Skip to main content
Top
Published in: Neurotherapeutics 1/2018

01-01-2018 | Current Perspectives

S-Adenosyl Methionine and Transmethylation Pathways in Neuropsychiatric Diseases Throughout Life

Authors: Jin Gao, Catherine M. Cahill, Xudong Huang, Joshua L. Roffman, Stefania Lamon-Fava, Maurizio Fava, David Mischoulon, Jack T. Rogers

Published in: Neurotherapeutics | Issue 1/2018

Login to get access

Abstract

S-Adenosyl methionine (SAMe), as a major methyl donor, exerts its influence on central nervous system function through cellular transmethylation pathways, including the methylation of DNA, histones, protein phosphatase 2A, and several catecholamine moieties. Based on available evidence, this review focuses on the lifelong range of severe neuropsychiatric and neurodegenerative diseases and their associated neuropathologies, which have been linked to the deficiency/load of SAMe production or/and the disturbance in transmethylation pathways. Also included in this review are the present-day applications of SAMe in the treatment in these diseases in each age group.
Appendix
Available only for authorised users
Literature
2.
go back to reference Mato JM, Alvarez L, Ortiz P, et al. S-Adenosylmethionine synthesis: molecular mechanisms and clinical implications. Pharmacol Ther. 1997;73(3):265-280.CrossRefPubMed Mato JM, Alvarez L, Ortiz P, et al. S-Adenosylmethionine synthesis: molecular mechanisms and clinical implications. Pharmacol Ther. 1997;73(3):265-280.CrossRefPubMed
3.
go back to reference Giulidori P, Galli-kienle M, Catto E, et al. Transmethylation, transsulfuration, and aminopropylation reactions of S-adenosyl-l-methionine in vivo. J Biol Chem. 1984;259(7):4205-4211.PubMed Giulidori P, Galli-kienle M, Catto E, et al. Transmethylation, transsulfuration, and aminopropylation reactions of S-adenosyl-l-methionine in vivo. J Biol Chem. 1984;259(7):4205-4211.PubMed
5.
go back to reference Teh AL, Pan H, Chen L, et al. The effect of genotype and in utero environment on interindividual variation in neonate DNA methylomes. Genome Res. 2014;24(7):1064-1074.PubMedCentralCrossRefPubMed Teh AL, Pan H, Chen L, et al. The effect of genotype and in utero environment on interindividual variation in neonate DNA methylomes. Genome Res. 2014;24(7):1064-1074.PubMedCentralCrossRefPubMed
6.
go back to reference Fuso A, Seminara L, Cavallaro RA, et al. S-Adenosylmethionine/homocysteine cycle alterations modify DNA methylation status with consequent deregulation of PS1 and bace and beta-amyloid production. Mol Cell Neurosci. 2005;28(1):195-204.CrossRefPubMed Fuso A, Seminara L, Cavallaro RA, et al. S-Adenosylmethionine/homocysteine cycle alterations modify DNA methylation status with consequent deregulation of PS1 and bace and beta-amyloid production. Mol Cell Neurosci. 2005;28(1):195-204.CrossRefPubMed
7.
go back to reference Panza F, Frisardi V, Capurso C, et al. Polyunsaturated fatty acid and S-adenosylmethionine supplementation in predementia syndromes and Alzheimer's disease: a review. Scientificworldjournal. 2009;9:373-389.CrossRefPubMed Panza F, Frisardi V, Capurso C, et al. Polyunsaturated fatty acid and S-adenosylmethionine supplementation in predementia syndromes and Alzheimer's disease: a review. Scientificworldjournal. 2009;9:373-389.CrossRefPubMed
8.
go back to reference De Berardis D, Orsolini L, Serroni N, et al. A comprehensive review on the efficacy of S-adenosyl-L-methionine in major depressive disorder. Cns Neurol Disord Drug Targets. 2016;15(1):35-44.CrossRefPubMed De Berardis D, Orsolini L, Serroni N, et al. A comprehensive review on the efficacy of S-adenosyl-L-methionine in major depressive disorder. Cns Neurol Disord Drug Targets. 2016;15(1):35-44.CrossRefPubMed
9.
go back to reference Bottiglieri T. Folate, vitamin B(1)(2), and S-adenosylmethionine. Psychiatr Clin North Am. 2013;36(1):1-13.CrossRefPubMed Bottiglieri T. Folate, vitamin B(1)(2), and S-adenosylmethionine. Psychiatr Clin North Am. 2013;36(1):1-13.CrossRefPubMed
10.
go back to reference Mentch SJ, Locasale JW. One-carbon metabolism and epigenetics: understanding the specificity. Ann N Y Acad Sci. 2016;1363:91-98.CrossRefPubMed Mentch SJ, Locasale JW. One-carbon metabolism and epigenetics: understanding the specificity. Ann N Y Acad Sci. 2016;1363:91-98.CrossRefPubMed
11.
go back to reference Mato JM, Corrales FJ, Lu SC, et al. S-adenosylmethionine: a control switch that regulates liver function. FASEB J. 2002;16(1):15-26.CrossRefPubMed Mato JM, Corrales FJ, Lu SC, et al. S-adenosylmethionine: a control switch that regulates liver function. FASEB J. 2002;16(1):15-26.CrossRefPubMed
12.
go back to reference Jarrett JT, Huang S, Matthews RG. Methionine synthase exists in two distinct conformations that differ in reactivity toward methyltetrahydrofolate, adenosylmethionine, and flavodoxin. Biochemistry. 1998;37(16):5372-5382.CrossRefPubMed Jarrett JT, Huang S, Matthews RG. Methionine synthase exists in two distinct conformations that differ in reactivity toward methyltetrahydrofolate, adenosylmethionine, and flavodoxin. Biochemistry. 1998;37(16):5372-5382.CrossRefPubMed
13.
go back to reference Gueant JL, Caillerez-Fofou M, Battaglia-Hsu S, et al. Molecular and cellular effects of vitamin B12 in brain, myocardium and liver through its role as co-factor of methionine synthase. Biochimie. 2013;95(5):1033-1040.CrossRefPubMed Gueant JL, Caillerez-Fofou M, Battaglia-Hsu S, et al. Molecular and cellular effects of vitamin B12 in brain, myocardium and liver through its role as co-factor of methionine synthase. Biochimie. 2013;95(5):1033-1040.CrossRefPubMed
14.
go back to reference Gherasim C, Lofgren M, Banerjee R. Navigating the B(12) road: assimilation, delivery, and disorders of cobalamin. J Biol Chem. 2013;288(19):13186-13193.PubMedCentralCrossRefPubMed Gherasim C, Lofgren M, Banerjee R. Navigating the B(12) road: assimilation, delivery, and disorders of cobalamin. J Biol Chem. 2013;288(19):13186-13193.PubMedCentralCrossRefPubMed
15.
16.
go back to reference Sharp L, Little J. Polymorphisms in genes involved in folate metabolism and colorectal neoplasia: a huge review. Am J Epidemiol. 2004;159(5):423-443.CrossRefPubMed Sharp L, Little J. Polymorphisms in genes involved in folate metabolism and colorectal neoplasia: a huge review. Am J Epidemiol. 2004;159(5):423-443.CrossRefPubMed
17.
go back to reference Nazki FH, Sameer AS, Ganaie BA. Folate: metabolism, genes, polymorphisms and the associated diseases. Gene. 2014;533(1):11-20.CrossRefPubMed Nazki FH, Sameer AS, Ganaie BA. Folate: metabolism, genes, polymorphisms and the associated diseases. Gene. 2014;533(1):11-20.CrossRefPubMed
18.
go back to reference Kim JM, Stewart R, Kim SW, et al. Predictive value of folate, vitamin B12 and homocysteine levels in late-life depression. Br J Psychiatry. 2008;192(4):268-274.CrossRefPubMed Kim JM, Stewart R, Kim SW, et al. Predictive value of folate, vitamin B12 and homocysteine levels in late-life depression. Br J Psychiatry. 2008;192(4):268-274.CrossRefPubMed
19.
go back to reference Fava M, Borus JS, Alpert JE, et al. Folate, vitamin B12, and homocysteine in major depressive disorder. Am J Psychiatry. 1997;154(3):426-428.CrossRefPubMed Fava M, Borus JS, Alpert JE, et al. Folate, vitamin B12, and homocysteine in major depressive disorder. Am J Psychiatry. 1997;154(3):426-428.CrossRefPubMed
20.
go back to reference Papakostas GI, Petersen T, Mischoulon D, et al. Serum folate, vitamin B12, and homocysteine in major depressive disorder, pART 1: predictors of clinical response in fluoxetine-resistant depression. J Clin Psychiatry. 2004;65(8):1090-1095.CrossRefPubMed Papakostas GI, Petersen T, Mischoulon D, et al. Serum folate, vitamin B12, and homocysteine in major depressive disorder, pART 1: predictors of clinical response in fluoxetine-resistant depression. J Clin Psychiatry. 2004;65(8):1090-1095.CrossRefPubMed
21.
go back to reference Aisen PS, Schneider LS, Sano M, et al. High-dose B vitamin supplementation and cognitive decline in Alzheimer disease: a randomized controlled trial. JAMA. 2008;300(15):1774-1783.PubMedCentralCrossRefPubMed Aisen PS, Schneider LS, Sano M, et al. High-dose B vitamin supplementation and cognitive decline in Alzheimer disease: a randomized controlled trial. JAMA. 2008;300(15):1774-1783.PubMedCentralCrossRefPubMed
23.
go back to reference Ankar A, Bhimji SS. Vitamin, B12 (cobalamin), deficiency. Treasure Island (FL): StatPearls Publishing; 2017. Ankar A, Bhimji SS. Vitamin, B12 (cobalamin), deficiency. Treasure Island (FL): StatPearls Publishing; 2017.
24.
25.
go back to reference Yi P, Melnyk S, Pogribna M, et al. Increase in plasma homocysteine associated with parallel increases in plasma S-adenosylhomocysteine and lymphocyte DNA hypomethylation. J Biol Chem. 2000;275(38):29318-2923.CrossRefPubMed Yi P, Melnyk S, Pogribna M, et al. Increase in plasma homocysteine associated with parallel increases in plasma S-adenosylhomocysteine and lymphocyte DNA hypomethylation. J Biol Chem. 2000;275(38):29318-2923.CrossRefPubMed
26.
go back to reference Fernandez-Roig S, Lai SC, Murphy MM, et al. Vitamin B12 deficiency in the brain leads to dna hypomethylation in the TCBLR/CD320 knockout mouse. Nutr Metab (Lond). 2012;9:41. Fernandez-Roig S, Lai SC, Murphy MM, et al. Vitamin B12 deficiency in the brain leads to dna hypomethylation in the TCBLR/CD320 knockout mouse. Nutr Metab (Lond). 2012;9:41.
27.
go back to reference Tanaka H. [Old or new medicine? Vitamin B12 and peripheral nerve neuropathy]. Brain Nerve. 2013;65(9):1077-1082.PubMed Tanaka H. [Old or new medicine? Vitamin B12 and peripheral nerve neuropathy]. Brain Nerve. 2013;65(9):1077-1082.PubMed
28.
29.
go back to reference Loenen WA. S-Adenosylmethionine: jack of all trades and master of everything? Biochem Soc Trans. 2006;34(PT 2):330-333.CrossRefPubMed Loenen WA. S-Adenosylmethionine: jack of all trades and master of everything? Biochem Soc Trans. 2006;34(PT 2):330-333.CrossRefPubMed
30.
go back to reference Martinez-Lopez N, Varela-Rey M, Ariz U, et al. S-adenosylmethionine and proliferation: new pathways, new targets. Biochem Soc Trans. 2008;36(PT 5):848-852.CrossRefPubMed Martinez-Lopez N, Varela-Rey M, Ariz U, et al. S-adenosylmethionine and proliferation: new pathways, new targets. Biochem Soc Trans. 2008;36(PT 5):848-852.CrossRefPubMed
31.
go back to reference Jaenisch R, Bird A. Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet. 2003;33(Suppl.):245-254.CrossRefPubMed Jaenisch R, Bird A. Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet. 2003;33(Suppl.):245-254.CrossRefPubMed
32.
go back to reference Reik W, Dean W, Walter J. Epigenetic reprogramming in mammalian development. Science. 2001;293(5532):1089-1093.CrossRefPubMed Reik W, Dean W, Walter J. Epigenetic reprogramming in mammalian development. Science. 2001;293(5532):1089-1093.CrossRefPubMed
33.
go back to reference Xie W, Barr CL, Kim A, ET AL. Base-resolution analyses of sequence and parent-of-origin dependent DNA methylation in the mouse genome. Cell. 2012;148(4):816-831.PubMedCentralCrossRefPubMed Xie W, Barr CL, Kim A, ET AL. Base-resolution analyses of sequence and parent-of-origin dependent DNA methylation in the mouse genome. Cell. 2012;148(4):816-831.PubMedCentralCrossRefPubMed
34.
go back to reference Fernando HJ, Mammarella MC, Grandoni G, et al. Forecasting PM10 in metropolitan areas: efficacy of neural networks. Environ Pollut. 2012;163:62-67.CrossRefPubMed Fernando HJ, Mammarella MC, Grandoni G, et al. Forecasting PM10 in metropolitan areas: efficacy of neural networks. Environ Pollut. 2012;163:62-67.CrossRefPubMed
35.
36.
37.
38.
go back to reference Guo JU, Su Y, Shin JH, et al. Distribution, recognition and regulation of non-CPG methylation in the adult mammalian brain. Nat Neurosci. 2014;17(2):215-222.CrossRefPubMed Guo JU, Su Y, Shin JH, et al. Distribution, recognition and regulation of non-CPG methylation in the adult mammalian brain. Nat Neurosci. 2014;17(2):215-222.CrossRefPubMed
39.
go back to reference Tahiliani M, Koh KP, Shen Y, et al. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science. 2009;324(5929):930-935.PubMedCentralCrossRefPubMed Tahiliani M, Koh KP, Shen Y, et al. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science. 2009;324(5929):930-935.PubMedCentralCrossRefPubMed
40.
41.
go back to reference Song CX, Szulwach KE, Fu Y, et al. Selective chemical labeling reveals the genome-wide distribution of 5-hydroxymethylcytosine. Nat Biotechnol. 2011;29(1):68-72.CrossRefPubMed Song CX, Szulwach KE, Fu Y, et al. Selective chemical labeling reveals the genome-wide distribution of 5-hydroxymethylcytosine. Nat Biotechnol. 2011;29(1):68-72.CrossRefPubMed
42.
go back to reference Khare T, Pai S, Koncevicius K, et al. 5-HMC in the brain is abundant in synaptic genes and shows differences at the exon-intron boundary. Nat Struct Mol Biol. 2012;19(10):1037-1043.PubMedCentralCrossRefPubMed Khare T, Pai S, Koncevicius K, et al. 5-HMC in the brain is abundant in synaptic genes and shows differences at the exon-intron boundary. Nat Struct Mol Biol. 2012;19(10):1037-1043.PubMedCentralCrossRefPubMed
43.
go back to reference Guo JU, Su Y, Zhong C, et al. Hydroxylation of 5-methylcytosine by TET1 promotes active DNA demethylation in the adult brain. Cell. 2011;145(3):423-434.PubMedCentralCrossRefPubMed Guo JU, Su Y, Zhong C, et al. Hydroxylation of 5-methylcytosine by TET1 promotes active DNA demethylation in the adult brain. Cell. 2011;145(3):423-434.PubMedCentralCrossRefPubMed
44.
go back to reference Okano M, Bell DW, Haber DA, et al. DNA methyltransferases DNMT3A and DNMT3B are essential for de novo methylation and mammalian development. Cell. 1999;99(3):247-257.CrossRefPubMed Okano M, Bell DW, Haber DA, et al. DNA methyltransferases DNMT3A and DNMT3B are essential for de novo methylation and mammalian development. Cell. 1999;99(3):247-257.CrossRefPubMed
45.
go back to reference Rhee I, Jair KW, Yen RW, et al. CPG methylation is maintained in human cancer cells lacking DNMT1. Nature. 2000;404(6781):1003-1007.CrossRefPubMed Rhee I, Jair KW, Yen RW, et al. CPG methylation is maintained in human cancer cells lacking DNMT1. Nature. 2000;404(6781):1003-1007.CrossRefPubMed
47.
go back to reference Suetake I, Miyazaki J, Murakami C, et al. Distinct enzymatic properties of recombinant mouse DNA methyltransferases DNMT3A and DNMT3B. J Biochem. 2003;133(6):737-744.CrossRefPubMed Suetake I, Miyazaki J, Murakami C, et al. Distinct enzymatic properties of recombinant mouse DNA methyltransferases DNMT3A and DNMT3B. J Biochem. 2003;133(6):737-744.CrossRefPubMed
48.
go back to reference Gros C, CHauvigne L, Poulet A, et al. Development of a universal radioactive DNA methyltransferase inhibition test for high-throughput screening and mechanistic studies. Nucleic Acids Res. 2013;41(19):E185.PubMedCentralCrossRefPubMed Gros C, CHauvigne L, Poulet A, et al. Development of a universal radioactive DNA methyltransferase inhibition test for high-throughput screening and mechanistic studies. Nucleic Acids Res. 2013;41(19):E185.PubMedCentralCrossRefPubMed
49.
go back to reference Feng J, Chang H, Li E, et al. Dynamic expression of de novo DNA methyltransferases DNMT3A and DNMT3B in the central nervous system. J Neurosci Res. 2005;79(6):734-746.CrossRefPubMed Feng J, Chang H, Li E, et al. Dynamic expression of de novo DNA methyltransferases DNMT3A and DNMT3B in the central nervous system. J Neurosci Res. 2005;79(6):734-746.CrossRefPubMed
50.
go back to reference Watanabe D, Uchiyama K, Hanaoka K. Transition of mouse de novo methyltransferases expression from DNMT3B to DNMT3A during neural progenitor cell development. Neuroscience. 2006;142(3):727-737.CrossRefPubMed Watanabe D, Uchiyama K, Hanaoka K. Transition of mouse de novo methyltransferases expression from DNMT3B to DNMT3A during neural progenitor cell development. Neuroscience. 2006;142(3):727-737.CrossRefPubMed
51.
go back to reference Ito S, D'Alessio AC, Taranova OV, et al. Role of TET proteins in 5MC to 5HMC conversion, ES-celL self-renewal and inner cell mass specification. Nature. 2010;466(7310):1129-1133.PubMedCentralCrossRefPubMed Ito S, D'Alessio AC, Taranova OV, et al. Role of TET proteins in 5MC to 5HMC conversion, ES-celL self-renewal and inner cell mass specification. Nature. 2010;466(7310):1129-1133.PubMedCentralCrossRefPubMed
53.
go back to reference Li X, Wei W, Zhao QY, et al. Neocortical TET3-mediated accumulation of 5-hydroxymethylcytosine promotes rapid behavioral adaptation. Proc Natl Acad Sci U S A. 2014;111(19):7120-7125.PubMedCentralCrossRefPubMed Li X, Wei W, Zhao QY, et al. Neocortical TET3-mediated accumulation of 5-hydroxymethylcytosine promotes rapid behavioral adaptation. Proc Natl Acad Sci U S A. 2014;111(19):7120-7125.PubMedCentralCrossRefPubMed
54.
go back to reference Yu H, Su Y, Shin J, et al. TET3 regulates synaptic transmission and homeostatic plasticity via DNA oxidation and repair. Nat Neurosci. 2015;18(6):836-843.PubMedCentralCrossRefPubMed Yu H, Su Y, Shin J, et al. TET3 regulates synaptic transmission and homeostatic plasticity via DNA oxidation and repair. Nat Neurosci. 2015;18(6):836-843.PubMedCentralCrossRefPubMed
55.
56.
go back to reference Skene PJ, Illingworth RS, Webb S, et al. Neuronal MECP2 is expressed at near histone-octamer levels and globally alters the chromatin state. Mol Cell. 2010;37(4):457-468.PubMedCentralCrossRefPubMed Skene PJ, Illingworth RS, Webb S, et al. Neuronal MECP2 is expressed at near histone-octamer levels and globally alters the chromatin state. Mol Cell. 2010;37(4):457-468.PubMedCentralCrossRefPubMed
57.
go back to reference Shahbazian MD, Antalffy B, Armstrong DL, et al. Insight into Rett syndrome: MECP2 levels display tissue- and cell-specific differences and correlate with neuronal maturation. Hum Mol Genet. 2002;11(2):115-124.CrossRefPubMed Shahbazian MD, Antalffy B, Armstrong DL, et al. Insight into Rett syndrome: MECP2 levels display tissue- and cell-specific differences and correlate with neuronal maturation. Hum Mol Genet. 2002;11(2):115-124.CrossRefPubMed
58.
go back to reference Nan X, Campoy FJ, Bird A. MECP2 is a transcriptional repressor with abundant binding sites in genomic chromatin. Cell. 1997;88(4):471-481.CrossRefPubMed Nan X, Campoy FJ, Bird A. MECP2 is a transcriptional repressor with abundant binding sites in genomic chromatin. Cell. 1997;88(4):471-481.CrossRefPubMed
59.
go back to reference Lyst MJ, Ekiert R, Ebert DH, et al. Rett syndrome mutations abolish the interaction of MECP2 with the NCOR/SMRT co-repressor. Nat Neurosci. 2013;16(7):898-902.CrossRefPubMed Lyst MJ, Ekiert R, Ebert DH, et al. Rett syndrome mutations abolish the interaction of MECP2 with the NCOR/SMRT co-repressor. Nat Neurosci. 2013;16(7):898-902.CrossRefPubMed
60.
go back to reference Kinde B, Gabel HW, Gilbert CS, et al. Reading the unique DNA methylation landscape of the brain: non-CpG methylation, hydroxymethylation, and MECP2. Proc Natl Acad SCI U S A. 2015;112(22):6800-6806.PubMedCentralCrossRefPubMed Kinde B, Gabel HW, Gilbert CS, et al. Reading the unique DNA methylation landscape of the brain: non-CpG methylation, hydroxymethylation, and MECP2. Proc Natl Acad SCI U S A. 2015;112(22):6800-6806.PubMedCentralCrossRefPubMed
61.
62.
go back to reference Chen L, Chen K, Lavery LA, et al. MECP2 binds to non-CG methylated DNA as neurons mature, influencing transcription and the timing of onset for Rett Syndrome. Proc Natl Acad Sci U S A. 2015;112(17):5509-5514.PubMedCentralCrossRefPubMed Chen L, Chen K, Lavery LA, et al. MECP2 binds to non-CG methylated DNA as neurons mature, influencing transcription and the timing of onset for Rett Syndrome. Proc Natl Acad Sci U S A. 2015;112(17):5509-5514.PubMedCentralCrossRefPubMed
63.
go back to reference Moore LD, Le T, Fan G. DNA methylation and its basic function. Neuropsychopharmacology. 2013;38(1):23-38.CrossRefPubMed Moore LD, Le T, Fan G. DNA methylation and its basic function. Neuropsychopharmacology. 2013;38(1):23-38.CrossRefPubMed
64.
go back to reference Fan G, Martinowich K, Chin MH, et al. DNA methylation controls the timing of astrogliogenesis through regulation of Jak-STAT signaling. Development. 2005;132(15):3345-3356.CrossRefPubMed Fan G, Martinowich K, Chin MH, et al. DNA methylation controls the timing of astrogliogenesis through regulation of Jak-STAT signaling. Development. 2005;132(15):3345-3356.CrossRefPubMed
66.
67.
go back to reference Van Der Wijst MG, Venkiteswaran M, Chen H, et al. Local chromatin microenvironment determines DNMT activity: from DNA methyltransferase to DNA demethylase or DNA dehydroxymethylase. Epigenetics. 2015;10(8):671-676.PubMedCentralCrossRefPubMed Van Der Wijst MG, Venkiteswaran M, Chen H, et al. Local chromatin microenvironment determines DNMT activity: from DNA methyltransferase to DNA demethylase or DNA dehydroxymethylase. Epigenetics. 2015;10(8):671-676.PubMedCentralCrossRefPubMed
68.
go back to reference Varela-Rey M, Iruarrizaga-Lejarreta M, Lozano JJ, et al. S-adenosylmethionine levels regulate the Schwann cell DNA methylome. Neuron. 2014;81(5):1024-1039.PubMedCentralCrossRefPubMed Varela-Rey M, Iruarrizaga-Lejarreta M, Lozano JJ, et al. S-adenosylmethionine levels regulate the Schwann cell DNA methylome. Neuron. 2014;81(5):1024-1039.PubMedCentralCrossRefPubMed
69.
70.
go back to reference Mcgowan PO, Sasaki A, D'Alessio AC, et al. Epigenetic regulation of the glucocorticoid receptor in human brain associates with childhood abuse. Nat Neurosci. 2009;12(3):342-348.PubMedCentralCrossRefPubMed Mcgowan PO, Sasaki A, D'Alessio AC, et al. Epigenetic regulation of the glucocorticoid receptor in human brain associates with childhood abuse. Nat Neurosci. 2009;12(3):342-348.PubMedCentralCrossRefPubMed
71.
go back to reference Saunderson EA, Spiers H, Mifsud KR, et al. Stress-induced gene expression and behavior are controlled by DNA methylation and methyl donor availability in the dentate gyrus. Proc Natl Acad Sci U S A. 2016;113(17):4830-4835.PubMedCentralCrossRefPubMed Saunderson EA, Spiers H, Mifsud KR, et al. Stress-induced gene expression and behavior are controlled by DNA methylation and methyl donor availability in the dentate gyrus. Proc Natl Acad Sci U S A. 2016;113(17):4830-4835.PubMedCentralCrossRefPubMed
72.
go back to reference Sutter BM, Wu X, Laxman S, et al. Methionine inhibits autophagy and promotes growth by inducing the SAM-responsive methylation of PP2A. Cell. 2013;154(2):403-415.PubMedCentralCrossRefPubMed Sutter BM, Wu X, Laxman S, et al. Methionine inhibits autophagy and promotes growth by inducing the SAM-responsive methylation of PP2A. Cell. 2013;154(2):403-415.PubMedCentralCrossRefPubMed
73.
go back to reference Nguyen S, Meletis K, Fu D, et al. Ablation of de novo dna methyltransferase DNMT3A in the nervous system leads to neuromuscular defects and shortened lifespan. Dev Dyn. 2007;236(6):1663-1676.CrossRefPubMed Nguyen S, Meletis K, Fu D, et al. Ablation of de novo dna methyltransferase DNMT3A in the nervous system leads to neuromuscular defects and shortened lifespan. Dev Dyn. 2007;236(6):1663-1676.CrossRefPubMed
74.
go back to reference Golshani P, Hutnick L, Schweizer F, et al. Conditional DNMT1 deletion in dorsal forebrain disrupts development of somatosensory barrel cortex and thalamocortical long-term potentiation. Thalamus Relat Syst. 2005;3(3):227-233.PubMedCentralCrossRefPubMed Golshani P, Hutnick L, Schweizer F, et al. Conditional DNMT1 deletion in dorsal forebrain disrupts development of somatosensory barrel cortex and thalamocortical long-term potentiation. Thalamus Relat Syst. 2005;3(3):227-233.PubMedCentralCrossRefPubMed
75.
go back to reference Santiago M, Antunes C, Guedes M, et al. TET enzymes and DNA hydroxymethylation in neural development and function - how critical are they? Genomics. 2014;104(5):334-340.CrossRefPubMed Santiago M, Antunes C, Guedes M, et al. TET enzymes and DNA hydroxymethylation in neural development and function - how critical are they? Genomics. 2014;104(5):334-340.CrossRefPubMed
76.
go back to reference Shojaei Saadi HA, Gagne D, Fournier E, et al. Responses of bovine early embryos to S-adenosyl methionine supplementation in culture. Epigenomics. 2016;8(8):1039-1060.CrossRefPubMed Shojaei Saadi HA, Gagne D, Fournier E, et al. Responses of bovine early embryos to S-adenosyl methionine supplementation in culture. Epigenomics. 2016;8(8):1039-1060.CrossRefPubMed
77.
go back to reference Feng J, Fan G. The role of DNA methylation in the central nervous system and neuropsychiatric disorders. Int Rev Neurobiol. 2009;89:67-84.CrossRefPubMed Feng J, Fan G. The role of DNA methylation in the central nervous system and neuropsychiatric disorders. Int Rev Neurobiol. 2009;89:67-84.CrossRefPubMed
78.
go back to reference Molloy AM, Kirke PN, Troendle JF, et al. Maternal vitamin B12 status and risk of neural tube defects in a population with high neural tube defect prevalence and no folic acid fortification. Pediatrics. 2009;123(3):917-923.PubMedCentralCrossRefPubMed Molloy AM, Kirke PN, Troendle JF, et al. Maternal vitamin B12 status and risk of neural tube defects in a population with high neural tube defect prevalence and no folic acid fortification. Pediatrics. 2009;123(3):917-923.PubMedCentralCrossRefPubMed
79.
go back to reference Ratan SK, Rattan KN, Pandey RM, et al. Evaluation of the levels of folate, vitamin B12, homocysteine and fluoride in the parents and the affected neonates with neural tube defect and their matched controls. Pediatr Surg Int. 2008;24(7):803-808.CrossRefPubMed Ratan SK, Rattan KN, Pandey RM, et al. Evaluation of the levels of folate, vitamin B12, homocysteine and fluoride in the parents and the affected neonates with neural tube defect and their matched controls. Pediatr Surg Int. 2008;24(7):803-808.CrossRefPubMed
80.
go back to reference Czeizel AE. Periconceptional folic acid and multivitamin supplementation for the prevention of neural tube defects and other congenital abnormalities. Birth Defects Res A Clin Mol Teratol. 2009;85(4):260-268.CrossRefPubMed Czeizel AE. Periconceptional folic acid and multivitamin supplementation for the prevention of neural tube defects and other congenital abnormalities. Birth Defects Res A Clin Mol Teratol. 2009;85(4):260-268.CrossRefPubMed
81.
go back to reference Czeizel AE, Dudas I, Paput L, et al. Prevention of neural-tube defects with periconceptional folic acid, methylfolate, or multivitamins? Ann Nutr Metab. 2011;58(4):263-71.CrossRefPubMed Czeizel AE, Dudas I, Paput L, et al. Prevention of neural-tube defects with periconceptional folic acid, methylfolate, or multivitamins? Ann Nutr Metab. 2011;58(4):263-71.CrossRefPubMed
82.
go back to reference Wilson RD, Audibert F, Brock JA, et al. Pre-conception folic acid and multivitamin supplementation for the primary and secondary prevention of neural tube defects and other folic acid-sensitive congenital anomalies. J Obstet Gynaecol Can. 2015;37(6):534-552.CrossRefPubMed Wilson RD, Audibert F, Brock JA, et al. Pre-conception folic acid and multivitamin supplementation for the primary and secondary prevention of neural tube defects and other folic acid-sensitive congenital anomalies. J Obstet Gynaecol Can. 2015;37(6):534-552.CrossRefPubMed
83.
go back to reference Coelho CN, Klein NW. Methionine and neural tube closure in cultured rat embryos: morphological and biochemical analyses. Teratology. 1990;42(4):437-451.CrossRefPubMed Coelho CN, Klein NW. Methionine and neural tube closure in cultured rat embryos: morphological and biochemical analyses. Teratology. 1990;42(4):437-451.CrossRefPubMed
84.
go back to reference Dunlevy LP, Burren KA, Chitty LS, et al. Excess methionine suppresses the methylation cycle and inhibits neural tube closure in mouse embryos. FEBS Lett. 2006;580(11):2803-2807.CrossRefPubMed Dunlevy LP, Burren KA, Chitty LS, et al. Excess methionine suppresses the methylation cycle and inhibits neural tube closure in mouse embryos. FEBS Lett. 2006;580(11):2803-2807.CrossRefPubMed
85.
go back to reference Afman LA, Blom HJ, Drittij MJ, et al. Inhibition of transmethylation disturbs neurulation in chick embryos. Brain Res Dev Brain Res. 2005;158(1-2):59-65.CrossRefPubMed Afman LA, Blom HJ, Drittij MJ, et al. Inhibition of transmethylation disturbs neurulation in chick embryos. Brain Res Dev Brain Res. 2005;158(1-2):59-65.CrossRefPubMed
86.
go back to reference Olthof MR, Van Vliet T, Boelsma E, et al. Low dose betaine supplementation leads to immediate and long term lowering of plasma homocysteine in healthy men and women. J Nutr. 2003;133(12):4135-4138.CrossRefPubMed Olthof MR, Van Vliet T, Boelsma E, et al. Low dose betaine supplementation leads to immediate and long term lowering of plasma homocysteine in healthy men and women. J Nutr. 2003;133(12):4135-4138.CrossRefPubMed
87.
go back to reference Wang X, Guan Z, Chen Y, et al. Genomic DNA hypomethylation is associated with neural tube defects induced by methotrexate inhibition of folate metabolism. PLOS ONE. 2015;10(3):E0121869.PubMedCentralCrossRefPubMed Wang X, Guan Z, Chen Y, et al. Genomic DNA hypomethylation is associated with neural tube defects induced by methotrexate inhibition of folate metabolism. PLOS ONE. 2015;10(3):E0121869.PubMedCentralCrossRefPubMed
88.
go back to reference Steegers-Theunissen RP, Obermann-Borst SA, Kremer D, et al. Periconceptional maternal folic acid use of 400 microg per day is related to increased methylation of the IGF2 gene in the very young child. PLOS ONE. 2009;4(11):E7845.PubMedCentralCrossRefPubMed Steegers-Theunissen RP, Obermann-Borst SA, Kremer D, et al. Periconceptional maternal folic acid use of 400 microg per day is related to increased methylation of the IGF2 gene in the very young child. PLOS ONE. 2009;4(11):E7845.PubMedCentralCrossRefPubMed
89.
go back to reference Amir RE, Van Den Veyver IB, Wan M, et al. Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nat Genet. 1999;23(2):185-188.CrossRefPubMed Amir RE, Van Den Veyver IB, Wan M, et al. Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nat Genet. 1999;23(2):185-188.CrossRefPubMed
91.
go back to reference Guy J, Hendrich B, Holmes M, et al. A mouse MECP2-null mutation causes neurological symptoms that mimic rett syndrome. Nat Genet. 2001;27(3):322-326.CrossRefPubMed Guy J, Hendrich B, Holmes M, et al. A mouse MECP2-null mutation causes neurological symptoms that mimic rett syndrome. Nat Genet. 2001;27(3):322-326.CrossRefPubMed
92.
go back to reference Kaludov NK, Wolffe AP. MECP2 driven transcriptional repression in vitro: selectivity for methylated DNA, action at a distance and contacts with the basal transcription machinery. Nucleic Acids Res. 2000;28(9):1921-1928.PubMedCentralCrossRefPubMed Kaludov NK, Wolffe AP. MECP2 driven transcriptional repression in vitro: selectivity for methylated DNA, action at a distance and contacts with the basal transcription machinery. Nucleic Acids Res. 2000;28(9):1921-1928.PubMedCentralCrossRefPubMed
93.
94.
go back to reference Hagebeuk EE, Koelman JH, Duran M, et al. Clinical and electroencephalographic effects of folinic acid treatment in Rett syndrome patients. J Child Neurol. 2011;26(6):718-723.CrossRefPubMed Hagebeuk EE, Koelman JH, Duran M, et al. Clinical and electroencephalographic effects of folinic acid treatment in Rett syndrome patients. J Child Neurol. 2011;26(6):718-723.CrossRefPubMed
95.
go back to reference Hagebeuk EE, Duran M, Koelman JH, et al. folinic acid supplementation in Rett syndrome patients does not influence the course of the disease: a randomized study. J Child Neurol. 2012;27(3):304-309.CrossRefPubMed Hagebeuk EE, Duran M, Koelman JH, et al. folinic acid supplementation in Rett syndrome patients does not influence the course of the disease: a randomized study. J Child Neurol. 2012;27(3):304-309.CrossRefPubMed
96.
go back to reference Hagebeuk EE, Duran M, Abeling NG, et al. S-Adenosylmethionine and S-adenosylhomocysteine in plasma and cerebrospinal fluid in Rett syndrome and the effect of folinic acid supplementation. J Inherit Metab Dis. 2013;36(6):967-972.CrossRefPubMed Hagebeuk EE, Duran M, Abeling NG, et al. S-Adenosylmethionine and S-adenosylhomocysteine in plasma and cerebrospinal fluid in Rett syndrome and the effect of folinic acid supplementation. J Inherit Metab Dis. 2013;36(6):967-972.CrossRefPubMed
97.
go back to reference Yu XF, Li M, Zheng Y. [Association between maternal folate supplementation during pregnancy and the risk of autism spectrum disorder in the offspring: a meta analysis]. Zhongguo Dang Dai Er Ke Za Zhi. 2017;19(3):286-291.PubMed Yu XF, Li M, Zheng Y. [Association between maternal folate supplementation during pregnancy and the risk of autism spectrum disorder in the offspring: a meta analysis]. Zhongguo Dang Dai Er Ke Za Zhi. 2017;19(3):286-291.PubMed
98.
go back to reference Pogribna M, Melnyk S, Pogribny I, et al. homocysteine metabolism in children with DOWN syndrome: in vitro modulation. Am J Hum Genet. 2001;69(1):88-95.PubMedCentralCrossRefPubMed Pogribna M, Melnyk S, Pogribny I, et al. homocysteine metabolism in children with DOWN syndrome: in vitro modulation. Am J Hum Genet. 2001;69(1):88-95.PubMedCentralCrossRefPubMed
99.
go back to reference Obeid R, Hubner U, Bodis M, et al. Plasma amyloid beta 1-42 and DNA methylation pattern predict accelerated aging in young subjects with Down syndrome. Neuromolecular Med. 2016;18(4):593-601.CrossRefPubMed Obeid R, Hubner U, Bodis M, et al. Plasma amyloid beta 1-42 and DNA methylation pattern predict accelerated aging in young subjects with Down syndrome. Neuromolecular Med. 2016;18(4):593-601.CrossRefPubMed
100.
go back to reference Obeid R, Hartmuth K, Herrmann W, et al. Blood Biomarkers of methylation in down syndrome and metabolic simulations using a mathematical model. Mol Nutr Food Res. 2012;56(10):1582-1589.CrossRefPubMed Obeid R, Hartmuth K, Herrmann W, et al. Blood Biomarkers of methylation in down syndrome and metabolic simulations using a mathematical model. Mol Nutr Food Res. 2012;56(10):1582-1589.CrossRefPubMed
101.
go back to reference Fountoulakis M, Gulesserian T, Lubec G. Overexpression of c1-tetrahydrofolate synthase in fetal down syndrome brain. J Neural TRansm Suppl. 2003(67):85-93.CrossRef Fountoulakis M, Gulesserian T, Lubec G. Overexpression of c1-tetrahydrofolate synthase in fetal down syndrome brain. J Neural TRansm Suppl. 2003(67):85-93.CrossRef
102.
go back to reference Song C, He J, Chen J, et al. Effect of the onecarbon unit cycle on overall dna methylation in children with down's syndrome. Mol Med Rep. 2015;12(6):8209-8214.CrossRefPubMed Song C, He J, Chen J, et al. Effect of the onecarbon unit cycle on overall dna methylation in children with down's syndrome. Mol Med Rep. 2015;12(6):8209-8214.CrossRefPubMed
103.
go back to reference Infantino V, Castegna A, Iacobazzi F, et al. Impairment of methyl cycle affects mitochondrial methyl availability and glutathione level in down's syndrome. Mol Genet Metab. 2011;102(3):378-382.CrossRefPubMed Infantino V, Castegna A, Iacobazzi F, et al. Impairment of methyl cycle affects mitochondrial methyl availability and glutathione level in down's syndrome. Mol Genet Metab. 2011;102(3):378-382.CrossRefPubMed
104.
go back to reference Beetstra S, Thomas P, Salisbury C, et al. Folic acid deficiency increases chromosomal instability, chromosome 21 aneuploidy and sensitivity to radiation-induced micronuclei. MUTAT RES. 2005;578(1-2):317-326.CrossRefPubMed Beetstra S, Thomas P, Salisbury C, et al. Folic acid deficiency increases chromosomal instability, chromosome 21 aneuploidy and sensitivity to radiation-induced micronuclei. MUTAT RES. 2005;578(1-2):317-326.CrossRefPubMed
105.
go back to reference Da Silva LR, Vergani N, Galdieri Lde C, et al. Relationship between polymorphisms in genes involved in homocysteine metabolism and maternal risk for down syndrome in brazil. Am J Med Genet A. 2005;135(3):263-267.CrossRefPubMed Da Silva LR, Vergani N, Galdieri Lde C, et al. Relationship between polymorphisms in genes involved in homocysteine metabolism and maternal risk for down syndrome in brazil. Am J Med Genet A. 2005;135(3):263-267.CrossRefPubMed
106.
go back to reference Biselli JM, Goloni-Bertollo EM, Zampieri BL, et al. Genetic polymorphisms involved in folate metabolism and elevated plasma concentrations of homocysteine: maternal risk factors for down syndrome in brazil. Genet Mol Res. 2008;7(1):33-42.CrossRefPubMed Biselli JM, Goloni-Bertollo EM, Zampieri BL, et al. Genetic polymorphisms involved in folate metabolism and elevated plasma concentrations of homocysteine: maternal risk factors for down syndrome in brazil. Genet Mol Res. 2008;7(1):33-42.CrossRefPubMed
108.
go back to reference Kelsoe JR, Tolbert LC, Crews EL, et al. Kinetic evidence for decreased methionine adenosyltransferase activity in erythrocytes from schizophrenics. J Neurosci Res. 1982;8(1):99-103.CrossRefPubMed Kelsoe JR, Tolbert LC, Crews EL, et al. Kinetic evidence for decreased methionine adenosyltransferase activity in erythrocytes from schizophrenics. J Neurosci Res. 1982;8(1):99-103.CrossRefPubMed
109.
go back to reference Muntjewerff JW, Van Der Put N, Eskes T, et al. Homocysteine metabolism and b-vitamins in schizophrenic patients: low plasma folate as a possible independent risk factor for schizophrenia. Psychiatry Res. 2003;121(1):1-9.CrossRefPubMed Muntjewerff JW, Van Der Put N, Eskes T, et al. Homocysteine metabolism and b-vitamins in schizophrenic patients: low plasma folate as a possible independent risk factor for schizophrenia. Psychiatry Res. 2003;121(1):1-9.CrossRefPubMed
110.
go back to reference Garcia-Miss Mdel R, Perez-Mutul J, Lopez-Canul B, et al. Folate, homocysteine, interleukin-6, and tumor necrosis factor alfa levels, but not the methylenetetrahydrofolate reductase C677T Polymorphism, are risk factors for schizophrenia. J Psychiatr Res. 2010;44(7):441-446.CrossRefPubMed Garcia-Miss Mdel R, Perez-Mutul J, Lopez-Canul B, et al. Folate, homocysteine, interleukin-6, and tumor necrosis factor alfa levels, but not the methylenetetrahydrofolate reductase C677T Polymorphism, are risk factors for schizophrenia. J Psychiatr Res. 2010;44(7):441-446.CrossRefPubMed
111.
go back to reference Brown AS, Bottiglieri T, Schaefer CA, et al. Elevated prenatal homocysteine levels as a risk factor for schizophrenia. Arch Gen Psychiatry. 2007;64(1):31-39.CrossRefPubMed Brown AS, Bottiglieri T, Schaefer CA, et al. Elevated prenatal homocysteine levels as a risk factor for schizophrenia. Arch Gen Psychiatry. 2007;64(1):31-39.CrossRefPubMed
112.
go back to reference Kumar KS, Govindaiah V, Naushad SE, et al. Plasma homocysteine levels correlated to interactions between folate status and methylene tetrahydrofolate reductase gene mutation in women with unexplained recurrent pregnancy loss. J Obstet Gynaecol. 2003;23(1):55-58.CrossRefPubMed Kumar KS, Govindaiah V, Naushad SE, et al. Plasma homocysteine levels correlated to interactions between folate status and methylene tetrahydrofolate reductase gene mutation in women with unexplained recurrent pregnancy loss. J Obstet Gynaecol. 2003;23(1):55-58.CrossRefPubMed
113.
go back to reference Picker JD, Coyle JT. Do maternal folate and homocysteine levels play a role in neurodevelopmental processes that increase risk for schizophrenia? Harv Rev Psychiatry. 2005;13(4):197-205.CrossRefPubMed Picker JD, Coyle JT. Do maternal folate and homocysteine levels play a role in neurodevelopmental processes that increase risk for schizophrenia? Harv Rev Psychiatry. 2005;13(4):197-205.CrossRefPubMed
114.
go back to reference Kirkbride JB, Susser E, Kundakovic M, et al. Prenatal nutrition, epigenetics and schizophrenia risk: can we test causal effects? Epigenomics. 2012;4(3):303-315.PubMedCentralCrossRefPubMed Kirkbride JB, Susser E, Kundakovic M, et al. Prenatal nutrition, epigenetics and schizophrenia risk: can we test causal effects? Epigenomics. 2012;4(3):303-315.PubMedCentralCrossRefPubMed
115.
go back to reference Szyf M. Epigenetics, a key for unlocking complex cns disorders? therapeutic implications. Eur Neuropsychopharmacol. 2015;25(5):682-702.CrossRefPubMed Szyf M. Epigenetics, a key for unlocking complex cns disorders? therapeutic implications. Eur Neuropsychopharmacol. 2015;25(5):682-702.CrossRefPubMed
116.
go back to reference Veldic M, Guidotti A, Maloku E, et al. In psychosis, cortical interneurons overexpress dna-methyltransferase 1. Proc Natl Acad Sci U S A. 2005;102(6):2152-2157.PubMedCentralCrossRefPubMed Veldic M, Guidotti A, Maloku E, et al. In psychosis, cortical interneurons overexpress dna-methyltransferase 1. Proc Natl Acad Sci U S A. 2005;102(6):2152-2157.PubMedCentralCrossRefPubMed
117.
go back to reference Zhubi A, Veldic M, Puri NV, et al. An upregulation of dna-methyltransferase 1 and 3A expressed in telencephalic gabaergic neurons of schizophrenia patients is also detected in peripheral blood Lymphocytes. Schizophr Res. 2009;111(1-3):115-122.PubMedCentralCrossRefPubMed Zhubi A, Veldic M, Puri NV, et al. An upregulation of dna-methyltransferase 1 and 3A expressed in telencephalic gabaergic neurons of schizophrenia patients is also detected in peripheral blood Lymphocytes. Schizophr Res. 2009;111(1-3):115-122.PubMedCentralCrossRefPubMed
118.
119.
go back to reference Abdolmaleky HM, Cheng KH, Russo A, et al. Hypermethylation of the reelin (reln) promoter in the brain of schizophrenic patients: a preliminary report. Am J Med Genet B Neuropsychiatr Genet. 2005;134B(1):60-66.CrossRefPubMed Abdolmaleky HM, Cheng KH, Russo A, et al. Hypermethylation of the reelin (reln) promoter in the brain of schizophrenic patients: a preliminary report. Am J Med Genet B Neuropsychiatr Genet. 2005;134B(1):60-66.CrossRefPubMed
121.
go back to reference Veldic M, Caruncho HJ, Liu WS, et al. DNA-Methyltransferase 1 MRNA is selectively overexpressed in telencephalic gabaergic interneurons of schizophrenia brains. Proc Natl Acad Sci U S A. 2004;101(1):348-353.CrossRefPubMed Veldic M, Caruncho HJ, Liu WS, et al. DNA-Methyltransferase 1 MRNA is selectively overexpressed in telencephalic gabaergic interneurons of schizophrenia brains. Proc Natl Acad Sci U S A. 2004;101(1):348-353.CrossRefPubMed
122.
go back to reference Abdolmaleky HM, Cheng KH, Faraone SV, et al. Hypomethylation of mb-comt promoter is a major risk factor for schizophrenia and bipolar disorder. Hum Mol Genet. 2006;15(21):3132-3145.PubMedCentralCrossRefPubMed Abdolmaleky HM, Cheng KH, Faraone SV, et al. Hypomethylation of mb-comt promoter is a major risk factor for schizophrenia and bipolar disorder. Hum Mol Genet. 2006;15(21):3132-3145.PubMedCentralCrossRefPubMed
123.
go back to reference Nohesara S, Ghadirivasfi M, Mostafavi S, et al. DNA Hypomethylation of MB-COMT Promoter in the dna derived from saliva in schizophrenia and bipolar disorder. J Psychiatr Res. 2011;45(11):1432-1438.CrossRefPubMed Nohesara S, Ghadirivasfi M, Mostafavi S, et al. DNA Hypomethylation of MB-COMT Promoter in the dna derived from saliva in schizophrenia and bipolar disorder. J Psychiatr Res. 2011;45(11):1432-1438.CrossRefPubMed
124.
go back to reference Rosa A, Peralta V, Cuesta MJ, et al. New evidence of association between comt gene and prefrontal neurocognitive function in healthy individuals from sibling pairs discordant for psychosis. Am J Psychiatry. 2004;161(6):1110-1112.CrossRefPubMed Rosa A, Peralta V, Cuesta MJ, et al. New evidence of association between comt gene and prefrontal neurocognitive function in healthy individuals from sibling pairs discordant for psychosis. Am J Psychiatry. 2004;161(6):1110-1112.CrossRefPubMed
125.
go back to reference Grayson DR, Chen Y, Dong E, et al. From Trans-Methylation To Cytosine Methylation: Evolution Of The Methylation Hypothesis Of Schizophrenia. Epigenetics. 2009;4(3):144-149.CrossRefPubMed Grayson DR, Chen Y, Dong E, et al. From Trans-Methylation To Cytosine Methylation: Evolution Of The Methylation Hypothesis Of Schizophrenia. Epigenetics. 2009;4(3):144-149.CrossRefPubMed
126.
go back to reference Tremolizzo L, Carboni G, Ruzicka WB, et al. An epigenetic mouse model for molecular and behavioral neuropathologies related to schizophrenia vulnerability. Proc Natl Acad Sci U S A. 2002;99(26):17095-17100.PubMedCentralCrossRefPubMed Tremolizzo L, Carboni G, Ruzicka WB, et al. An epigenetic mouse model for molecular and behavioral neuropathologies related to schizophrenia vulnerability. Proc Natl Acad Sci U S A. 2002;99(26):17095-17100.PubMedCentralCrossRefPubMed
127.
go back to reference Levine J, Stahl Z, Sela BA, et al. Homocysteine-reducing strategies improve symptoms in chronic schizophrenic patients with hyperhomocysteinemia. Biol Psychiatry. 2006;60(3):265-269.CrossRefPubMed Levine J, Stahl Z, Sela BA, et al. Homocysteine-reducing strategies improve symptoms in chronic schizophrenic patients with hyperhomocysteinemia. Biol Psychiatry. 2006;60(3):265-269.CrossRefPubMed
128.
go back to reference Hill M, Shannahan K, Jasinski S, et al. Folate Supplementation in schizophrenia: a possible role for mthfr genotype. Schizophr Res. 2011;127(1-3):41-45.CrossRefPubMed Hill M, Shannahan K, Jasinski S, et al. Folate Supplementation in schizophrenia: a possible role for mthfr genotype. Schizophr Res. 2011;127(1-3):41-45.CrossRefPubMed
129.
go back to reference Roffman JL, Lamberti JS, Achtyes E, et al. Randomized multicenter investigation of folate plus vitamin B12 Supplementation in Schizophrenia. JAMA Psychiatry. 2013;70(5):481-489.PubMedCentralCrossRefPubMed Roffman JL, Lamberti JS, Achtyes E, et al. Randomized multicenter investigation of folate plus vitamin B12 Supplementation in Schizophrenia. JAMA Psychiatry. 2013;70(5):481-489.PubMedCentralCrossRefPubMed
130.
go back to reference Procter A. Enhancement of recovery from psychiatric illness by methylfolate. BR J Psychiatry. 1991;159:271-272.CrossRefPubMed Procter A. Enhancement of recovery from psychiatric illness by methylfolate. BR J Psychiatry. 1991;159:271-272.CrossRefPubMed
131.
go back to reference Roffman JL, Petruzzi LJ, Tanner AS, et al. Biochemical, physiological and clinical effects of l-methylfolate in schizophrenia: a randomized controlled trial. Mol Psychiatry 2017 MAR 14. Roffman JL, Petruzzi LJ, Tanner AS, et al. Biochemical, physiological and clinical effects of l-methylfolate in schizophrenia: a randomized controlled trial. Mol Psychiatry 2017 MAR 14.
132.
go back to reference Godfrey PS, Toone BK, Carney MW, et al. Enhancement of recovery from psychiatric illness by methylfolate. Lancet. 1990;336(8712):392-395.CrossRefPubMed Godfrey PS, Toone BK, Carney MW, et al. Enhancement of recovery from psychiatric illness by methylfolate. Lancet. 1990;336(8712):392-395.CrossRefPubMed
133.
go back to reference Morrison LD, Smith DD, Kish SJ. Brain S-Adenosylmethionine levels are severely decreased in alzheimer's disease. J Neurochem. 1996;67(3):1328-1331.CrossRefPubMed Morrison LD, Smith DD, Kish SJ. Brain S-Adenosylmethionine levels are severely decreased in alzheimer's disease. J Neurochem. 1996;67(3):1328-1331.CrossRefPubMed
134.
go back to reference Kennedy BP, Bottiglieri T, Arning E, et al. Elevated s-adenosylhomocysteine in alzheimer brain: influence on methyltransferases and cognitive function. J Neural Transm (VIENNA). 2004;111(4):547-567.CrossRefPubMed Kennedy BP, Bottiglieri T, Arning E, et al. Elevated s-adenosylhomocysteine in alzheimer brain: influence on methyltransferases and cognitive function. J Neural Transm (VIENNA). 2004;111(4):547-567.CrossRefPubMed
135.
go back to reference Bradley-Whitman MA, Lovell MA. Epigenetic changes in the progression of alzheimer's disease. Mech Ageing Dev. 2013;134(10):486-495.CrossRefPubMed Bradley-Whitman MA, Lovell MA. Epigenetic changes in the progression of alzheimer's disease. Mech Ageing Dev. 2013;134(10):486-495.CrossRefPubMed
136.
go back to reference Coppieters N, Dieriks BV, Lill C, et al. Global changes in dna methylation and hydroxymethylation in alzheimer's disease human brain. Neurobiol Aging. 2014;35(6):1334-1344.CrossRefPubMed Coppieters N, Dieriks BV, Lill C, et al. Global changes in dna methylation and hydroxymethylation in alzheimer's disease human brain. Neurobiol Aging. 2014;35(6):1334-1344.CrossRefPubMed
137.
go back to reference Chaney MO, Baudry J, Esh C, et al. A beta, aging, and alzheimer's disease: a tale, models, and hypotheses. Neurol Res. 2003;25(6):581-589.CrossRefPubMed Chaney MO, Baudry J, Esh C, et al. A beta, aging, and alzheimer's disease: a tale, models, and hypotheses. Neurol Res. 2003;25(6):581-589.CrossRefPubMed
138.
go back to reference Iwata A, Nagata K, Hatsuta H, et al. Altered CPG Methylation in Sporadic alzheimer's disease is associated with APP and MAPT Dysregulation. Hum Mol Genet. 2014;23(3):648-656.CrossRefPubMed Iwata A, Nagata K, Hatsuta H, et al. Altered CPG Methylation in Sporadic alzheimer's disease is associated with APP and MAPT Dysregulation. Hum Mol Genet. 2014;23(3):648-656.CrossRefPubMed
139.
go back to reference Tohgi H, Utsugisawa K, Nagane Y, et al. Reduction with age in methylcytosine in the promoter region –224 approximately –101 of the amyloid precursor protein gene in autopsy human cortex. Brain Res Mol Brain Res. 1999;70(2):288-292.CrossRefPubMed Tohgi H, Utsugisawa K, Nagane Y, et al. Reduction with age in methylcytosine in the promoter region –224 approximately –101 of the amyloid precursor protein gene in autopsy human cortex. Brain Res Mol Brain Res. 1999;70(2):288-292.CrossRefPubMed
140.
go back to reference Scarpa S, Fuso A, D'Anselmi F, et al. Presenilin 1 gene silencing by s-adenosylmethionine: a treatment for alzheimer disease? Febs Lett. 2003;541(1-3):145-148.CrossRefPubMed Scarpa S, Fuso A, D'Anselmi F, et al. Presenilin 1 gene silencing by s-adenosylmethionine: a treatment for alzheimer disease? Febs Lett. 2003;541(1-3):145-148.CrossRefPubMed
141.
go back to reference Fuso A, Cavallaro RA, Zampelli A, et al. Gamma-Secretase is differentially modulated by alterations of homocysteine cycle in neuroblastoma and glioblastoma cells. J Alzheimers Dis. 2007;11(3):275-290.CrossRefPubMed Fuso A, Cavallaro RA, Zampelli A, et al. Gamma-Secretase is differentially modulated by alterations of homocysteine cycle in neuroblastoma and glioblastoma cells. J Alzheimers Dis. 2007;11(3):275-290.CrossRefPubMed
142.
go back to reference Fuso A, Nicolia V, Cavallaro RA, et al. B-Vitamin deprivation induces hyperhomocysteinemia and brain s-adenosylhomocysteine, depletes brain s-adenosylmethionine, and enhances PS1 and bace expression and amyloid-beta deposition in mice. Mol Cell Neurosci. 2008;37(4):731-746.CrossRefPubMed Fuso A, Nicolia V, Cavallaro RA, et al. B-Vitamin deprivation induces hyperhomocysteinemia and brain s-adenosylhomocysteine, depletes brain s-adenosylmethionine, and enhances PS1 and bace expression and amyloid-beta deposition in mice. Mol Cell Neurosci. 2008;37(4):731-746.CrossRefPubMed
143.
go back to reference Fuso A, Nicolia V, Pasqualato A, et al. Changes in presenilin 1 Gene methylation pattern in diet-induced b vitamin deficiency. Neurobiol Aging. 2011;32(2):187-199.CrossRefPubMed Fuso A, Nicolia V, Pasqualato A, et al. Changes in presenilin 1 Gene methylation pattern in diet-induced b vitamin deficiency. Neurobiol Aging. 2011;32(2):187-199.CrossRefPubMed
144.
go back to reference Hodgson N, Trivedi M, Muratore C, et al. Soluble oligomers of amyloid-beta cause changes in redox state, DNA methylation, and gene transcription by inhibiting EAAT3 mediated cysteine uptake. J Alzheimers Dis. 2013;36(1):197-209.PubMed Hodgson N, Trivedi M, Muratore C, et al. Soluble oligomers of amyloid-beta cause changes in redox state, DNA methylation, and gene transcription by inhibiting EAAT3 mediated cysteine uptake. J Alzheimers Dis. 2013;36(1):197-209.PubMed
145.
go back to reference Liu H, Li W, Zhao S, et al. Folic acid attenuates the effects of amyloid beta oligomers on dna methylation in neuronal cells. Eur J Nutr. 2016;55(5):1849-1862.CrossRefPubMed Liu H, Li W, Zhao S, et al. Folic acid attenuates the effects of amyloid beta oligomers on dna methylation in neuronal cells. Eur J Nutr. 2016;55(5):1849-1862.CrossRefPubMed
147.
go back to reference Mastroeni D, Grover A, Delvaux E, et al. Epigenetic changes in alzheimer's disease: decrements in dna methylation. Neurobiol Aging. 2010;31(12):2025-2037.CrossRefPubMed Mastroeni D, Grover A, Delvaux E, et al. Epigenetic changes in alzheimer's disease: decrements in dna methylation. Neurobiol Aging. 2010;31(12):2025-2037.CrossRefPubMed
148.
go back to reference Nicolia V, Fuso A, Cavallaro RA, et al. B Vitamin deficiency promotes tau phosphorylation through regulation of GSK3BETA and PP2A. J Alzheimers Dis. 2010;19(3):895-907.CrossRefPubMed Nicolia V, Fuso A, Cavallaro RA, et al. B Vitamin deficiency promotes tau phosphorylation through regulation of GSK3BETA and PP2A. J Alzheimers Dis. 2010;19(3):895-907.CrossRefPubMed
149.
go back to reference Chen H, Dzitoyeva S, Manev H. Effect of aging on 5-hydroxymethylcytosine in the mouse hippocampus. Restor Neurol Neurosci. 2012;30(3):237-245.PubMedCentralPubMed Chen H, Dzitoyeva S, Manev H. Effect of aging on 5-hydroxymethylcytosine in the mouse hippocampus. Restor Neurol Neurosci. 2012;30(3):237-245.PubMedCentralPubMed
150.
go back to reference Phipps AJ, Vickers JC, Taberlay PC, et al. Neurofilament-Labeled Pyramidal neurons and astrocytes are deficient in dna methylation marks in alzheimer's disease. Neurobiol Aging. 2016;45:30-42.CrossRefPubMed Phipps AJ, Vickers JC, Taberlay PC, et al. Neurofilament-Labeled Pyramidal neurons and astrocytes are deficient in dna methylation marks in alzheimer's disease. Neurobiol Aging. 2016;45:30-42.CrossRefPubMed
151.
go back to reference Padurariu M, Ciobica A, Mavroudis I, et al. Hippocampal Neuronal Loss in the CA1 and CA3 areas of alzheimer's disease patients. Psychiatr Danub. 2012;24(2):152-158.PubMed Padurariu M, Ciobica A, Mavroudis I, et al. Hippocampal Neuronal Loss in the CA1 and CA3 areas of alzheimer's disease patients. Psychiatr Danub. 2012;24(2):152-158.PubMed
153.
go back to reference Bernstein AI, Lin Y, Street RC, et al. 5-Hydroxymethylation-Associated epigenetic modifiers of alzheimer's disease modulate tau-induced neurotoxicity. Hum Mol Genet. 2016;25(12):2437-2450.PubMedCentralPubMed Bernstein AI, Lin Y, Street RC, et al. 5-Hydroxymethylation-Associated epigenetic modifiers of alzheimer's disease modulate tau-induced neurotoxicity. Hum Mol Genet. 2016;25(12):2437-2450.PubMedCentralPubMed
154.
go back to reference Ellison EM, Abner EL, Lovell MA. Multiregional Analysis of global 5-methylcytosine and 5-hydroxymethylcytosine throughout the progression of alzheimer's disease. J Neurochem. 2017;140(3):383-394.PubMedCentralCrossRefPubMed Ellison EM, Abner EL, Lovell MA. Multiregional Analysis of global 5-methylcytosine and 5-hydroxymethylcytosine throughout the progression of alzheimer's disease. J Neurochem. 2017;140(3):383-394.PubMedCentralCrossRefPubMed
155.
156.
157.
go back to reference Martin C, Zhang Y. The diverse functions of histone lysine methylation. Nat Rev Mol Cell Biol. 2005;6(11):838-849.CrossRefPubMed Martin C, Zhang Y. The diverse functions of histone lysine methylation. Nat Rev Mol Cell Biol. 2005;6(11):838-849.CrossRefPubMed
158.
go back to reference Morse SJ, Butler AA, Davis RL, et al. Environmental enrichment reverses histone methylation changes in the aged hippocampus and restores age-related memory deficits. Biology (BASEL). 2015;4(2):298-313.PubMedCentralPubMed Morse SJ, Butler AA, Davis RL, et al. Environmental enrichment reverses histone methylation changes in the aged hippocampus and restores age-related memory deficits. Biology (BASEL). 2015;4(2):298-313.PubMedCentralPubMed
159.
go back to reference Patel A, Dharmarajan V, Vought VE, et al. On the mechanism of multiple lysine methylation by the human mixed lineage leukemia protein-1 (mll1) core complex. J Biol Chem. 2009;284(36):24242-24256.PubMedCentralCrossRefPubMed Patel A, Dharmarajan V, Vought VE, et al. On the mechanism of multiple lysine methylation by the human mixed lineage leukemia protein-1 (mll1) core complex. J Biol Chem. 2009;284(36):24242-24256.PubMedCentralCrossRefPubMed
163.
go back to reference Mentch SJ, Mehrmohamadi M, Huang L, et al. Histone methylation dynamics and gene regulation occur through the sensing of one-carbon metabolism. Cell Metab. 2015;22(5):861-873.PubMedCentralCrossRefPubMed Mentch SJ, Mehrmohamadi M, Huang L, et al. Histone methylation dynamics and gene regulation occur through the sensing of one-carbon metabolism. Cell Metab. 2015;22(5):861-873.PubMedCentralCrossRefPubMed
164.
go back to reference Liu M, Barnes VL, Pile LA. Disruption of methionine metabolism in drosophila melanogaster impacts histone methylation and results in loss of viability. G3 (BETHESDA). 2015;6(1):121-132.CrossRef Liu M, Barnes VL, Pile LA. Disruption of methionine metabolism in drosophila melanogaster impacts histone methylation and results in loss of viability. G3 (BETHESDA). 2015;6(1):121-132.CrossRef
165.
go back to reference Sperber H, Mathieu J, Wang Y, et al. The metabolome regulates the epigenetic landscape during naive-to-primed human embryonic stem cell transition. Nat Cell Biol. 2015;17(12):1523-1535.PubMedCentralCrossRefPubMed Sperber H, Mathieu J, Wang Y, et al. The metabolome regulates the epigenetic landscape during naive-to-primed human embryonic stem cell transition. Nat Cell Biol. 2015;17(12):1523-1535.PubMedCentralCrossRefPubMed
166.
go back to reference Ara AI, Xia M, Ramani K, et al. S-adenosylmethionine inhibits lipopolysaccharide-induced gene expression via modulation of histone methylation. Hepatology. 2008;47(5):1655-1666.PubMedCentralCrossRefPubMed Ara AI, Xia M, Ramani K, et al. S-adenosylmethionine inhibits lipopolysaccharide-induced gene expression via modulation of histone methylation. Hepatology. 2008;47(5):1655-1666.PubMedCentralCrossRefPubMed
167.
go back to reference Van Kanegan MJ, Adams DG, Wadzinski BE, et al. Distinct protein phosphatase 2A heterotrimers modulate growth factor signaling to extracellular signal-regulated kinases and AKT. J Biol Chem. 2005;280(43):36029-36036.CrossRefPubMed Van Kanegan MJ, Adams DG, Wadzinski BE, et al. Distinct protein phosphatase 2A heterotrimers modulate growth factor signaling to extracellular signal-regulated kinases and AKT. J Biol Chem. 2005;280(43):36029-36036.CrossRefPubMed
168.
go back to reference Stanevich V, Jiang L, Satyshur KA, et al. The structural basis for tight control of PP2A Methylation and function by LCMT-1. Mol Cell. 2011;41(3):331-342.PubMedCentralCrossRefPubMed Stanevich V, Jiang L, Satyshur KA, et al. The structural basis for tight control of PP2A Methylation and function by LCMT-1. Mol Cell. 2011;41(3):331-342.PubMedCentralCrossRefPubMed
169.
go back to reference Xing Y, Li Z, Chen Y, et al. Structural mechanism of demethylation and inactivation of protein phosphatase 2A. Cell. 2008;133(1):154-163.CrossRefPubMed Xing Y, Li Z, Chen Y, et al. Structural mechanism of demethylation and inactivation of protein phosphatase 2A. Cell. 2008;133(1):154-163.CrossRefPubMed
170.
go back to reference De Baere I, Derua R, Janssens V, et al. Purification of porcine brain protein phosphatase 2A leucine carboxyl methyltransferase and cloning of the human homologue. Biochemistry. 1999;38(50):16539-16547.CrossRefPubMed De Baere I, Derua R, Janssens V, et al. Purification of porcine brain protein phosphatase 2A leucine carboxyl methyltransferase and cloning of the human homologue. Biochemistry. 1999;38(50):16539-16547.CrossRefPubMed
171.
go back to reference Sontag E, Hladik C, Montgomery L, et al. Downregulation of protein phosphatase 2A carboxyl methylation and methyltransferase may contribute to alzheimer disease pathogenesis. J Neuropathol Exp Neurol. 2004;63(10):1080-1091.CrossRefPubMed Sontag E, Hladik C, Montgomery L, et al. Downregulation of protein phosphatase 2A carboxyl methylation and methyltransferase may contribute to alzheimer disease pathogenesis. J Neuropathol Exp Neurol. 2004;63(10):1080-1091.CrossRefPubMed
172.
go back to reference Nicholls RE, Sontag JM, Zhang H, et al. PP2A Methylation controls sensitivity and resistance to Beta-Amyloid-Induced Cognitive and electrophysiological impairments. Proc Natl Acad Sci U S A. 2016;113(12):3347-3352.PubMedCentralCrossRefPubMed Nicholls RE, Sontag JM, Zhang H, et al. PP2A Methylation controls sensitivity and resistance to Beta-Amyloid-Induced Cognitive and electrophysiological impairments. Proc Natl Acad Sci U S A. 2016;113(12):3347-3352.PubMedCentralCrossRefPubMed
173.
go back to reference Sontag E, Nunbhakdi-Craig V, Sontag JM, et al. Protein phosphatase 2A methyltransferase links homocysteine metabolism with tau and amyloid precursor protein regulation. J Neurosci. 2007;27(11):2751-2759.CrossRefPubMed Sontag E, Nunbhakdi-Craig V, Sontag JM, et al. Protein phosphatase 2A methyltransferase links homocysteine metabolism with tau and amyloid precursor protein regulation. J Neurosci. 2007;27(11):2751-2759.CrossRefPubMed
174.
go back to reference Sontag JM, Nunbhakdi-Craig V, Montgomery L, et al. Folate deficiency induces in vitro and mouse brain region-specific downregulation of leucine carboxyl methyltransferase-1 and protein phosphatase 2A B(ALPHA) Subunit expression that correlate with enhanced tau phosphorylation. J Neurosci. 2008;28(45):11477-11487.PubMedCentralCrossRefPubMed Sontag JM, Nunbhakdi-Craig V, Montgomery L, et al. Folate deficiency induces in vitro and mouse brain region-specific downregulation of leucine carboxyl methyltransferase-1 and protein phosphatase 2A B(ALPHA) Subunit expression that correlate with enhanced tau phosphorylation. J Neurosci. 2008;28(45):11477-11487.PubMedCentralCrossRefPubMed
175.
go back to reference Yoon SY, Choi HI, Choi JE, et al. Methotrexate decreases PP2A Methylation and increases tau phosphorylation in neuron. Biochem Biophys Res Commun. 2007;363(3):811-816.CrossRefPubMed Yoon SY, Choi HI, Choi JE, et al. Methotrexate decreases PP2A Methylation and increases tau phosphorylation in neuron. Biochem Biophys Res Commun. 2007;363(3):811-816.CrossRefPubMed
176.
go back to reference Brummelte S, Mc Glanaghy E, Bonnin A, et al. Developmental changes in serotonin signaling: implications for early brain function, behavior and adaptation. Neuroscience. 2017;342:212-231.CrossRefPubMed Brummelte S, Mc Glanaghy E, Bonnin A, et al. Developmental changes in serotonin signaling: implications for early brain function, behavior and adaptation. Neuroscience. 2017;342:212-231.CrossRefPubMed
177.
go back to reference Losada ME, Rubio MC. Acute effects of S-Adenosyl-L-Methionine on catecholaminergic central function. Eur J Pharmacol. 1989;163(2-3):353-356.CrossRefPubMed Losada ME, Rubio MC. Acute effects of S-Adenosyl-L-Methionine on catecholaminergic central function. Eur J Pharmacol. 1989;163(2-3):353-356.CrossRefPubMed
178.
go back to reference Mischoulon D, Fava M. Role of S-Adenosyl-L-Methionine in the treatment of depression: a review of the evidence. Am J Clin Nutr. 2002;76(5):1158S-1161S.CrossRefPubMed Mischoulon D, Fava M. Role of S-Adenosyl-L-Methionine in the treatment of depression: a review of the evidence. Am J Clin Nutr. 2002;76(5):1158S-1161S.CrossRefPubMed
179.
go back to reference Otero-Losada ME, Rubio MC. Acute changes in 5-HT Metabolism after S-Adenosyl-L-Methionine administration. Gen Pharmacol. 1989;20(4):403-406.CrossRefPubMed Otero-Losada ME, Rubio MC. Acute changes in 5-HT Metabolism after S-Adenosyl-L-Methionine administration. Gen Pharmacol. 1989;20(4):403-406.CrossRefPubMed
180.
go back to reference Moat SJ, Clarke ZL, Madhavan AK, et al. Folic acid reverses endothelial dysfunction induced by inhibition of tetrahydrobiopterin biosynthesis. Eur J Pharmacol. 2006;530(3):250-258.CrossRefPubMed Moat SJ, Clarke ZL, Madhavan AK, et al. Folic acid reverses endothelial dysfunction induced by inhibition of tetrahydrobiopterin biosynthesis. Eur J Pharmacol. 2006;530(3):250-258.CrossRefPubMed
181.
go back to reference Sumi-Ichinose C, Urano F, Kuroda R, et al. Catecholamines and serotonin are differently regulated by tetrahydrobiopterin. a study from 6-Pyruvoyltetrahydropterin synthase knockout mice. J Biol Chem. 2001;276(44):41150-60.CrossRefPubMed Sumi-Ichinose C, Urano F, Kuroda R, et al. Catecholamines and serotonin are differently regulated by tetrahydrobiopterin. a study from 6-Pyruvoyltetrahydropterin synthase knockout mice. J Biol Chem. 2001;276(44):41150-60.CrossRefPubMed
182.
go back to reference Bottiglieri T, Laundy M, Crellin R, et al. Homocysteine, folate, methylation, and monoamine metabolism in depression. J Neurol Neurosurg Psychiatry. 2000;69(2):228-232.PubMedCentralCrossRefPubMed Bottiglieri T, Laundy M, Crellin R, et al. Homocysteine, folate, methylation, and monoamine metabolism in depression. J Neurol Neurosurg Psychiatry. 2000;69(2):228-232.PubMedCentralCrossRefPubMed
183.
184.
go back to reference Bellido I, Gomez-Luque A, Plaza A, et al. S-adenosyl-L-Methionine prevents 5-HT(1A) receptors up-regulation induced by acute imipramine in the frontal cortex of the rat. Neurosci Lett. 2002;321(1-2):110-114.CrossRefPubMed Bellido I, Gomez-Luque A, Plaza A, et al. S-adenosyl-L-Methionine prevents 5-HT(1A) receptors up-regulation induced by acute imipramine in the frontal cortex of the rat. Neurosci Lett. 2002;321(1-2):110-114.CrossRefPubMed
185.
186.
go back to reference Obeid R, Herrmann W. Homocysteine and Lipids: S-Adenosyl Methionine As A Key Intermediate. FEBS LETT. 2009;583(8):1215-1225.CrossRefPubMed Obeid R, Herrmann W. Homocysteine and Lipids: S-Adenosyl Methionine As A Key Intermediate. FEBS LETT. 2009;583(8):1215-1225.CrossRefPubMed
187.
go back to reference Hao X, Huang Y, Qiu M, et al. Immunoassay of S-adenosylmethionine and S-adenosylhomocysteine: the methylation index as a biomarker for disease and health status. BMC Res Notes 2016; 9:498.PubMedCentralCrossRefPubMed Hao X, Huang Y, Qiu M, et al. Immunoassay of S-adenosylmethionine and S-adenosylhomocysteine: the methylation index as a biomarker for disease and health status. BMC Res Notes 2016; 9:498.PubMedCentralCrossRefPubMed
188.
189.
go back to reference Weaver IC, Champagne FA, Brown SE, et al. Reversal of maternal programming of stress responses in adult offspring through methyl supplementation: altering epigenetic marking later in life. J Neurosci. 2005;25(47):11045-11054.CrossRefPubMed Weaver IC, Champagne FA, Brown SE, et al. Reversal of maternal programming of stress responses in adult offspring through methyl supplementation: altering epigenetic marking later in life. J Neurosci. 2005;25(47):11045-11054.CrossRefPubMed
190.
go back to reference Mischoulon D, Alpert JE, Arning E, et al. Bioavailability of S-Adenosyl methionine and impact on response in a randomized, double-blind, placebo-controlled trial in major depressive disorder. J Clin Psychiatry. 2012;73(6):843-848.PubMedCentralCrossRefPubMed Mischoulon D, Alpert JE, Arning E, et al. Bioavailability of S-Adenosyl methionine and impact on response in a randomized, double-blind, placebo-controlled trial in major depressive disorder. J Clin Psychiatry. 2012;73(6):843-848.PubMedCentralCrossRefPubMed
191.
go back to reference Galizia I, Oldani L, Macritchie K, et al. S-adenosyl methionine (SAME) for depression in adults. Cochrane Database Syst Rev. 2016;10:CD011286.PubMed Galizia I, Oldani L, Macritchie K, et al. S-adenosyl methionine (SAME) for depression in adults. Cochrane Database Syst Rev. 2016;10:CD011286.PubMed
192.
go back to reference De Berardis D, Marini S, Serroni N, et al. S-adenosyl-L-methionine augmentation in patients with stage ii treatment-resistant major depressive disorder: an open label, fixed dose, single-blind study. Scientific World Journal. 2013;2013:204649.PubMedCentralCrossRefPubMed De Berardis D, Marini S, Serroni N, et al. S-adenosyl-L-methionine augmentation in patients with stage ii treatment-resistant major depressive disorder: an open label, fixed dose, single-blind study. Scientific World Journal. 2013;2013:204649.PubMedCentralCrossRefPubMed
193.
go back to reference Strous RD, Ritsner MS, Adler S, et al. Improvement of aggressive behavior and quality of life impairment following s-adenosyl-methionine (sam-e) augmentation in schizophrenia. Eur Neuropsychopharmacol. 2009;19(1):14-22.CrossRefPubMed Strous RD, Ritsner MS, Adler S, et al. Improvement of aggressive behavior and quality of life impairment following s-adenosyl-methionine (sam-e) augmentation in schizophrenia. Eur Neuropsychopharmacol. 2009;19(1):14-22.CrossRefPubMed
194.
go back to reference Surtees R, Leonard J, Austin S. Association of demyelination with deficiency of cerebrospinal-fluid s-adenosylmethionine in inborn errors of methyl-transfer pathway. Lancet. 1991;338(8782-8783):1550-1554.CrossRefPubMed Surtees R, Leonard J, Austin S. Association of demyelination with deficiency of cerebrospinal-fluid s-adenosylmethionine in inborn errors of methyl-transfer pathway. Lancet. 1991;338(8782-8783):1550-1554.CrossRefPubMed
195.
go back to reference Loehrer FM, Schwab R, Angst CP, et al. Influence of oral S-adenosylmethionine on Plasma 5-Methyltetrahydrofolate, S-adenosylhomocysteine, homocysteine and methionine in healthy humans. J Pharmacol Exp Ther. 1997;282(2):845-850.PubMed Loehrer FM, Schwab R, Angst CP, et al. Influence of oral S-adenosylmethionine on Plasma 5-Methyltetrahydrofolate, S-adenosylhomocysteine, homocysteine and methionine in healthy humans. J Pharmacol Exp Ther. 1997;282(2):845-850.PubMed
196.
go back to reference Lee S, Lemere CA, Frost JL, et al. Dietary supplementation with s-adenosyl methionine delayed amyloid-beta and tau pathology in 3xtg-ad mice. J Alzheimers Dis. 2012;28(2):423-431.PubMed Lee S, Lemere CA, Frost JL, et al. Dietary supplementation with s-adenosyl methionine delayed amyloid-beta and tau pathology in 3xtg-ad mice. J Alzheimers Dis. 2012;28(2):423-431.PubMed
197.
go back to reference Fuso A, Nicolia V, Ricceri L, et al. S-adenosylmethionine reduces the progress of the alzheimer-like features induced by b-vitamin deficiency in mice. Neurobiol Aging. 2012;33(7):1482 E1-16.CrossRef Fuso A, Nicolia V, Ricceri L, et al. S-adenosylmethionine reduces the progress of the alzheimer-like features induced by b-vitamin deficiency in mice. Neurobiol Aging. 2012;33(7):1482 E1-16.CrossRef
198.
go back to reference Persichilli S, Gervasoni J, Di Napoli A, et al. Plasma thiols levels in alzheimer's disease mice under diet-induced hyperhomocysteinemia: effect of s-adenosylmethionine and superoxide-dismutase supplementation. J Alzheimers Dis. 2015;44(4):1323-1331.PubMed Persichilli S, Gervasoni J, Di Napoli A, et al. Plasma thiols levels in alzheimer's disease mice under diet-induced hyperhomocysteinemia: effect of s-adenosylmethionine and superoxide-dismutase supplementation. J Alzheimers Dis. 2015;44(4):1323-1331.PubMed
199.
go back to reference Do Carmo S, Hanzel CE, Jacobs ML, et al. Rescue of early bace-1 and Global dna demethylation by S-Adenosylmethionine reduces amyloid pathology and improves cognition in an alzheimer's model. Sci Rep. 2016;6:34051.PubMedCentralCrossRefPubMed Do Carmo S, Hanzel CE, Jacobs ML, et al. Rescue of early bace-1 and Global dna demethylation by S-Adenosylmethionine reduces amyloid pathology and improves cognition in an alzheimer's model. Sci Rep. 2016;6:34051.PubMedCentralCrossRefPubMed
200.
go back to reference Bustamante AC, Aiello AE, Galea S, et al. Glucocorticoid receptor DNA Methylation, Childhood Maltreatment And Major Depression. J Affect Disord. 2016;206:181-188.PubMedCentralCrossRefPubMed Bustamante AC, Aiello AE, Galea S, et al. Glucocorticoid receptor DNA Methylation, Childhood Maltreatment And Major Depression. J Affect Disord. 2016;206:181-188.PubMedCentralCrossRefPubMed
201.
go back to reference Bergink V, Gibney SM, Drexhage HA. Autoimmunity, inflammation, and psychosis: a search for peripheral markers. Biol Psychiatry. 2014;75(4):324-331.CrossRefPubMed Bergink V, Gibney SM, Drexhage HA. Autoimmunity, inflammation, and psychosis: a search for peripheral markers. Biol Psychiatry. 2014;75(4):324-331.CrossRefPubMed
202.
go back to reference Stefano P, Concetta C, Luigi D, et al. Role of neurodevelopment involved genes in psychiatric comorbidities and modulation of inflammatory processes in alzheimer's disease. J Neurol Sci. 2016;370:162-166.CrossRef Stefano P, Concetta C, Luigi D, et al. Role of neurodevelopment involved genes in psychiatric comorbidities and modulation of inflammatory processes in alzheimer's disease. J Neurol Sci. 2016;370:162-166.CrossRef
203.
go back to reference Song Z, Uriarte S, Sahoo R, et al. S-Adenosylmethionine (SAME) modulates interleukin-10 and interleukin-6, but not tnf, production via the adenosine (A2) receptor. Biochim Biophys Acta. 2005;1743(3):205-213.CrossRefPubMed Song Z, Uriarte S, Sahoo R, et al. S-Adenosylmethionine (SAME) modulates interleukin-10 and interleukin-6, but not tnf, production via the adenosine (A2) receptor. Biochim Biophys Acta. 2005;1743(3):205-213.CrossRefPubMed
204.
go back to reference Gobejishvili L, Avila DV, Barker DF, et al. S-Adenosylmethionine decreases lipopolysaccharide-induced phosphodiesterase 4B2 and attenuates tumor necrosis factor expression via camp/protein kinase a pathway. J Pharmacol Exp Ther. 2011;337(2):433-443.PubMedCentralCrossRefPubMed Gobejishvili L, Avila DV, Barker DF, et al. S-Adenosylmethionine decreases lipopolysaccharide-induced phosphodiesterase 4B2 and attenuates tumor necrosis factor expression via camp/protein kinase a pathway. J Pharmacol Exp Ther. 2011;337(2):433-443.PubMedCentralCrossRefPubMed
205.
go back to reference Pfalzer AC, Choi SW, Tammen SA, et al. S-Adenosylmethionine mediates inhibition of inflammatory response and changes in dna methylation in human macrophages. Physiol Genomics. 2014;46(17):617-623.CrossRefPubMed Pfalzer AC, Choi SW, Tammen SA, et al. S-Adenosylmethionine mediates inhibition of inflammatory response and changes in dna methylation in human macrophages. Physiol Genomics. 2014;46(17):617-623.CrossRefPubMed
206.
go back to reference Cleare A, Pariante CM, Young AH, et al. Evidence-based guidelines for treating depressive disorders with antidepressants: a revision of the 2008 british association for psychopharmacology guidelines. J Psychopharmacol. 2015;29(5):459-525.CrossRefPubMed Cleare A, Pariante CM, Young AH, et al. Evidence-based guidelines for treating depressive disorders with antidepressants: a revision of the 2008 british association for psychopharmacology guidelines. J Psychopharmacol. 2015;29(5):459-525.CrossRefPubMed
207.
go back to reference Remington R, Bechtel C, Larsen D, et al. A phase ii randomized clinical trial of a nutritional formulation for cognition and mood in alzheimer's disease. J Alzheimers Dis. 2015;45(2):395-405.PubMed Remington R, Bechtel C, Larsen D, et al. A phase ii randomized clinical trial of a nutritional formulation for cognition and mood in alzheimer's disease. J Alzheimers Dis. 2015;45(2):395-405.PubMed
208.
go back to reference Mischoulon D, Price LH, Carpenter LL, et al. A double-blind, randomized, placebo-controlled clinical trial of S-Adenosyl-L-methionine (SAME) Versus Escitalopram In Major Depressive Disorder. J Clin Psychiatry. 2014;75(4):370-376.PubMedCentralCrossRefPubMed Mischoulon D, Price LH, Carpenter LL, et al. A double-blind, randomized, placebo-controlled clinical trial of S-Adenosyl-L-methionine (SAME) Versus Escitalopram In Major Depressive Disorder. J Clin Psychiatry. 2014;75(4):370-376.PubMedCentralCrossRefPubMed
209.
go back to reference Cho HH, Cahill CM, Vanderburg CR, Scherzer CR, Wang B, Huang X, Rogers JT. Selective Translational Control of the Alzheimer’s Amyloid Precursor Protein Transcript by Iron Regulatory Protein-1. J. Biol. Chem. (cover issue), 2010;(285)31217-32. Cho HH, Cahill CM, Vanderburg CR, Scherzer CR, Wang B, Huang X, Rogers JT. Selective Translational Control of the Alzheimer’s Amyloid Precursor Protein Transcript by Iron Regulatory Protein-1. J. Biol. Chem. (cover issue), 2010;(285)31217-32.
210.
go back to reference Lippi G, Mattiuzzi C, Meschi T, et al. Homocysteine and migraine. a narrative review. Clin Chim Acta. 2014;433:5-11.CrossRefPubMed Lippi G, Mattiuzzi C, Meschi T, et al. Homocysteine and migraine. a narrative review. Clin Chim Acta. 2014;433:5-11.CrossRefPubMed
211.
go back to reference Hao, X., et al., Novel immunoassays to detect methionine adenosyltransferase activity and quantify S-adenosylmethionine. FEBS Lett, 2017. 591(8): p. 1114-1125.CrossRefPubMed Hao, X., et al., Novel immunoassays to detect methionine adenosyltransferase activity and quantify S-adenosylmethionine. FEBS Lett, 2017. 591(8): p. 1114-1125.CrossRefPubMed
Metadata
Title
S-Adenosyl Methionine and Transmethylation Pathways in Neuropsychiatric Diseases Throughout Life
Authors
Jin Gao
Catherine M. Cahill
Xudong Huang
Joshua L. Roffman
Stefania Lamon-Fava
Maurizio Fava
David Mischoulon
Jack T. Rogers
Publication date
01-01-2018
Publisher
Springer US
Published in
Neurotherapeutics / Issue 1/2018
Print ISSN: 1933-7213
Electronic ISSN: 1878-7479
DOI
https://doi.org/10.1007/s13311-017-0593-0

Other articles of this Issue 1/2018

Neurotherapeutics 1/2018 Go to the issue