significant difference in sensitivity or specificity between the two methods. The model was successfully implemented in the InsightRX precision dosing platform.

Conclusion

Blood sampling at 2 and 4 h, combined with model-based prediction, can be used instead of the currently used linear regression strategy, shortening the sampling by 2 h and one sampling point without performance loss while simultaneously offering flexibility in sampling times.
Appendix
Available only for authorised users
Literature
2.
go back to reference Alsultan A, Peloquin CA. Therapeutic drug monitoring in the treatment of tuberculosis: an update. Drugs. 2014;74(8):839–54.CrossRefPubMed Alsultan A, Peloquin CA. Therapeutic drug monitoring in the treatment of tuberculosis: an update. Drugs. 2014;74(8):839–54.CrossRefPubMed
3.
go back to reference Pasipanodya JG, McIlleron H, Burger A, Wash PA, Smith P, Gumbo T. Serum drug concentrations predictive of pulmonary tuberculosis outcomes. J Infect Dis. 2013;208(9):1464–73.CrossRefPubMedPubMedCentral Pasipanodya JG, McIlleron H, Burger A, Wash PA, Smith P, Gumbo T. Serum drug concentrations predictive of pulmonary tuberculosis outcomes. J Infect Dis. 2013;208(9):1464–73.CrossRefPubMedPubMedCentral
4.
go back to reference Griffin GE. Malabsorption, malnutrition and HIV disease. Bailliere’s Clin Gastroenterol. 1990;4(2):361–73.CrossRef Griffin GE. Malabsorption, malnutrition and HIV disease. Bailliere’s Clin Gastroenterol. 1990;4(2):361–73.CrossRef
5.
go back to reference Magis-Escurra C, van den Boogaard J, Ijdema D, Boeree M, Aarnoutse R. Therapeutic drug monitoring in the treatment of tuberculosis patients. Pulm Pharmacol Ther. 2012;25(1):83–6.CrossRefPubMed Magis-Escurra C, van den Boogaard J, Ijdema D, Boeree M, Aarnoutse R. Therapeutic drug monitoring in the treatment of tuberculosis patients. Pulm Pharmacol Ther. 2012;25(1):83–6.CrossRefPubMed
6.
go back to reference The Lancet Diabetes Endocrinology. Diabetes and tuberculosis: a wake-up call. Lancet Diabetes Endocrinol. 2014;2(9):677.CrossRefPubMed The Lancet Diabetes Endocrinology. Diabetes and tuberculosis: a wake-up call. Lancet Diabetes Endocrinol. 2014;2(9):677.CrossRefPubMed
7.
go back to reference Chang J-T, Dou H-Y, Yen C-L, Wu Y-H, Huang R-M, Lin H-J, et al. Effect of type 2 diabetes mellitus on the clinical severity and treatment outcome in patients with pulmonary tuberculosis: a potential role in the emergence of multidrug-resistance. J Formos Med Assoc. 2011;110(6):372–81.CrossRefPubMed Chang J-T, Dou H-Y, Yen C-L, Wu Y-H, Huang R-M, Lin H-J, et al. Effect of type 2 diabetes mellitus on the clinical severity and treatment outcome in patients with pulmonary tuberculosis: a potential role in the emergence of multidrug-resistance. J Formos Med Assoc. 2011;110(6):372–81.CrossRefPubMed
8.
go back to reference Jayaram R, Gaonkar S, Kaur P, Suresh BL, Mahesh BN, Jayashree R, et al. Pharmacokinetics–pharmacodynamics of rifampin in an aerosol infection model of tuberculosis. Antimicrob Agents Chemother. 2003;47(7):2118–24.CrossRefPubMedPubMedCentral Jayaram R, Gaonkar S, Kaur P, Suresh BL, Mahesh BN, Jayashree R, et al. Pharmacokinetics–pharmacodynamics of rifampin in an aerosol infection model of tuberculosis. Antimicrob Agents Chemother. 2003;47(7):2118–24.CrossRefPubMedPubMedCentral
9.
go back to reference Magis-Escurra C, Later-Nijland HM, Alffenaar JW, Broeders J, Burger DM, van Crevel R, et al. Population pharmacokinetics and limited sampling strategy for first-line tuberculosis drugs and moxifloxacin. Int J Antimicrob Agents. 2014;44(3):229–34.CrossRefPubMed Magis-Escurra C, Later-Nijland HM, Alffenaar JW, Broeders J, Burger DM, van Crevel R, et al. Population pharmacokinetics and limited sampling strategy for first-line tuberculosis drugs and moxifloxacin. Int J Antimicrob Agents. 2014;44(3):229–34.CrossRefPubMed
10.
go back to reference Sturkenboom MG, Mulder LW, de Jager A, van Altena R, Aarnoutse RE, de Lange WC, et al. Pharmacokinetic modeling and optimal sampling strategies for therapeutic drug monitoring of rifampin in patients with tuberculosis. Antimicrob Agents Chemother. 2015;59(8):4907–13.CrossRefPubMedCentral Sturkenboom MG, Mulder LW, de Jager A, van Altena R, Aarnoutse RE, de Lange WC, et al. Pharmacokinetic modeling and optimal sampling strategies for therapeutic drug monitoring of rifampin in patients with tuberculosis. Antimicrob Agents Chemother. 2015;59(8):4907–13.CrossRefPubMedCentral
11.
go back to reference Medellin-Garibay SE, Correa-Lopez T, Romero-Mendez C, Milan-Segovia RC, Romano-Moreno S. Limited sampling strategies to predict the area under the concentration-time curve for rifampicin. Ther Drug Monit. 2014;36(6):746–51.CrossRef Medellin-Garibay SE, Correa-Lopez T, Romero-Mendez C, Milan-Segovia RC, Romano-Moreno S. Limited sampling strategies to predict the area under the concentration-time curve for rifampicin. Ther Drug Monit. 2014;36(6):746–51.CrossRef
12.
go back to reference Boeree MJ, Diacon AH, Dawson R, Narunsky K, du Bois J, Venter A, et al. A dose-ranging trial to optimize the dose of rifampin in the treatment of tuberculosis. Am J Respir Criti Care Med. 2015;191(9):1058–65.CrossRef Boeree MJ, Diacon AH, Dawson R, Narunsky K, du Bois J, Venter A, et al. A dose-ranging trial to optimize the dose of rifampin in the treatment of tuberculosis. Am J Respir Criti Care Med. 2015;191(9):1058–65.CrossRef
13.
go back to reference Proost JH. Adaptive control of drug dosage regimens using maximum a posteriori probability Bayesian fitting. Int J Clin Pharmacol Ther. 1995;33(10):531–6. Proost JH. Adaptive control of drug dosage regimens using maximum a posteriori probability Bayesian fitting. Int J Clin Pharmacol Ther. 1995;33(10):531–6.
14.
go back to reference Alsultan A, An G, Peloquin CA. Limited sampling strategy and target attainment analysis for levofloxacin in patients with tuberculosis. Antimicrob Agents Chemother. 2015;59(7):3800–7.CrossRefPubMedCentral Alsultan A, An G, Peloquin CA. Limited sampling strategy and target attainment analysis for levofloxacin in patients with tuberculosis. Antimicrob Agents Chemother. 2015;59(7):3800–7.CrossRefPubMedCentral
17.
go back to reference Beal S, Sheiner LB, Boeckmann A, Bauer RJ. NONMEM user’s guides (1989–2009). Ellicott City: Icon Development Solutions; 2009. Beal S, Sheiner LB, Boeckmann A, Bauer RJ. NONMEM user’s guides (1989–2009). Ellicott City: Icon Development Solutions; 2009.
18.
go back to reference Keizer RJ, Karlsson MO, Hooker A. Modeling and simulation workbench for NONMEM: Tutorial on pirana, PsN, and Xpose. CPT Pharmacometr Syst Pharmacol. 2013;2(6):e50.CrossRef Keizer RJ, Karlsson MO, Hooker A. Modeling and simulation workbench for NONMEM: Tutorial on pirana, PsN, and Xpose. CPT Pharmacometr Syst Pharmacol. 2013;2(6):e50.CrossRef
20.
go back to reference Ruslami R, et al. Pharmacokinetics and tolerability of a higher rifampin dose versus the standard dose in pulmonary tuberculosis patients. Antimicrob Agents Chemother. 2007;51(7):2546–51.CrossRefPubMedPubMedCentral Ruslami R, et al. Pharmacokinetics and tolerability of a higher rifampin dose versus the standard dose in pulmonary tuberculosis patients. Antimicrob Agents Chemother. 2007;51(7):2546–51.CrossRefPubMedPubMedCentral
21.
go back to reference Beal SL. Ways to fit a PK model with some data below the quantification limit. J Pharmacokinet Pharmacodyn. 2001;28(5):481–504.CrossRefPubMed Beal SL. Ways to fit a PK model with some data below the quantification limit. J Pharmacokinet Pharmacodyn. 2001;28(5):481–504.CrossRefPubMed
22.
go back to reference Janmahasatian S, Duffull SB, Ash S, Ward LC, Byrne NM, Green B. Quantification of lean bodyweight. Clin Pharmacokinet. 2005;44(10):1051–65.CrossRefPubMed Janmahasatian S, Duffull SB, Ash S, Ward LC, Byrne NM, Green B. Quantification of lean bodyweight. Clin Pharmacokinet. 2005;44(10):1051–65.CrossRefPubMed
23.
go back to reference Zhao W, Kaguelidou F, Biran V, Zhang D, Allegaert K, Capparelli EV, et al. External evaluation of population pharmacokinetic models of vancomycin in neonates: the transferability of published models to different clinical settings. Br J Clin Pharmacol. 2013;75(4):1068–80.CrossRefPubMed Zhao W, Kaguelidou F, Biran V, Zhang D, Allegaert K, Capparelli EV, et al. External evaluation of population pharmacokinetic models of vancomycin in neonates: the transferability of published models to different clinical settings. Br J Clin Pharmacol. 2013;75(4):1068–80.CrossRefPubMed
24.
go back to reference Bergstrand M, Hooker AC, Wallin JE, Karlsson MO. Prediction-corrected visual predictive checks for diagnosing nonlinear mixed-effects models. AAPS J. 2011;13(2):143–51.CrossRefPubMedPubMedCentral Bergstrand M, Hooker AC, Wallin JE, Karlsson MO. Prediction-corrected visual predictive checks for diagnosing nonlinear mixed-effects models. AAPS J. 2011;13(2):143–51.CrossRefPubMedPubMedCentral
25.
go back to reference Nguyen TH, Mouksassi MS, Holford N, Al-Huniti N, Freedman I, Hooker AC, et al. Model evaluation of continuous data pharmacometric models: metrics and graphics. CPT Pharmacometr Syst Pharmacol. 2017;6(2):87–109.CrossRef Nguyen TH, Mouksassi MS, Holford N, Al-Huniti N, Freedman I, Hooker AC, et al. Model evaluation of continuous data pharmacometric models: metrics and graphics. CPT Pharmacometr Syst Pharmacol. 2017;6(2):87–109.CrossRef
26.
go back to reference Comets E, Brendel K, Mentré F. Computing normalised prediction distribution errors to evaluate nonlinear mixed-effect models: the npde add-on package for R. Comput Methods Progr Biomed. 2008;90(2):154–66.CrossRef Comets E, Brendel K, Mentré F. Computing normalised prediction distribution errors to evaluate nonlinear mixed-effect models: the npde add-on package for R. Comput Methods Progr Biomed. 2008;90(2):154–66.CrossRef
27.
go back to reference Wright SP. Adjusted P-values for simultaneous inference. Biometrics. 1992;48(4):1005–13.CrossRef Wright SP. Adjusted P-values for simultaneous inference. Biometrics. 1992;48(4):1005–13.CrossRef
28.
go back to reference Centers for Disease Control and Prevention, et al. National Health and Nutrition Examination Survey Data. Hyattsville: National Center for Health Statistics; 2017. Centers for Disease Control and Prevention, et al. National Health and Nutrition Examination Survey Data. Hyattsville: National Center for Health Statistics; 2017.
30.
go back to reference Peloquin CA, Jaresko GS, Yong CL, Keung AC, Bulpitt AE, Jelliffe RW. Population pharmacokinetic modeling of isoniazid, rifampin, and pyrazinamide. Antimicrob Agents Chemother. 1997;41(12):2670–9.CrossRefPubMedCentral Peloquin CA, Jaresko GS, Yong CL, Keung AC, Bulpitt AE, Jelliffe RW. Population pharmacokinetic modeling of isoniazid, rifampin, and pyrazinamide. Antimicrob Agents Chemother. 1997;41(12):2670–9.CrossRefPubMedCentral
31.
go back to reference Wilkins JJ, Savic RM, Karlsson MO, Langdon G, McIlleron H, Pillai G, et al. Population pharmacokinetics of rifampin in pulmonary tuberculosis patients, including a semimechanistic model to describe variable absorption. Antimicrob Agents Chemother. 2008;52(6):2138–48.CrossRefPubMedCentral Wilkins JJ, Savic RM, Karlsson MO, Langdon G, McIlleron H, Pillai G, et al. Population pharmacokinetics of rifampin in pulmonary tuberculosis patients, including a semimechanistic model to describe variable absorption. Antimicrob Agents Chemother. 2008;52(6):2138–48.CrossRefPubMedCentral
32.
go back to reference Goutelle S, Bourguignon L, Maire PH, Van Guilder M, Conte JE Jr, Jelliffe RW. Population modeling and Monte Carlo simulation study of the pharmacokinetics and antituberculosis pharmacodynamics of rifampin in lungs. Antimicrob Agents Chemother. 2009;53(7):2974–81.CrossRefPubMedCentral Goutelle S, Bourguignon L, Maire PH, Van Guilder M, Conte JE Jr, Jelliffe RW. Population modeling and Monte Carlo simulation study of the pharmacokinetics and antituberculosis pharmacodynamics of rifampin in lungs. Antimicrob Agents Chemother. 2009;53(7):2974–81.CrossRefPubMedCentral
33.
go back to reference Smythe W, Khandelwal A, Merle C, Rustomjee R, Gninafon M, Bocar Lo M, et al. A semimechanistic pharmacokinetic-enzyme turnover model for rifampin autoinduction in adult tuberculosis patients. Antimicrob Agents Chemother. 2012;56(4):2091–8.CrossRefPubMedCentral Smythe W, Khandelwal A, Merle C, Rustomjee R, Gninafon M, Bocar Lo M, et al. A semimechanistic pharmacokinetic-enzyme turnover model for rifampin autoinduction in adult tuberculosis patients. Antimicrob Agents Chemother. 2012;56(4):2091–8.CrossRefPubMedCentral
34.
go back to reference Milán Segovia RC, Dominguez Ramirez AM, Jung Cook H, Magana Aquino M, Vigna Perez M, Brundage RC, et al. Population pharmacokinetics of rifampicin in Mexican patients with tuberculosis. J Clin Pharm Ther. 2013;38(1):56–61.CrossRef Milán Segovia RC, Dominguez Ramirez AM, Jung Cook H, Magana Aquino M, Vigna Perez M, Brundage RC, et al. Population pharmacokinetics of rifampicin in Mexican patients with tuberculosis. J Clin Pharm Ther. 2013;38(1):56–61.CrossRef
35.
go back to reference Seng KY, Hee KH, Soon GH, Chew N, Khoo SH, Lee LS. Population pharmacokinetics of rifampicin and 25-deacetyl-rifampicin in healthy Asian adults. J Antimicrob Chemother. 2015;70(12):3298–306.CrossRef Seng KY, Hee KH, Soon GH, Chew N, Khoo SH, Lee LS. Population pharmacokinetics of rifampicin and 25-deacetyl-rifampicin in healthy Asian adults. J Antimicrob Chemother. 2015;70(12):3298–306.CrossRef
36.
go back to reference Jing Y, Zhu LQ, Yang JW, Huang SP, Wang Q, Zhang J. Population pharmacokinetics of rifampicin in chinese patients with pulmonary tuberculosis. J Clin Pharmacol. 2016;56(5):622–7.CrossRef Jing Y, Zhu LQ, Yang JW, Huang SP, Wang Q, Zhang J. Population pharmacokinetics of rifampicin in chinese patients with pulmonary tuberculosis. J Clin Pharmacol. 2016;56(5):622–7.CrossRef
37.
go back to reference Savic RM, Ruslami R, Hibma JE, Hesseling A, Ramachandran G, Ganiem AR, et al. Pediatric tuberculous meningitis: model-based approach to determining optimal doses of the anti-tuberculosis drugs rifampin and levofloxacin for children. Clin Pharmacol Ther. 2015;98(6):622–9.CrossRefPubMedCentral Savic RM, Ruslami R, Hibma JE, Hesseling A, Ramachandran G, Ganiem AR, et al. Pediatric tuberculous meningitis: model-based approach to determining optimal doses of the anti-tuberculosis drugs rifampin and levofloxacin for children. Clin Pharmacol Ther. 2015;98(6):622–9.CrossRefPubMedCentral
38.
go back to reference Schipani A, Pertinez H, Mlota R, Molyneux E, Lopez N, Dzinjalamala FK, et al. A simultaneous population pharmacokinetic analysis of rifampicin in Malawian adults and children. Br J Clin Pharmacol. 2016;81(4):679–87.CrossRefPubMedCentral Schipani A, Pertinez H, Mlota R, Molyneux E, Lopez N, Dzinjalamala FK, et al. A simultaneous population pharmacokinetic analysis of rifampicin in Malawian adults and children. Br J Clin Pharmacol. 2016;81(4):679–87.CrossRefPubMedCentral
39.
go back to reference Chirehwa MT, Rustomjee R, Mthiyane T, Onyebujoh P, Smith P, McIlleron H, et al. Model-based evaluation of higher doses of rifampin using a semimechanistic model incorporating autoinduction and saturation of hepatic extraction. Antimicrob Agents Chemother. 2016;60(1):487–94.CrossRef Chirehwa MT, Rustomjee R, Mthiyane T, Onyebujoh P, Smith P, McIlleron H, et al. Model-based evaluation of higher doses of rifampin using a semimechanistic model incorporating autoinduction and saturation of hepatic extraction. Antimicrob Agents Chemother. 2016;60(1):487–94.CrossRef
40.
go back to reference Svensson RJ, Aarnoutse RE, Diacon AH, Dawson R, Gillespie SH, Boeree MJ, et al. A population pharmacokinetic model incorporating saturable pharmacokinetics and auto-induction for high rifampicin doses. Clin Pharmacol Ther. 2017;103(4):674–83.CrossRefPubMedPubMedCentral Svensson RJ, Aarnoutse RE, Diacon AH, Dawson R, Gillespie SH, Boeree MJ, et al. A population pharmacokinetic model incorporating saturable pharmacokinetics and auto-induction for high rifampicin doses. Clin Pharmacol Ther. 2017;103(4):674–83.CrossRefPubMedPubMedCentral
41.
go back to reference Conte JE, Golden JA, Kipps JE, Lin ET, Zurlinden E. Effect of sex and AIDS status on the plasma and intrapulmonary pharmacokinetics of rifampicin. Clin Pharmacokinet. 2004;43(6):395–404.CrossRefPubMed Conte JE, Golden JA, Kipps JE, Lin ET, Zurlinden E. Effect of sex and AIDS status on the plasma and intrapulmonary pharmacokinetics of rifampicin. Clin Pharmacokinet. 2004;43(6):395–404.CrossRefPubMed
42.
go back to reference McIlleron H, Rustomjee R, Vahedi M, Mthiyane T, Denti P, Connolly C, et al. Reduced antituberculosis drug concentrations in HIV-infected patients who are men or have low weight: implications for international dosing guidelines. Antimicrob Agents Chemother. 2012;56(6):3232–8.CrossRefPubMedPubMedCentral McIlleron H, Rustomjee R, Vahedi M, Mthiyane T, Denti P, Connolly C, et al. Reduced antituberculosis drug concentrations in HIV-infected patients who are men or have low weight: implications for international dosing guidelines. Antimicrob Agents Chemother. 2012;56(6):3232–8.CrossRefPubMedPubMedCentral
43.
go back to reference Svensson EM, Svensson RJ, te Brake LHM, Boeree MJ, Heinrich N, Konsten S, et al. The potential for treatment shortening with higher rifampicin doses: relating drug exposure to treatment response in patients with pulmonary tuberculosis. Clin Infect Dis. 2018;67(1):34–41.CrossRefPubMedPubMedCentral Svensson EM, Svensson RJ, te Brake LHM, Boeree MJ, Heinrich N, Konsten S, et al. The potential for treatment shortening with higher rifampicin doses: relating drug exposure to treatment response in patients with pulmonary tuberculosis. Clin Infect Dis. 2018;67(1):34–41.CrossRefPubMedPubMedCentral
44.
go back to reference Svensson RJ, Svensson EM, Aarnoutse RE, Diacon AH, Dawson R, Gillespie SH, et al. Greater early bactericidal activity at higher rifampicin doses revealed by modeling and clinical trial simulations. J Infect Dis. 2018;218(6):991–9.CrossRefPubMed Svensson RJ, Svensson EM, Aarnoutse RE, Diacon AH, Dawson R, Gillespie SH, et al. Greater early bactericidal activity at higher rifampicin doses revealed by modeling and clinical trial simulations. J Infect Dis. 2018;218(6):991–9.CrossRefPubMed
45.
go back to reference Boeree MJ, Heinrich N, Aarnoutse R, Diacon AH, Dawson R, Rehal S, et al. High-dose rifampicin, moxifloxacin, and SQ109 for treating tuberculosis: a multi-arm, multi-stage randomised controlled trial. Lancet Infect Dis. 2017;17(1):39–49.CrossRefPubMedPubMedCentral Boeree MJ, Heinrich N, Aarnoutse R, Diacon AH, Dawson R, Rehal S, et al. High-dose rifampicin, moxifloxacin, and SQ109 for treating tuberculosis: a multi-arm, multi-stage randomised controlled trial. Lancet Infect Dis. 2017;17(1):39–49.CrossRefPubMedPubMedCentral
46.
go back to reference Donagher J, Martin JH, Barras MA. Individualised medicine: why we need Bayesian dosing. Intern Med J. 2017;47(5):593–600.CrossRefPubMed Donagher J, Martin JH, Barras MA. Individualised medicine: why we need Bayesian dosing. Intern Med J. 2017;47(5):593–600.CrossRefPubMed
47.
go back to reference Sarem S, Li J, Barriere O, Litalien C, Theoret Y, Lapeyraque AL, et al. Bayesian approach for the estimation of cyclosporine area under the curve using limited sampling strategies in pediatric hematopoietic stem cell transplantation. Theor Biol Med Model. 2014;11:39.CrossRefPubMedPubMedCentral Sarem S, Li J, Barriere O, Litalien C, Theoret Y, Lapeyraque AL, et al. Bayesian approach for the estimation of cyclosporine area under the curve using limited sampling strategies in pediatric hematopoietic stem cell transplantation. Theor Biol Med Model. 2014;11:39.CrossRefPubMedPubMedCentral
Metadata
Title
Personalized Tuberculosis Treatment Through Model-Informed Dosing of Rifampicin
Authors
Stijn W. van Beek
Rob ter Heine
Ron J. Keizer
Cecile Magis-Escurra
Rob E. Aarnoutse
Elin M. Svensson
Publication date
01-06-2019
Publisher
Springer International Publishing
Published in
Clinical Pharmacokinetics / Issue 6/2019
Print ISSN: 0312-5963
Electronic ISSN: 1179-1926
DOI
https://doi.org/10.1007/s40262-018-00732-2

Other articles of this Issue 6/2019

Clinical Pharmacokinetics 6/2019 Go to the issue