Skip to main content
Top
Published in: Neurotherapeutics 1/2018

01-01-2018 | Review

Gut Microbiota Are Disease-Modifying Factors After Traumatic Spinal Cord Injury

Authors: Kristina A. Kigerl, Klauss Mostacada, Phillip G. Popovich

Published in: Neurotherapeutics | Issue 1/2018

Login to get access

Abstract

Spinal cord injury (SCI) disrupts the autonomic nervous system (ANS), impairing its ability to coordinate organ function throughout the body. Emerging data indicate that the systemic pathology that manifests from ANS dysfunction exacerbates intraspinal pathology and neurological impairment. Precisely how this happens is unknown, although new data, in both humans and in rodent models, implicate changes in the composition of bacteria in the gut (i.e., the gut microbiota) as disease-modifying factors that are capable of affecting systemic physiology and pathophysiology. Recent data from rodents indicate that SCI causes gut dysbiosis, which exacerbates intraspinal inflammation and lesion pathology leading to impaired recovery of motor function. Postinjury delivery of probiotics containing various types of “good” bacteria can partially overcome the pathophysiologal effects of gut dysbiosis; immune function, locomotor recovery, and spinal cord integrity are partially restored by a sustained regimen of oral probiotics. More research is needed to determine whether gut dysbiosis varies across a range of clinically relevant variables, including sex, injury level, and injury severity, and whether changes in the gut microbiota can predict the onset or severity of common postinjury comorbidities, including infection, anemia, metabolic syndrome, and, perhaps, secondary neurological deterioration. Those microbial populations that dominate the gut could become “druggable” targets that could be manipulated via dietary interventions. For example, personalized nutraceuticals (e.g., pre- or probiotics) could be developed to treat the above comorbidities and improve health and quality of life after SCI.
Appendix
Available only for authorised users
Literature
1.
go back to reference Espinosa-Medina I, Saha O, Boismoreau F, et al. The sacral autonomic outflow is sympathetic. Science 2016, 354:893-897.PubMedCrossRef Espinosa-Medina I, Saha O, Boismoreau F, et al. The sacral autonomic outflow is sympathetic. Science 2016, 354:893-897.PubMedCrossRef
2.
go back to reference Brommer B, Engel O, Kopp MA, et al. Spinal cord injury-induced immune deficiency syndrome enhances infection susceptibility dependent on lesion level. Brain 2016, 139:692-707.PubMedPubMedCentralCrossRef Brommer B, Engel O, Kopp MA, et al. Spinal cord injury-induced immune deficiency syndrome enhances infection susceptibility dependent on lesion level. Brain 2016, 139:692-707.PubMedPubMedCentralCrossRef
3.
go back to reference Meisel C, Schwab JM, Prass K, Meisel A, Dirnagl U. Central nervous system injury-induced immune deficiency syndrome. Nat Rev Neurosci 2005, 6:775-786.PubMedCrossRef Meisel C, Schwab JM, Prass K, Meisel A, Dirnagl U. Central nervous system injury-induced immune deficiency syndrome. Nat Rev Neurosci 2005, 6:775-786.PubMedCrossRef
4.
5.
go back to reference Ueno M, Ueno-Nakamura Y, Niehaus J, Popovich PG, Yoshida Y. Silencing spinal interneurons inhibits immune suppressive autonomic reflexes caused by spinal cord injury. Nat Neurosci 2016, 19:784-787.PubMedPubMedCentralCrossRef Ueno M, Ueno-Nakamura Y, Niehaus J, Popovich PG, Yoshida Y. Silencing spinal interneurons inhibits immune suppressive autonomic reflexes caused by spinal cord injury. Nat Neurosci 2016, 19:784-787.PubMedPubMedCentralCrossRef
6.
7.
go back to reference Hou S, Duale H, Cameron AA, Abshire SM, Lyttle TS, Rabchevsky AG. Plasticity of lumbosacral propriospinal neurons is associated with the development of autonomic dysreflexia after thoracic spinal cord transection. J Comp Neurol 2008, 509:382-399.PubMedPubMedCentralCrossRef Hou S, Duale H, Cameron AA, Abshire SM, Lyttle TS, Rabchevsky AG. Plasticity of lumbosacral propriospinal neurons is associated with the development of autonomic dysreflexia after thoracic spinal cord transection. J Comp Neurol 2008, 509:382-399.PubMedPubMedCentralCrossRef
8.
go back to reference Cervi AL, Lukewich MK, Lomax AE. Neural regulation of gastrointestinal inflammation: role of the sympathetic nervous system. Auton Neurosci 2014, 182:83-88.PubMedCrossRef Cervi AL, Lukewich MK, Lomax AE. Neural regulation of gastrointestinal inflammation: role of the sympathetic nervous system. Auton Neurosci 2014, 182:83-88.PubMedCrossRef
9.
go back to reference Elenkov IJ, Wilder RL, Chrousos GP, Vizi ES: The sympathetic nerve—an integrative interface between two supersystems: the brain and the immune system. Pharmacol Rev 2000, 52:595-638.PubMed Elenkov IJ, Wilder RL, Chrousos GP, Vizi ES: The sympathetic nerve—an integrative interface between two supersystems: the brain and the immune system. Pharmacol Rev 2000, 52:595-638.PubMed
10.
go back to reference Mignini F, Streccioni V, Amenta F. Autonomic innervation of immune organs and neuroimmune modulation. Auton Autacoid Pharmacol 2003, 23:1-25.PubMedCrossRef Mignini F, Streccioni V, Amenta F. Autonomic innervation of immune organs and neuroimmune modulation. Auton Autacoid Pharmacol 2003, 23:1-25.PubMedCrossRef
11.
go back to reference Bellinger DL, Lorton D. Autonomic regulation of cellular immune function. Auton Neurosci 2014, 182:15-41.PubMedCrossRef Bellinger DL, Lorton D. Autonomic regulation of cellular immune function. Auton Neurosci 2014, 182:15-41.PubMedCrossRef
12.
go back to reference Suzuki TA, Nachman MW. Spatial heterogeneity of gut microbial composition along the gastrointestinal tract in natural populations of house mice. PLoS ONE 2016, 11:e0163720.PubMedPubMedCentralCrossRef Suzuki TA, Nachman MW. Spatial heterogeneity of gut microbial composition along the gastrointestinal tract in natural populations of house mice. PLoS ONE 2016, 11:e0163720.PubMedPubMedCentralCrossRef
14.
go back to reference Donaldson GP, Lee SM, Mazmanian SK. Gut biogeography of the bacterial microbiota. Nat Rev Microbiol 2016, 14:20-32.PubMedCrossRef Donaldson GP, Lee SM, Mazmanian SK. Gut biogeography of the bacterial microbiota. Nat Rev Microbiol 2016, 14:20-32.PubMedCrossRef
15.
go back to reference Hollister EB, Gao C, Versalovic J. Compositional and functional features of the gastrointestinal microbiome and their effects on human health. Gastroenterology 2014, 146:1449-1458.PubMedPubMedCentralCrossRef Hollister EB, Gao C, Versalovic J. Compositional and functional features of the gastrointestinal microbiome and their effects on human health. Gastroenterology 2014, 146:1449-1458.PubMedPubMedCentralCrossRef
19.
20.
go back to reference Ochoa-Repáraz J, Mielcarz DW, Begum-Haque S, Kasper LH. Gut, bugs, and brain: role of commensal bacteria in the control of central nervous system disease. Ann Neurol 2011, 69:240-247.PubMedCrossRef Ochoa-Repáraz J, Mielcarz DW, Begum-Haque S, Kasper LH. Gut, bugs, and brain: role of commensal bacteria in the control of central nervous system disease. Ann Neurol 2011, 69:240-247.PubMedCrossRef
21.
go back to reference Wang Y, Kasper LH. The role of microbiome in central nervous system disorders. Brain Behav Immun 2014, 38:1-12.PubMedCrossRef Wang Y, Kasper LH. The role of microbiome in central nervous system disorders. Brain Behav Immun 2014, 38:1-12.PubMedCrossRef
22.
go back to reference Collins SM, Surette M, Bercik P. The interplay between the intestinal microbiota and the brain. Nat Rev Microbiol 2012, 10:735-742.PubMedCrossRef Collins SM, Surette M, Bercik P. The interplay between the intestinal microbiota and the brain. Nat Rev Microbiol 2012, 10:735-742.PubMedCrossRef
23.
go back to reference Benakis C, Brea D, Caballero S, et al. Commensal microbiota affects ischemic stroke outcome by regulating intestinal γδ T cells. Nat Med 2016, 22:516-523.PubMedPubMedCentralCrossRef Benakis C, Brea D, Caballero S, et al. Commensal microbiota affects ischemic stroke outcome by regulating intestinal γδ T cells. Nat Med 2016, 22:516-523.PubMedPubMedCentralCrossRef
24.
go back to reference Winek K, Engel O, Koduah P, et al. Depletion of cultivatable gut microbiota by broad-spectrum antibiotic pretreatment worsens outcome after murine stroke. Stroke 2016, 47:1354-1363.PubMedPubMedCentralCrossRef Winek K, Engel O, Koduah P, et al. Depletion of cultivatable gut microbiota by broad-spectrum antibiotic pretreatment worsens outcome after murine stroke. Stroke 2016, 47:1354-1363.PubMedPubMedCentralCrossRef
26.
go back to reference El Aidy S, Dinan TG, Cryan JF. Gut microbiota: the conductor in the orchestra of immune-neuroendocrine communication. Clin Ther 2015, 37:954-967.PubMedCrossRef El Aidy S, Dinan TG, Cryan JF. Gut microbiota: the conductor in the orchestra of immune-neuroendocrine communication. Clin Ther 2015, 37:954-967.PubMedCrossRef
27.
go back to reference Berer K, Mues M, Koutrolos M, et al. Commensal microbiota and myelin autoantigen cooperate to trigger autoimmune demyelination. Nature 2011, 479:538-541.PubMedCrossRef Berer K, Mues M, Koutrolos M, et al. Commensal microbiota and myelin autoantigen cooperate to trigger autoimmune demyelination. Nature 2011, 479:538-541.PubMedCrossRef
28.
go back to reference Lee YK, Menezes JS, Umesaki Y, Mazmanian SK. Proinflammatory T-cell responses to gut microbiota promote experimental autoimmune encephalomyelitis. Proc Natl Acad Sci U S A 2011, 108(Suppl. 1):4615-4622.PubMedCrossRef Lee YK, Menezes JS, Umesaki Y, Mazmanian SK. Proinflammatory T-cell responses to gut microbiota promote experimental autoimmune encephalomyelitis. Proc Natl Acad Sci U S A 2011, 108(Suppl. 1):4615-4622.PubMedCrossRef
29.
go back to reference Soyucen E, Gulcan A, Aktuglu-Zeybek AC, Onal H, Kiykim E, Aydin A: Differences in the gut microbiota of healthy children and those with type 1 diabetes. Pediatr Int 2014, 56:336-343.PubMedCrossRef Soyucen E, Gulcan A, Aktuglu-Zeybek AC, Onal H, Kiykim E, Aydin A: Differences in the gut microbiota of healthy children and those with type 1 diabetes. Pediatr Int 2014, 56:336-343.PubMedCrossRef
30.
go back to reference Murri M, Leiva I, Gomez-Zumaquero JM, et al. Gut microbiota in children with type 1 diabetes differs from that in healthy children: a case-control study. BMC Med 2013, 11:46.PubMedPubMedCentralCrossRef Murri M, Leiva I, Gomez-Zumaquero JM, et al. Gut microbiota in children with type 1 diabetes differs from that in healthy children: a case-control study. BMC Med 2013, 11:46.PubMedPubMedCentralCrossRef
31.
go back to reference Kriegel MA, Sefik E, Hill JA, Wu HJ, Benoist C, Mathis D. Naturally transmitted segmented filamentous bacteria segregate with diabetes protection in nonobese diabetic mice. Proc Natl Acad Sci U S A 2011, 108:11548-11553.PubMedPubMedCentralCrossRef Kriegel MA, Sefik E, Hill JA, Wu HJ, Benoist C, Mathis D. Naturally transmitted segmented filamentous bacteria segregate with diabetes protection in nonobese diabetic mice. Proc Natl Acad Sci U S A 2011, 108:11548-11553.PubMedPubMedCentralCrossRef
33.
34.
go back to reference Hsiao EY, McBride SW, Hsien S, et al. Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders. Cell 2013, 155:1451-1463.PubMedPubMedCentralCrossRef Hsiao EY, McBride SW, Hsien S, et al. Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders. Cell 2013, 155:1451-1463.PubMedPubMedCentralCrossRef
35.
go back to reference de Theije CG, Wopereis H, Ramadan M, et al. Altered gut microbiota and activity in a murine model of autism spectrum disorders. Brain Behav Immun 2014, 37:197-206.PubMedCrossRef de Theije CG, Wopereis H, Ramadan M, et al. Altered gut microbiota and activity in a murine model of autism spectrum disorders. Brain Behav Immun 2014, 37:197-206.PubMedCrossRef
36.
go back to reference de Theije CG, Koelink PJ, Korte-Bouws GA, et al. Intestinal inflammation in a murine model of autism spectrum disorders. Brain Behav Immun 2014, 37:240-247.PubMedCrossRef de Theije CG, Koelink PJ, Korte-Bouws GA, et al. Intestinal inflammation in a murine model of autism spectrum disorders. Brain Behav Immun 2014, 37:240-247.PubMedCrossRef
37.
go back to reference Foster JA, McVey Neufeld KA. Gut-brain axis: how the microbiome influences anxiety and depression. Trends Neurosci 2013, 36:305-312.PubMedCrossRef Foster JA, McVey Neufeld KA. Gut-brain axis: how the microbiome influences anxiety and depression. Trends Neurosci 2013, 36:305-312.PubMedCrossRef
38.
go back to reference Cryan JF, Dinan TG. Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nat Rev Neurosci 2012, 13:701-712.PubMedCrossRef Cryan JF, Dinan TG. Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nat Rev Neurosci 2012, 13:701-712.PubMedCrossRef
39.
go back to reference Rousseaux C, Thuru X, Gelot A, et al. Lactobacillus acidophilus modulates intestinal pain and induces opioid and cannabinoid receptors. Nat Med 2007, 13:35-37.PubMedCrossRef Rousseaux C, Thuru X, Gelot A, et al. Lactobacillus acidophilus modulates intestinal pain and induces opioid and cannabinoid receptors. Nat Med 2007, 13:35-37.PubMedCrossRef
40.
go back to reference Ait-Belgnaoui A, Han W, Lamine F, et al. Lactobacillus farciminis treatment suppresses stress induced visceral hypersensitivity: a possible action through interaction with epithelial cell cytoskeleton contraction. Gut 2006, 55:1090-1094.PubMedPubMedCentralCrossRef Ait-Belgnaoui A, Han W, Lamine F, et al. Lactobacillus farciminis treatment suppresses stress induced visceral hypersensitivity: a possible action through interaction with epithelial cell cytoskeleton contraction. Gut 2006, 55:1090-1094.PubMedPubMedCentralCrossRef
41.
43.
go back to reference Krych L, Hansen CH, Hansen AK, van den Berg FW, Nielsen DS. Quantitatively different, yet qualitatively alike: a meta-analysis of the mouse core gut microbiome with a view towards the human gut microbiome. PLoS ONE 2013, 8:e62578.PubMedPubMedCentralCrossRef Krych L, Hansen CH, Hansen AK, van den Berg FW, Nielsen DS. Quantitatively different, yet qualitatively alike: a meta-analysis of the mouse core gut microbiome with a view towards the human gut microbiome. PLoS ONE 2013, 8:e62578.PubMedPubMedCentralCrossRef
44.
go back to reference Castro GA, Arntzen CJ. Immunophysiology of the gut: a research frontier for integrative studies of the common mucosal immune system. Am J Phys 1993, 265:G599-610. Castro GA, Arntzen CJ. Immunophysiology of the gut: a research frontier for integrative studies of the common mucosal immune system. Am J Phys 1993, 265:G599-610.
45.
go back to reference Clarke G, Grenham S, Scully P, et al. The microbiome-gut-brain axis during early life regulates the hippocampal serotonergic system in a sex-dependent manner. Mol Psychiatry 2013, 18:666-673.PubMedCrossRef Clarke G, Grenham S, Scully P, et al. The microbiome-gut-brain axis during early life regulates the hippocampal serotonergic system in a sex-dependent manner. Mol Psychiatry 2013, 18:666-673.PubMedCrossRef
46.
go back to reference O'Mahony SM, Clarke G, Borre YE, Dinan TG, Cryan JF. Serotonin, tryptophan metabolism and the brain-gut-microbiome axis. Behav Brain Res 2015, 277:32-48.PubMedCrossRef O'Mahony SM, Clarke G, Borre YE, Dinan TG, Cryan JF. Serotonin, tryptophan metabolism and the brain-gut-microbiome axis. Behav Brain Res 2015, 277:32-48.PubMedCrossRef
47.
go back to reference Balzan S, de Almeida Quadros C, de Cleva R, Zilberstein B, Cecconello I. Bacterial translocation: overview of mechanisms and clinical impact. J Gastroenterol Hepatol 2007, 22:464-471.PubMedCrossRef Balzan S, de Almeida Quadros C, de Cleva R, Zilberstein B, Cecconello I. Bacterial translocation: overview of mechanisms and clinical impact. J Gastroenterol Hepatol 2007, 22:464-471.PubMedCrossRef
48.
51.
go back to reference Lucin KM, Sanders VM, Jones TB, Malarkey WB, Popovich PG. Impaired antibody synthesis after spinal cord injury is level dependent and is due to sympathetic nervous system dysregulation. Exp Neurol 2007, 207:75-84.PubMedPubMedCentralCrossRef Lucin KM, Sanders VM, Jones TB, Malarkey WB, Popovich PG. Impaired antibody synthesis after spinal cord injury is level dependent and is due to sympathetic nervous system dysregulation. Exp Neurol 2007, 207:75-84.PubMedPubMedCentralCrossRef
52.
go back to reference Lucin KM, Sanders VM, Popovich PG. Stress hormones collaborate to induce lymphocyte apoptosis after high level spinal cord injury. J Neurochem 2009, 110:1409-1421.PubMedPubMedCentralCrossRef Lucin KM, Sanders VM, Popovich PG. Stress hormones collaborate to induce lymphocyte apoptosis after high level spinal cord injury. J Neurochem 2009, 110:1409-1421.PubMedPubMedCentralCrossRef
53.
go back to reference Riegger T, Conrad S, Liu K, Schluesener HJ, Adibzahdeh M, Schwab JM. Spinal cord injury-induced immune depression syndrome (SCI-IDS). Eur J Neurosci 2007, 25:1743-1747.PubMedCrossRef Riegger T, Conrad S, Liu K, Schluesener HJ, Adibzahdeh M, Schwab JM. Spinal cord injury-induced immune depression syndrome (SCI-IDS). Eur J Neurosci 2007, 25:1743-1747.PubMedCrossRef
54.
go back to reference Riegger T, Conrad S, Schluesener HJ, et al. Immune depression syndrome following human spinal cord injury (SCI): a pilot study. Neuroscience 2009, 158:1194-1199.PubMedCrossRef Riegger T, Conrad S, Schluesener HJ, et al. Immune depression syndrome following human spinal cord injury (SCI): a pilot study. Neuroscience 2009, 158:1194-1199.PubMedCrossRef
55.
go back to reference Oropallo MA, Held KS, Goenka R, et al. Chronic spinal cord injury impairs primary antibody responses but spares existing humoral immunity in mice. J Immunol 2012, 188:5257-5266.PubMedPubMedCentralCrossRef Oropallo MA, Held KS, Goenka R, et al. Chronic spinal cord injury impairs primary antibody responses but spares existing humoral immunity in mice. J Immunol 2012, 188:5257-5266.PubMedPubMedCentralCrossRef
56.
go back to reference Failli V, Kopp MA, Gericke C, et al. Functional neurological recovery after spinal cord injury is impaired in patients with infections. Brain 2012, 135:3238-3250.PubMedCrossRef Failli V, Kopp MA, Gericke C, et al. Functional neurological recovery after spinal cord injury is impaired in patients with infections. Brain 2012, 135:3238-3250.PubMedCrossRef
57.
go back to reference Evans CT, Rogers TJ, Weaver FM, Burns SP. Providers’ beliefs and behaviors regarding antibiotic prescribing and antibiotic resistance in persons with spinal cord injury or disorder. J Spinal Cord Med 2011, 34:16-21.PubMedPubMedCentralCrossRef Evans CT, Rogers TJ, Weaver FM, Burns SP. Providers’ beliefs and behaviors regarding antibiotic prescribing and antibiotic resistance in persons with spinal cord injury or disorder. J Spinal Cord Med 2011, 34:16-21.PubMedPubMedCentralCrossRef
58.
go back to reference Evans CT, Rogers TJ, Chin A, et al. Antibiotic prescribing trends in the emergency department for veterans with spinal cord injury and disorder 2002-2007. J Spinal Cord Med 2013, 36:492-498.PubMedPubMedCentralCrossRef Evans CT, Rogers TJ, Chin A, et al. Antibiotic prescribing trends in the emergency department for veterans with spinal cord injury and disorder 2002-2007. J Spinal Cord Med 2013, 36:492-498.PubMedPubMedCentralCrossRef
59.
go back to reference Pérez-Cobas AE, Gosalbes MJ, Friedrichs A, et al. Gut microbiota disturbance during antibiotic therapy: a multi-omic approach. Gut 2013, 62:1591-1601.PubMedCrossRef Pérez-Cobas AE, Gosalbes MJ, Friedrichs A, et al. Gut microbiota disturbance during antibiotic therapy: a multi-omic approach. Gut 2013, 62:1591-1601.PubMedCrossRef
60.
go back to reference Francino MP. Antibiotics and the human gut microbiome: dysbioses and accumulation of resistances. Front Microbiol 2015, 6:1543.PubMed Francino MP. Antibiotics and the human gut microbiome: dysbioses and accumulation of resistances. Front Microbiol 2015, 6:1543.PubMed
61.
go back to reference Jernberg C, Löfmark S, Edlund C, Jansson JK. Long-term impacts of antibiotic exposure on the human intestinal microbiota. Microbiology 2010, 156:3216-3223.PubMedCrossRef Jernberg C, Löfmark S, Edlund C, Jansson JK. Long-term impacts of antibiotic exposure on the human intestinal microbiota. Microbiology 2010, 156:3216-3223.PubMedCrossRef
63.
go back to reference van Baarlen P, Wells JM, Kleerebezem M. Regulation of intestinal homeostasis and immunity with probiotic lactobacilli. Trends Immunol 2013, 34:208-215.PubMedCrossRef van Baarlen P, Wells JM, Kleerebezem M. Regulation of intestinal homeostasis and immunity with probiotic lactobacilli. Trends Immunol 2013, 34:208-215.PubMedCrossRef
64.
go back to reference Wong S, Jamous A, O'Driscoll J, et al. A Lactobacillus casei Shirota probiotic drink reduces antibiotic-associated diarrhoea in patients with spinal cord injuries: a randomised controlled trial. Br J Nutr 2014, 111:672-678.PubMedCrossRef Wong S, Jamous A, O'Driscoll J, et al. A Lactobacillus casei Shirota probiotic drink reduces antibiotic-associated diarrhoea in patients with spinal cord injuries: a randomised controlled trial. Br J Nutr 2014, 111:672-678.PubMedCrossRef
65.
go back to reference Anukam KC, Hayes K, Summers K, Reid G. Probiotic Lactobacillus rhamnosus GR-1 and Lactobacillus reuteri RC-14 may help downregulate TNF-Alpha, IL-6, IL-8, IL-10 and IL-12 (p70) in the neurogenic bladder of spinal cord injured patient with urinary tract infections: a two-case study. Adv Urol 2009;680363. Anukam KC, Hayes K, Summers K, Reid G. Probiotic Lactobacillus rhamnosus GR-1 and Lactobacillus reuteri RC-14 may help downregulate TNF-Alpha, IL-6, IL-8, IL-10 and IL-12 (p70) in the neurogenic bladder of spinal cord injured patient with urinary tract infections: a two-case study. Adv Urol 2009;680363.
66.
go back to reference Furusawa Y, Obata Y, Fukuda S, et al. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature 2013, 504:446-450.PubMedCrossRef Furusawa Y, Obata Y, Fukuda S, et al. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature 2013, 504:446-450.PubMedCrossRef
67.
go back to reference Wikoff WR, Anfora AT, Liu J, et al. Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites. Proc Natl Acad Sci U S A 2009, 106:3698-3703.PubMedPubMedCentralCrossRef Wikoff WR, Anfora AT, Liu J, et al. Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites. Proc Natl Acad Sci U S A 2009, 106:3698-3703.PubMedPubMedCentralCrossRef
68.
go back to reference Bilate AM, Lafaille JJ. Induced CD4+Foxp3+ regulatory T cells in immune tolerance. Annu Rev Immunol 2012, 30:733-758.PubMedCrossRef Bilate AM, Lafaille JJ. Induced CD4+Foxp3+ regulatory T cells in immune tolerance. Annu Rev Immunol 2012, 30:733-758.PubMedCrossRef
69.
go back to reference Kwon HK, Kim GC, Kim Y, et al. Amelioration of experimental autoimmune encephalomyelitis by probiotic mixture is mediated by a shift in T helper cell immune response. Clin Immunol 2013, 146:217-227.PubMedCrossRef Kwon HK, Kim GC, Kim Y, et al. Amelioration of experimental autoimmune encephalomyelitis by probiotic mixture is mediated by a shift in T helper cell immune response. Clin Immunol 2013, 146:217-227.PubMedCrossRef
70.
go back to reference Lavasani S, Dzhambazov B, Nouri M, et al. A novel probiotic mixture exerts a therapeutic effect on experimental autoimmune encephalomyelitis mediated by IL-10 producing regulatory T cells. PLoS ONE 2010, 5:e9009.PubMedPubMedCentralCrossRef Lavasani S, Dzhambazov B, Nouri M, et al. A novel probiotic mixture exerts a therapeutic effect on experimental autoimmune encephalomyelitis mediated by IL-10 producing regulatory T cells. PLoS ONE 2010, 5:e9009.PubMedPubMedCentralCrossRef
71.
go back to reference Carding S, Verbeke K, Vipond DT, Corfe BM, Owen LJ. Dysbiosis of the gut microbiota in disease. Microb Ecol Health Dis 2015, 26:26191.PubMed Carding S, Verbeke K, Vipond DT, Corfe BM, Owen LJ. Dysbiosis of the gut microbiota in disease. Microb Ecol Health Dis 2015, 26:26191.PubMed
72.
go back to reference Wulff K, Gatti S, Wettstein JG, Foster RG. Sleep and circadian rhythm disruption in psychiatric and neurodegenerative disease. Nat Rev Neurosci 2010, 11:589-599.PubMedCrossRef Wulff K, Gatti S, Wettstein JG, Foster RG. Sleep and circadian rhythm disruption in psychiatric and neurodegenerative disease. Nat Rev Neurosci 2010, 11:589-599.PubMedCrossRef
73.
go back to reference Altindag O, Karagullu H, Gur A. Sleep disturbances in patients with spinal cord injury. Orthopedic Muscul Syst 2014, 3:164. Altindag O, Karagullu H, Gur A. Sleep disturbances in patients with spinal cord injury. Orthopedic Muscul Syst 2014, 3:164.
74.
go back to reference Jensen MP, Hirsh AT, Molton IR, Bamer AM. Sleep problems in individuals with spinal cord injury: frequency and age effects. Rehabil Psychol 2009, 54:323-331.PubMedPubMedCentralCrossRef Jensen MP, Hirsh AT, Molton IR, Bamer AM. Sleep problems in individuals with spinal cord injury: frequency and age effects. Rehabil Psychol 2009, 54:323-331.PubMedPubMedCentralCrossRef
76.
go back to reference Wijesuriya N, Tran Y, Middleton J, Craig A. Impact of fatigue on the health-related quality of life in persons with spinal cord injury. Arch Phys Med Rehabil 2012, 93:319-324.PubMedCrossRef Wijesuriya N, Tran Y, Middleton J, Craig A. Impact of fatigue on the health-related quality of life in persons with spinal cord injury. Arch Phys Med Rehabil 2012, 93:319-324.PubMedCrossRef
77.
go back to reference Craig A, Tran Y, Wijesuriya N, Middleton J. Fatigue and tiredness in people with spinal cord injury. J Psychosom Res 2012, 73:205-210.PubMedCrossRef Craig A, Tran Y, Wijesuriya N, Middleton J. Fatigue and tiredness in people with spinal cord injury. J Psychosom Res 2012, 73:205-210.PubMedCrossRef
78.
go back to reference Bauman WA, Spungen AM. Metabolic changes in persons after spinal cord injury. Phys Med Rehabil Clin N Am 2000, 11:109-140.PubMed Bauman WA, Spungen AM. Metabolic changes in persons after spinal cord injury. Phys Med Rehabil Clin N Am 2000, 11:109-140.PubMed
79.
go back to reference Inskip J, Plunet W, Ramer L, et al. Cardiometabolic risk factors in experimental spinal cord injury. J Neurotrauma 2010, 27:275-285.PubMedCrossRef Inskip J, Plunet W, Ramer L, et al. Cardiometabolic risk factors in experimental spinal cord injury. J Neurotrauma 2010, 27:275-285.PubMedCrossRef
80.
go back to reference Cragg JJ, Noonan VK, Krassioukov A, Borisoff J. Cardiovascular disease and spinal cord injury: results from a national population health survey. Neurology 2013, 81:723-728.PubMedPubMedCentralCrossRef Cragg JJ, Noonan VK, Krassioukov A, Borisoff J. Cardiovascular disease and spinal cord injury: results from a national population health survey. Neurology 2013, 81:723-728.PubMedPubMedCentralCrossRef
81.
go back to reference Cragg JJ, Noonan VK, Dvorak M, Krassioukov A, Mancini GB, Borisoff JF. Spinal cord injury and type 2 diabetes: results from a population health survey. Neurology 2013, 81:1864-1868.PubMedPubMedCentralCrossRef Cragg JJ, Noonan VK, Dvorak M, Krassioukov A, Mancini GB, Borisoff JF. Spinal cord injury and type 2 diabetes: results from a population health survey. Neurology 2013, 81:1864-1868.PubMedPubMedCentralCrossRef
82.
go back to reference Wahman K, Nash MS, Westgren N, Lewis JE, Seiger A, Levi R. Cardiovascular disease risk factors in persons with paraplegia: the Stockholm spinal cord injury study. J Rehabil Med 2010, 42:272-278.PubMedCrossRef Wahman K, Nash MS, Westgren N, Lewis JE, Seiger A, Levi R. Cardiovascular disease risk factors in persons with paraplegia: the Stockholm spinal cord injury study. J Rehabil Med 2010, 42:272-278.PubMedCrossRef
83.
go back to reference Nash MS, Tractenberg RE, Mendez AJ, et al. Cardiometabolic syndrome in people with spinal cord injury/disease: guideline-derived and nonguideline risk components in a pooled sample. Arch Phys Med Rehabil 2016, 97:1696-1705.PubMedCrossRef Nash MS, Tractenberg RE, Mendez AJ, et al. Cardiometabolic syndrome in people with spinal cord injury/disease: guideline-derived and nonguideline risk components in a pooled sample. Arch Phys Med Rehabil 2016, 97:1696-1705.PubMedCrossRef
84.
go back to reference Gorgey AS, Mather KJ, Gater DR. Central adiposity associations to carbohydrate and lipid metabolism in individuals with complete motor spinal cord injury. Metabolism 2011, 60:843-851.PubMedCrossRef Gorgey AS, Mather KJ, Gater DR. Central adiposity associations to carbohydrate and lipid metabolism in individuals with complete motor spinal cord injury. Metabolism 2011, 60:843-851.PubMedCrossRef
85.
86.
go back to reference Gorgey AS, Dolbow DR, Dolbow JD, Khalil RK, Castillo C, Gater DR. Effects of spinal cord injury on body composition and metabolic profile—part I. J Spinal Cord Med 2014, 37:693-702.PubMedPubMedCentralCrossRef Gorgey AS, Dolbow DR, Dolbow JD, Khalil RK, Castillo C, Gater DR. Effects of spinal cord injury on body composition and metabolic profile—part I. J Spinal Cord Med 2014, 37:693-702.PubMedPubMedCentralCrossRef
87.
go back to reference Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 2006, 444:1027-1031.PubMedCrossRef Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 2006, 444:1027-1031.PubMedCrossRef
88.
go back to reference Baothman OA, Zamzami MA, Taher I, Abubaker J, Abu-Farha M. The role of gut microbiota in the development of obesity and diabetes. Lipids Health Dis 2016, 15:108.PubMedPubMedCentralCrossRef Baothman OA, Zamzami MA, Taher I, Abubaker J, Abu-Farha M. The role of gut microbiota in the development of obesity and diabetes. Lipids Health Dis 2016, 15:108.PubMedPubMedCentralCrossRef
91.
go back to reference Bäckhed F, Ding H, Wang T, et al. The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci U S A 2004, 101:15718-15723.PubMedPubMedCentralCrossRef Bäckhed F, Ding H, Wang T, et al. The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci U S A 2004, 101:15718-15723.PubMedPubMedCentralCrossRef
92.
go back to reference Bäckhed F, Manchester JK, Semenkovich CF, Gordon JI. Mechanisms underlying the resistance to diet-induced obesity in germ-free mice. Proc Natl Acad Sci U S A 2007, 104:979-984.PubMedPubMedCentralCrossRef Bäckhed F, Manchester JK, Semenkovich CF, Gordon JI. Mechanisms underlying the resistance to diet-induced obesity in germ-free mice. Proc Natl Acad Sci U S A 2007, 104:979-984.PubMedPubMedCentralCrossRef
93.
go back to reference DeVivo MJ, Black KJ, Stover SL. Causes of death during the first 12 years after spinal cord injury. Arch Phys Med Rehabil 1993, 74:248-254.PubMed DeVivo MJ, Black KJ, Stover SL. Causes of death during the first 12 years after spinal cord injury. Arch Phys Med Rehabil 1993, 74:248-254.PubMed
94.
95.
go back to reference El Aidy S, van den Bogert B, Kleerebezem M. The small intestine microbiota, nutritional modulation and relevance for health. Curr Opin Biotechnol 2015, 32:14-20.PubMedCrossRef El Aidy S, van den Bogert B, Kleerebezem M. The small intestine microbiota, nutritional modulation and relevance for health. Curr Opin Biotechnol 2015, 32:14-20.PubMedCrossRef
96.
go back to reference Sekirov I, Russell SL, Antunes LC, Finlay BB: Gut microbiota in health and disease. Physiol Rev 2010, 90:859-904.PubMedCrossRef Sekirov I, Russell SL, Antunes LC, Finlay BB: Gut microbiota in health and disease. Physiol Rev 2010, 90:859-904.PubMedCrossRef
97.
go back to reference Manns PJ, McCubbin JA, Williams DP. Fitness, inflammation, and the metabolic syndrome in men with paraplegia. Arch Phys Med Rehabil 2005, 86:1176-1181.PubMedCrossRef Manns PJ, McCubbin JA, Williams DP. Fitness, inflammation, and the metabolic syndrome in men with paraplegia. Arch Phys Med Rehabil 2005, 86:1176-1181.PubMedCrossRef
98.
go back to reference Nelson MD, Widman LM, Abresch RT, et al. Metabolic syndrome in adolescents with spinal cord dysfunction. J Spinal Cord Med 2007, 30(Suppl. 1):S127-139.PubMedCrossRef Nelson MD, Widman LM, Abresch RT, et al. Metabolic syndrome in adolescents with spinal cord dysfunction. J Spinal Cord Med 2007, 30(Suppl. 1):S127-139.PubMedCrossRef
99.
go back to reference Maruyama Y, Mizuguchi M, Yaginuma T, et al. Serum leptin, abdominal obesity and the metabolic syndrome in individuals with chronic spinal cord injury. Spinal Cord 2008, 46:494-499.PubMedCrossRef Maruyama Y, Mizuguchi M, Yaginuma T, et al. Serum leptin, abdominal obesity and the metabolic syndrome in individuals with chronic spinal cord injury. Spinal Cord 2008, 46:494-499.PubMedCrossRef
100.
go back to reference Scarpellini E, Ianiro G, Attili F, Bassanelli C, De Santis A, Gasbarrini A. The human gut microbiota and virome: potential therapeutic implications. Dig Liver Dis 2015, 47:1007-1012.PubMedCrossRef Scarpellini E, Ianiro G, Attili F, Bassanelli C, De Santis A, Gasbarrini A. The human gut microbiota and virome: potential therapeutic implications. Dig Liver Dis 2015, 47:1007-1012.PubMedCrossRef
101.
go back to reference Young R, Gill JJ. Microbiology. Phage therapy redux—What is to be done? Science 2015, 350:1163-1164.PubMedCrossRef Young R, Gill JJ. Microbiology. Phage therapy redux—What is to be done? Science 2015, 350:1163-1164.PubMedCrossRef
102.
go back to reference Xiao L, Feng Q, Liang S, et al: A catalog of the mouse gut metagenome. Nat Biotechnol 2015, 33:1103-1108.PubMedCrossRef Xiao L, Feng Q, Liang S, et al: A catalog of the mouse gut metagenome. Nat Biotechnol 2015, 33:1103-1108.PubMedCrossRef
104.
105.
go back to reference Hanage WP: Microbiology: Microbiome science needs a healthy dose of scepticism. Nature 2014, 512:247-248.PubMedCrossRef Hanage WP: Microbiology: Microbiome science needs a healthy dose of scepticism. Nature 2014, 512:247-248.PubMedCrossRef
Metadata
Title
Gut Microbiota Are Disease-Modifying Factors After Traumatic Spinal Cord Injury
Authors
Kristina A. Kigerl
Klauss Mostacada
Phillip G. Popovich
Publication date
01-01-2018
Publisher
Springer US
Published in
Neurotherapeutics / Issue 1/2018
Print ISSN: 1933-7213
Electronic ISSN: 1878-7479
DOI
https://doi.org/10.1007/s13311-017-0583-2

Other articles of this Issue 1/2018

Neurotherapeutics 1/2018 Go to the issue