Skip to main content
Top
Published in: Neurotherapeutics 1/2017

01-01-2017 | Review

Fluid-Based Biomarkers for Amyotrophic Lateral Sclerosis

Authors: Lucas T. Vu, Robert Bowser

Published in: Neurotherapeutics | Issue 1/2017

Login to get access

Abstract

Amyotrophic lateral sclerosis (ALS) is a highly heterogeneous disease with no effective treatment. Drug development has been hampered by the lack of biomarkers that aid in early diagnosis, demonstrate target engagement, monitor disease progression, and can serve as surrogate endpoints to assess the efficacy of treatments. Fluid-based biomarkers may potentially address these issues. An ideal biomarker should exhibit high specificity and sensitivity for distinguishing ALS from control (appropriate disease mimics and other neurologic diseases) populations and monitor disease progression within individual patients. Significant progress has been made using cerebrospinal fluid, serum, and plasma in the search for ALS biomarkers, with urine and saliva biomarkers still in earlier stages of development. A few of these biomarker candidates have demonstrated use in patient stratification, predicting disease course (fast vs slow progression) and severity, or have been used in preclinical and clinical applications. However, while ALS biomarker discovery has seen tremendous advancements in the last decade, validating biomarkers and moving them towards the clinic remains more elusive. In this review, we highlight biomarkers that are moving towards clinical utility and the challenges that remain in order to implement biomarkers at all stages of the ALS drug development process.
Appendix
Available only for authorised users
Literature
1.
go back to reference Kiernan MC, Vucic S, Cheah BC, et al. Amyotrophic lateral sclerosis. Lancet 2011;377(9769):942-955.PubMedCrossRef Kiernan MC, Vucic S, Cheah BC, et al. Amyotrophic lateral sclerosis. Lancet 2011;377(9769):942-955.PubMedCrossRef
2.
go back to reference Cleveland DW, Rothstein J. From Charcot to Lou Gehrig: deciphering selective motor neuron death in ALS. Nat Rev Neurosci 2001;2:806-819.PubMedCrossRef Cleveland DW, Rothstein J. From Charcot to Lou Gehrig: deciphering selective motor neuron death in ALS. Nat Rev Neurosci 2001;2:806-819.PubMedCrossRef
3.
go back to reference Bensimon G, Lacomblez L, Meininger V, Group ARS. A controlled trial of riluzole in amyotrophic lateral sclerosis. N Engl J Med 1994;330:585-591.PubMedCrossRef Bensimon G, Lacomblez L, Meininger V, Group ARS. A controlled trial of riluzole in amyotrophic lateral sclerosis. N Engl J Med 1994;330:585-591.PubMedCrossRef
4.
go back to reference Lacomblez L, Bensimon G, Leigh PN, Guillet P, Meininger V, II ARSG. Dose-ranging study of riluzole in amyotrophic lateral sclerosis. Lancet 1996;347:1425-1431. Lacomblez L, Bensimon G, Leigh PN, Guillet P, Meininger V, II ARSG. Dose-ranging study of riluzole in amyotrophic lateral sclerosis. Lancet 1996;347:1425-1431.
5.
go back to reference Miller RG, Mitchell JD, Moore DH. Riluzole for amyotrophic lateral sclerosis (ALS)/motor neuron disease (MND). Cochrane Database Syst Rev 2012(3):CD001447. Miller RG, Mitchell JD, Moore DH. Riluzole for amyotrophic lateral sclerosis (ALS)/motor neuron disease (MND). Cochrane Database Syst Rev 2012(3):CD001447.
6.
go back to reference Bowser R, Turner MR, Shefner J. Biomarkers in amyotrophic lateral sclerosis: oppportunities and limitations. Nat Rev Neurol 2011;7:631-638.PubMedCrossRef Bowser R, Turner MR, Shefner J. Biomarkers in amyotrophic lateral sclerosis: oppportunities and limitations. Nat Rev Neurol 2011;7:631-638.PubMedCrossRef
7.
go back to reference Bruijn LI, Miller TM, Cleveland DW. Unraveling the mechanisms involved in motor neuron degeneration in ALS. Annu Rev Neurosci 2004;27:723-749.PubMedCrossRef Bruijn LI, Miller TM, Cleveland DW. Unraveling the mechanisms involved in motor neuron degeneration in ALS. Annu Rev Neurosci 2004;27:723-749.PubMedCrossRef
9.
go back to reference Sabatelli M, Conte A, Zollino M. Clinical and genetic heterogeneity of amyotrophic lateral sclerosis. Clin Genet 2013;83(5):408-416.PubMedCrossRef Sabatelli M, Conte A, Zollino M. Clinical and genetic heterogeneity of amyotrophic lateral sclerosis. Clin Genet 2013;83(5):408-416.PubMedCrossRef
10.
go back to reference Collins MA, An J, Hood BL, Conrads TP, Bowser RP. Label-free LC-MS/MS proteomic analysis of cerebrospinal fluid identifies protein/pathway alterations and candidate biomarkers for amyotrophic lateral sclerosis. J Proteome Res 2015;14(11):4486-4501.PubMedCrossRef Collins MA, An J, Hood BL, Conrads TP, Bowser RP. Label-free LC-MS/MS proteomic analysis of cerebrospinal fluid identifies protein/pathway alterations and candidate biomarkers for amyotrophic lateral sclerosis. J Proteome Res 2015;14(11):4486-4501.PubMedCrossRef
11.
go back to reference Wijesekera LC, Leigh PN. Amyotrophic lateral sclerosis. Orphan J Rare Dis 2009;4:3.CrossRef Wijesekera LC, Leigh PN. Amyotrophic lateral sclerosis. Orphan J Rare Dis 2009;4:3.CrossRef
13.
go back to reference Cudkowicz ME, Titus S, Kearney M, et al. Safety and efficacy of ceftriaxone for amyotrophic lateral sclerosis: a multi-stage, randomised, double-blind, placebo-controlled trial. Lancet Neurol 2014;13(11):1083-1091.PubMedPubMedCentralCrossRef Cudkowicz ME, Titus S, Kearney M, et al. Safety and efficacy of ceftriaxone for amyotrophic lateral sclerosis: a multi-stage, randomised, double-blind, placebo-controlled trial. Lancet Neurol 2014;13(11):1083-1091.PubMedPubMedCentralCrossRef
14.
go back to reference Cudkowicz ME, Van den Berg LH, Shefner JM, et al. Dexpramipexole versus placebo for patients with amyotrophic lateral sclerosis (EMPOWER): a randomized, double-blind, phase 3 trial. Lancet Neurol 2013;12(11):1059-1067.PubMedCrossRef Cudkowicz ME, Van den Berg LH, Shefner JM, et al. Dexpramipexole versus placebo for patients with amyotrophic lateral sclerosis (EMPOWER): a randomized, double-blind, phase 3 trial. Lancet Neurol 2013;12(11):1059-1067.PubMedCrossRef
15.
go back to reference Gordon PH, Moore DH, Miller RG, et al. Efficacy of minocyline in patients with amyotrophic lateral sclerosis: a phase III randomized trial. Lancet Neurol 2007;6(12):1045-1053.PubMedCrossRef Gordon PH, Moore DH, Miller RG, et al. Efficacy of minocyline in patients with amyotrophic lateral sclerosis: a phase III randomized trial. Lancet Neurol 2007;6(12):1045-1053.PubMedCrossRef
16.
go back to reference Mitsumoto H, Brooks BR, Silani V. Clinical trials in amyotrophic lateral sclerosis: why so many negative trials and how can trials be improved? Lancet Neurol 2014;13(11):1127-1138.PubMedCrossRef Mitsumoto H, Brooks BR, Silani V. Clinical trials in amyotrophic lateral sclerosis: why so many negative trials and how can trials be improved? Lancet Neurol 2014;13(11):1127-1138.PubMedCrossRef
17.
go back to reference Nicholson KA, Cudkowicz ME, Berry JD. Clinical trial designs in amyotrophic lateral sclerosis: does one design fit all? Neurotherapeutics 2015;12(2):376-383.PubMedPubMedCentralCrossRef Nicholson KA, Cudkowicz ME, Berry JD. Clinical trial designs in amyotrophic lateral sclerosis: does one design fit all? Neurotherapeutics 2015;12(2):376-383.PubMedPubMedCentralCrossRef
18.
go back to reference Mendez EF, Sattler R. Biomarker development for C9orf72 repeat expansion in ALS. Brain Res 2015;1607:26-35. Mendez EF, Sattler R. Biomarker development for C9orf72 repeat expansion in ALS. Brain Res 2015;1607:26-35.
19.
go back to reference Turner MR, Kiernan MC, Leigh NP, Talbot K. Biomarkers in amyotrophic lateral sclerosis. Lancet Neurol 2009;8:94-109.PubMedCrossRef Turner MR, Kiernan MC, Leigh NP, Talbot K. Biomarkers in amyotrophic lateral sclerosis. Lancet Neurol 2009;8:94-109.PubMedCrossRef
20.
go back to reference Su XW, Simmons Z, Mitchell RM, Kong L, Stephens HE, Connor JR. Biomarker-based predictive models for prognosis in amyotrophic lateral sclerosis. JAMA Neurol 2013;70(12):1505-1511.PubMed Su XW, Simmons Z, Mitchell RM, Kong L, Stephens HE, Connor JR. Biomarker-based predictive models for prognosis in amyotrophic lateral sclerosis. JAMA Neurol 2013;70(12):1505-1511.PubMed
21.
go back to reference Biomarkers Definitions Working Group. Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin Pharmacol Ther 2001;69(3):89-95.CrossRef Biomarkers Definitions Working Group. Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin Pharmacol Ther 2001;69(3):89-95.CrossRef
22.
go back to reference Kruger T, Lautenschlager J, Grosskreutz J, Rhode H. Proteome analysis of body fluids for amyotrophic lateral sclerosis biomarker discovery. Proteomics Clin Appl 2013;7:123-135.PubMedCrossRef Kruger T, Lautenschlager J, Grosskreutz J, Rhode H. Proteome analysis of body fluids for amyotrophic lateral sclerosis biomarker discovery. Proteomics Clin Appl 2013;7:123-135.PubMedCrossRef
24.
go back to reference Rohlff C. Proteomics in molecular medicine: applications in central nervous systems disorders. Electrophoresis 2000;21:1227-1234.PubMedCrossRef Rohlff C. Proteomics in molecular medicine: applications in central nervous systems disorders. Electrophoresis 2000;21:1227-1234.PubMedCrossRef
25.
go back to reference Rothstein JD. Current hypotheses for the underlying biology of amyotrophic lateral sclerosis. Ann Neurol 2009;65(Suppl. 1):S3-S9.PubMedCrossRef Rothstein JD. Current hypotheses for the underlying biology of amyotrophic lateral sclerosis. Ann Neurol 2009;65(Suppl. 1):S3-S9.PubMedCrossRef
26.
go back to reference Xu Z, Cork LC, Griffin JW, Cleveland DW. Increased expression of neurofilament subunit NF-L produces morphological alterations that resemble the pathology of human motor neuron disease. Cell 1993;73(1):23-33.PubMedCrossRef Xu Z, Cork LC, Griffin JW, Cleveland DW. Increased expression of neurofilament subunit NF-L produces morphological alterations that resemble the pathology of human motor neuron disease. Cell 1993;73(1):23-33.PubMedCrossRef
27.
go back to reference Lee MK, Marszalek JR, Cleveland DW. A mutant neurofilament subunit causes massive, selective motor neuron death: implications for the pathogenesis of human motor neuron disease. Neuron 1994;13(4):975-988.PubMedCrossRef Lee MK, Marszalek JR, Cleveland DW. A mutant neurofilament subunit causes massive, selective motor neuron death: implications for the pathogenesis of human motor neuron disease. Neuron 1994;13(4):975-988.PubMedCrossRef
28.
go back to reference Brettschneider J, Petzold A, Sussmuth SD, Ludolph AC, Tumani H. Axonal damage markers in cerebrospinal fluid are increased in ALS. Neurology 2006;66(6):852-856.PubMedCrossRef Brettschneider J, Petzold A, Sussmuth SD, Ludolph AC, Tumani H. Axonal damage markers in cerebrospinal fluid are increased in ALS. Neurology 2006;66(6):852-856.PubMedCrossRef
29.
go back to reference Reijn TS, Abdo WF, Schelhaas HJ, Verbeek MM. CSF neurofilament protein analysis in the differential diagnosis of ALS. J Neurol 2009;256:615-619.PubMedCrossRef Reijn TS, Abdo WF, Schelhaas HJ, Verbeek MM. CSF neurofilament protein analysis in the differential diagnosis of ALS. J Neurol 2009;256:615-619.PubMedCrossRef
30.
go back to reference Ganesalingam J, An J, Bowser R, Andersen PM, Shaw CE. pNfH is a promising biomarker for ALS. Amyotroph Lateral Scler Frontotemporal Degener 2013;14(2):146-149.PubMedCrossRef Ganesalingam J, An J, Bowser R, Andersen PM, Shaw CE. pNfH is a promising biomarker for ALS. Amyotroph Lateral Scler Frontotemporal Degener 2013;14(2):146-149.PubMedCrossRef
31.
go back to reference Ganesalingam J, An J, Shaw CE, Shaw G, Lacomis D, Bowser R. Combination of neurofilament heavy chain and complement C3 as CSF biomarkers for ALS. J Neurochem 2011;117:528-537.PubMedPubMedCentralCrossRef Ganesalingam J, An J, Shaw CE, Shaw G, Lacomis D, Bowser R. Combination of neurofilament heavy chain and complement C3 as CSF biomarkers for ALS. J Neurochem 2011;117:528-537.PubMedPubMedCentralCrossRef
32.
go back to reference Lehnert S, Costa J, de Carvalho M, et al. Multicentre quality control evaluation of different biomarker candidates for amyotrophic lateral sclerosis. Amyotroph Lateral Scler Frontotemporal Degener 2014;15:344-350.PubMedCrossRef Lehnert S, Costa J, de Carvalho M, et al. Multicentre quality control evaluation of different biomarker candidates for amyotrophic lateral sclerosis. Amyotroph Lateral Scler Frontotemporal Degener 2014;15:344-350.PubMedCrossRef
33.
go back to reference Oeckl P, Jardel C, Salachas F, et al. Multicenter validation of CSF neurofilaments as diagnostic biomarkers for ALS. Amyotroph Lateral Scler Frontotemporal Degener 2016;17(5-6):1-10.CrossRef Oeckl P, Jardel C, Salachas F, et al. Multicenter validation of CSF neurofilaments as diagnostic biomarkers for ALS. Amyotroph Lateral Scler Frontotemporal Degener 2016;17(5-6):1-10.CrossRef
34.
go back to reference Boylan KB, Glass JD, Crook JE, et al. Phosphorylated neurofilament heavy subunit (pNF-H) in peripheral blood and CSF as a potential prognostic biomarker in amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry 2013;84(4):467-472.PubMedCrossRef Boylan KB, Glass JD, Crook JE, et al. Phosphorylated neurofilament heavy subunit (pNF-H) in peripheral blood and CSF as a potential prognostic biomarker in amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry 2013;84(4):467-472.PubMedCrossRef
35.
go back to reference Rosengren LE, Karlsson J-E, Karlsson J-O, Persson LI, Wikkelsø C. Patients with amyotrophic lateral sclerosis and other neurodegenerative diseases have increased levels of neurofilament protein in CSF. J Neurochem 1996;67(5):2013-2018.PubMedCrossRef Rosengren LE, Karlsson J-E, Karlsson J-O, Persson LI, Wikkelsø C. Patients with amyotrophic lateral sclerosis and other neurodegenerative diseases have increased levels of neurofilament protein in CSF. J Neurochem 1996;67(5):2013-2018.PubMedCrossRef
36.
go back to reference Tortelli R, Ruggieri M, Cortese R, et al. Elevated cerebrospinal fluid neurofilament light levels in patients with amyotrophic lateral sclerosis: a possible marker of disease severity and progression. Eur J Neurol 2012;19(12):1561-1567.PubMedCrossRef Tortelli R, Ruggieri M, Cortese R, et al. Elevated cerebrospinal fluid neurofilament light levels in patients with amyotrophic lateral sclerosis: a possible marker of disease severity and progression. Eur J Neurol 2012;19(12):1561-1567.PubMedCrossRef
37.
go back to reference Tortelli R, Copetti M, Ruggieri M, et al. Cerebrospinal fluid neurofilament light chain levels: marker of progression to generalized amyotrophic lateral sclerosis. Eur J Neurol 2015;22(1):215-218.PubMedCrossRef Tortelli R, Copetti M, Ruggieri M, et al. Cerebrospinal fluid neurofilament light chain levels: marker of progression to generalized amyotrophic lateral sclerosis. Eur J Neurol 2015;22(1):215-218.PubMedCrossRef
38.
go back to reference Lu CH, Macdonald-Wallis C, Gray E, et al. Neurofilament light chain: a prognostic biomarker in amyotrophic lateral sclerosis. Neurology 2015;84(22):2247-2257.PubMedPubMedCentralCrossRef Lu CH, Macdonald-Wallis C, Gray E, et al. Neurofilament light chain: a prognostic biomarker in amyotrophic lateral sclerosis. Neurology 2015;84(22):2247-2257.PubMedPubMedCentralCrossRef
39.
go back to reference Menke RA, Gray E, Lu CH, et al. CSF neurofilament light chain reflects corticospinal tract degeneration in ALS. Ann Clin Transl Neurol 2015;2(7):748-755.PubMedPubMedCentralCrossRef Menke RA, Gray E, Lu CH, et al. CSF neurofilament light chain reflects corticospinal tract degeneration in ALS. Ann Clin Transl Neurol 2015;2(7):748-755.PubMedPubMedCentralCrossRef
40.
go back to reference Steinacker P, Feneberg E, Weishaupt J, et al. Neurofilaments in the diagnosis of motoneuron diseases: a prospective study on 455 patients. J Neurol Neurosurg Psychiatry 2016;87:12-20.PubMedCrossRef Steinacker P, Feneberg E, Weishaupt J, et al. Neurofilaments in the diagnosis of motoneuron diseases: a prospective study on 455 patients. J Neurol Neurosurg Psychiatry 2016;87:12-20.PubMedCrossRef
41.
go back to reference Van Geel WJ, Rosengren LE, Verbeek MM. An enzyme immunoassay to quantify neurofilament light chain in cerebrospinal fluid. J Immunol Methods 2005;296:179-185.PubMedCrossRef Van Geel WJ, Rosengren LE, Verbeek MM. An enzyme immunoassay to quantify neurofilament light chain in cerebrospinal fluid. J Immunol Methods 2005;296:179-185.PubMedCrossRef
42.
go back to reference Goldstein ME, Sternberger NH, Sternberger LA. Phosphorylation protects neurofilaments against proteolysis. J Neuroimmunol 1987;14(2):149-160.PubMedCrossRef Goldstein ME, Sternberger NH, Sternberger LA. Phosphorylation protects neurofilaments against proteolysis. J Neuroimmunol 1987;14(2):149-160.PubMedCrossRef
43.
go back to reference McCombe PA, Pfluger C, Singh P, Lim CY, Airey C, Hernderson RD. Serial measurements of phosphorylated neurofilament-heavy in the serum of subjects with amyotrophic lateral sclerosis. J Neurol Sci 2015;353:122-129.PubMedCrossRef McCombe PA, Pfluger C, Singh P, Lim CY, Airey C, Hernderson RD. Serial measurements of phosphorylated neurofilament-heavy in the serum of subjects with amyotrophic lateral sclerosis. J Neurol Sci 2015;353:122-129.PubMedCrossRef
44.
go back to reference Weydt P, Oeckl P, Huss A, et al. Neurofilament levels as biomarkers in asymptomatic and symptomatic familial amyotrophic lateral sclerosis. Ann Neurol 2016;79(1):152-158.PubMedCrossRef Weydt P, Oeckl P, Huss A, et al. Neurofilament levels as biomarkers in asymptomatic and symptomatic familial amyotrophic lateral sclerosis. Ann Neurol 2016;79(1):152-158.PubMedCrossRef
45.
go back to reference Ransohoff RM. How neuroinflammation contributes to neurodegeneration. Science 2016;353(6301):777-783.PubMedCrossRef Ransohoff RM. How neuroinflammation contributes to neurodegeneration. Science 2016;353(6301):777-783.PubMedCrossRef
46.
go back to reference McGeer PL, McGeer EG. Inflammatory processes in amyotrophic lateral sclerosis. Muscle Nerve 2002;26(4):459-470.PubMedCrossRef McGeer PL, McGeer EG. Inflammatory processes in amyotrophic lateral sclerosis. Muscle Nerve 2002;26(4):459-470.PubMedCrossRef
47.
go back to reference Chen Y, Liu XH, Wu JJ, et al. Proteomic analysis of cerebrospinal fluid in amyotrophic lateral sclerosis. Exp Ther Med 2016;11(6):2095-2106.PubMedPubMedCentral Chen Y, Liu XH, Wu JJ, et al. Proteomic analysis of cerebrospinal fluid in amyotrophic lateral sclerosis. Exp Ther Med 2016;11(6):2095-2106.PubMedPubMedCentral
48.
go back to reference Varghese AM, Sharma A, Mishra P, et al. Chitotriosidase—a putative biomarker for sporadic amyotrophic lateral sclerosis. Clin Proteomics 2013;10(1):19.PubMedPubMedCentralCrossRef Varghese AM, Sharma A, Mishra P, et al. Chitotriosidase—a putative biomarker for sporadic amyotrophic lateral sclerosis. Clin Proteomics 2013;10(1):19.PubMedPubMedCentralCrossRef
49.
50.
go back to reference Moreau C, Gosset P, Brunaud-Danel V, et al. CSF profiles of angiogenic and inflammatory factors depend on the respiratory status of ALS patients. Amyotroph Lateral Scler 2009;10(3):175-181.PubMedCrossRef Moreau C, Gosset P, Brunaud-Danel V, et al. CSF profiles of angiogenic and inflammatory factors depend on the respiratory status of ALS patients. Amyotroph Lateral Scler 2009;10(3):175-181.PubMedCrossRef
51.
go back to reference Almer G, Teismann P, Stevic Z, et al. Increased levels of the pro-inflammatory prostaglandin PGE2 in CSF from ALS patients. Neurology 2002;58:1277-1279.PubMedCrossRef Almer G, Teismann P, Stevic Z, et al. Increased levels of the pro-inflammatory prostaglandin PGE2 in CSF from ALS patients. Neurology 2002;58:1277-1279.PubMedCrossRef
52.
go back to reference Ilzecka J. Prostaglandin E2 is increased in amyotrophic lateral sclerosis patients. Acta Neurol Scand 2003;108(2):125-129.PubMedCrossRef Ilzecka J. Prostaglandin E2 is increased in amyotrophic lateral sclerosis patients. Acta Neurol Scand 2003;108(2):125-129.PubMedCrossRef
53.
go back to reference Mitchell RM, Freeman WM, Randazzo WT, et al. A CSF biomarker panel for identification of patients with amyotrophic lateral sclerosis. Neurology 2009;72:14-19.PubMedCrossRef Mitchell RM, Freeman WM, Randazzo WT, et al. A CSF biomarker panel for identification of patients with amyotrophic lateral sclerosis. Neurology 2009;72:14-19.PubMedCrossRef
54.
go back to reference Moreau C, Devos D, Brunaud-Danel V, et al. Elevated IL-6 and TNF-alpha levels in patients with ALS: inflammation or hypoxia? Neurology 2005;65(12):1958-1960.PubMedCrossRef Moreau C, Devos D, Brunaud-Danel V, et al. Elevated IL-6 and TNF-alpha levels in patients with ALS: inflammation or hypoxia? Neurology 2005;65(12):1958-1960.PubMedCrossRef
55.
go back to reference Kuhle J, Lindberg RL, Regeniter A, et al. Increased levels of inflammatory chemokines in amyotrophic lateral sclerosis. Eur J Neurol 2009;16:771-774.PubMedCrossRef Kuhle J, Lindberg RL, Regeniter A, et al. Increased levels of inflammatory chemokines in amyotrophic lateral sclerosis. Eur J Neurol 2009;16:771-774.PubMedCrossRef
56.
go back to reference Lind AL, Wu D, Freyhult E, et al. A multiplex protein panel applied to cerebrospinal fluid reveals three new biomarker candidates in ALS but none in neuropathic pain patients. PLOS ONE 2016;11(2):e0149821.PubMedPubMedCentralCrossRef Lind AL, Wu D, Freyhult E, et al. A multiplex protein panel applied to cerebrospinal fluid reveals three new biomarker candidates in ALS but none in neuropathic pain patients. PLOS ONE 2016;11(2):e0149821.PubMedPubMedCentralCrossRef
57.
58.
go back to reference Beers DR, Henkel JS, Zhao W, et al. Endogenous regulatory T lymphocytes ameliorate amyotrophic lateral sclerosis in mice and correlate with disease progression in patients with amyotrophic lateral sclerosis. Brain 2011;134(5):1293-1314.PubMedPubMedCentralCrossRef Beers DR, Henkel JS, Zhao W, et al. Endogenous regulatory T lymphocytes ameliorate amyotrophic lateral sclerosis in mice and correlate with disease progression in patients with amyotrophic lateral sclerosis. Brain 2011;134(5):1293-1314.PubMedPubMedCentralCrossRef
59.
go back to reference Butovsky O, Siddiqui S, Gabriely G, et al. Modulating inflammatory monocytes with a unique microRNA gene signature ameliorates murine ALS. J Clin Invest 2012;122:3063-3087.PubMedPubMedCentralCrossRef Butovsky O, Siddiqui S, Gabriely G, et al. Modulating inflammatory monocytes with a unique microRNA gene signature ameliorates murine ALS. J Clin Invest 2012;122:3063-3087.PubMedPubMedCentralCrossRef
60.
go back to reference Schwartz M, Baruch K. The resolution of neuroinflammation in neurodegeneration: leukocyte recruitment via the choroid plexus. EMBO J 2014;33(1):7-22.PubMedCrossRef Schwartz M, Baruch K. The resolution of neuroinflammation in neurodegeneration: leukocyte recruitment via the choroid plexus. EMBO J 2014;33(1):7-22.PubMedCrossRef
61.
go back to reference Smith R, Myers K, Ravits J, Bowser R. Amyotrophic lateral sclerosis: Is the spinal fluid pathway involved in seeding and spread? Med Hypotheses 2015;85(5):576-583.PubMedCrossRef Smith R, Myers K, Ravits J, Bowser R. Amyotrophic lateral sclerosis: Is the spinal fluid pathway involved in seeding and spread? Med Hypotheses 2015;85(5):576-583.PubMedCrossRef
62.
go back to reference DeJesus-Hernandez M, Mackenzie IR, Boeve BF, et al. Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron 2011;72(2):245-256.PubMedPubMedCentralCrossRef DeJesus-Hernandez M, Mackenzie IR, Boeve BF, et al. Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron 2011;72(2):245-256.PubMedPubMedCentralCrossRef
63.
go back to reference Renton AE, Majounie E, Waite A, et al. A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron 2011;72(2):257-268.PubMedPubMedCentralCrossRef Renton AE, Majounie E, Waite A, et al. A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron 2011;72(2):257-268.PubMedPubMedCentralCrossRef
65.
go back to reference Ash PE, Bieniek KF, Gendron TF, et al. Unconventional translation of C9ORF72 GGGGCC expansion generates insoluble polypeptides specific to c9FTD/ALS. Neuron 2013;77(4):639-646.PubMedPubMedCentralCrossRef Ash PE, Bieniek KF, Gendron TF, et al. Unconventional translation of C9ORF72 GGGGCC expansion generates insoluble polypeptides specific to c9FTD/ALS. Neuron 2013;77(4):639-646.PubMedPubMedCentralCrossRef
66.
go back to reference Mori K, Weng S-M, Arzberger T, et al. The C9orf72 GGGGCC repeat is translated into aggregating dipeptide-repeat proteins in FTLD/ALS. Science 2013;339:1335-1338.PubMedCrossRef Mori K, Weng S-M, Arzberger T, et al. The C9orf72 GGGGCC repeat is translated into aggregating dipeptide-repeat proteins in FTLD/ALS. Science 2013;339:1335-1338.PubMedCrossRef
67.
go back to reference Wen X, Tan W, Westergard T, et al. Antisense proline-arginine RAN dipeptides linked to C9ORF72-ALS/FTD form toxic nuclear aggregates that initiate in vitro and in vivo neuronal death. Neuron 2014;84:1213-1225.PubMedPubMedCentralCrossRef Wen X, Tan W, Westergard T, et al. Antisense proline-arginine RAN dipeptides linked to C9ORF72-ALS/FTD form toxic nuclear aggregates that initiate in vitro and in vivo neuronal death. Neuron 2014;84:1213-1225.PubMedPubMedCentralCrossRef
68.
69.
go back to reference Mackenzie I, Arzberger T, Kremmer E, et al. Dipeptide repeat protein pathology in C9ORF72 mutation cases: clinico-pathological correlations. Acta Neuropathol 2013;126(6):859-879.PubMedCrossRef Mackenzie I, Arzberger T, Kremmer E, et al. Dipeptide repeat protein pathology in C9ORF72 mutation cases: clinico-pathological correlations. Acta Neuropathol 2013;126(6):859-879.PubMedCrossRef
70.
go back to reference Lee KH, Zhang P, Kim HJ, et al. C9orf72 dipeptide repeats impair the assembly, dynamics, and function of membrane-less organelles. Cell 2016;167(3):774-788.PubMedCrossRef Lee KH, Zhang P, Kim HJ, et al. C9orf72 dipeptide repeats impair the assembly, dynamics, and function of membrane-less organelles. Cell 2016;167(3):774-788.PubMedCrossRef
71.
go back to reference Anderson P, Kedersha N. RNA granules: post-transcriptional and epigenetic modulators of gene expression. Nat Rev Mol Cell Biol 2009;10(6):430-436.PubMedCrossRef Anderson P, Kedersha N. RNA granules: post-transcriptional and epigenetic modulators of gene expression. Nat Rev Mol Cell Biol 2009;10(6):430-436.PubMedCrossRef
72.
go back to reference Gendron Tania F, Van Blitterswijk M, Bieniek KF, et al. Cerebellar c9RAN proteins associate with clinical and neuropathological characteristics of C9ORF72 repeat expansion carriers. Acta Neuropathol 2015;130:559-573. Gendron Tania F, Van Blitterswijk M, Bieniek KF, et al. Cerebellar c9RAN proteins associate with clinical and neuropathological characteristics of C9ORF72 repeat expansion carriers. Acta Neuropathol 2015;130:559-573.
73.
go back to reference Su Z, Zhang Y, Gendron TF, et al. Discovery of a biomarker and lead small molecules to target r(GGGGCC)-associated defects in c9FTD/ALS. Neuron 2014;83(5):1043-1050.PubMedPubMedCentralCrossRef Su Z, Zhang Y, Gendron TF, et al. Discovery of a biomarker and lead small molecules to target r(GGGGCC)-associated defects in c9FTD/ALS. Neuron 2014;83(5):1043-1050.PubMedPubMedCentralCrossRef
74.
go back to reference King AE, Woodhouse A, Kirkcaldie MTK, Vickers JC. Excitotoxicity in ALS: overstimulation, or overreaction? Exp Neurol 2016;275:162-171.PubMedCrossRef King AE, Woodhouse A, Kirkcaldie MTK, Vickers JC. Excitotoxicity in ALS: overstimulation, or overreaction? Exp Neurol 2016;275:162-171.PubMedCrossRef
75.
go back to reference Blasco H, Mavel S, Corcia P, Gordon PH. The glutamate hypothesis in ALS: pathophysiology and drug development. Curr Med Chem 2014;21(31):3551-3575.PubMedCrossRef Blasco H, Mavel S, Corcia P, Gordon PH. The glutamate hypothesis in ALS: pathophysiology and drug development. Curr Med Chem 2014;21(31):3551-3575.PubMedCrossRef
76.
go back to reference Turner MR, Bowser R, Bruijn L, et al. Mechanisms, models and biomarkers in amyotrophic lateral sclerosis. Amyotroph Lateral Scler Frontotemporal Degener 2013;14(Suppl. 1):19-32.PubMedPubMedCentralCrossRef Turner MR, Bowser R, Bruijn L, et al. Mechanisms, models and biomarkers in amyotrophic lateral sclerosis. Amyotroph Lateral Scler Frontotemporal Degener 2013;14(Suppl. 1):19-32.PubMedPubMedCentralCrossRef
77.
go back to reference Cid C, Alvarez-Cermeno JC, Regidor I, Salinas M, Alcazar A. Low concentrations of glutamate induce apoptosis in cultured neurons: implications for amyotrophic lateral sclerosis. J Neurol Sci 2003;206(1):91-95.PubMedCrossRef Cid C, Alvarez-Cermeno JC, Regidor I, Salinas M, Alcazar A. Low concentrations of glutamate induce apoptosis in cultured neurons: implications for amyotrophic lateral sclerosis. J Neurol Sci 2003;206(1):91-95.PubMedCrossRef
78.
go back to reference Spreux-Varoquaux O, Bensimon G, Lacomblez L, et al. Glutamate levels in cerebrospinal fluid in amyotrophic lateral sclerosis: a reappraisal using a new HPLC method with coulometric detection in a large cohort of patients. J Neurol Sci 2002;193(2):73-78.PubMedCrossRef Spreux-Varoquaux O, Bensimon G, Lacomblez L, et al. Glutamate levels in cerebrospinal fluid in amyotrophic lateral sclerosis: a reappraisal using a new HPLC method with coulometric detection in a large cohort of patients. J Neurol Sci 2002;193(2):73-78.PubMedCrossRef
79.
go back to reference Yanez M, Galan L, Matias-Guiu J, Vela A, Guerrero A, Garcia AG. CSF from amyotrophic lateral sclerosis patients produces glutamate independent death of rat motor brain cortical neurons: protection by resveratrol but not riluzole. Brain Res 2011;1423:77-86.PubMedCrossRef Yanez M, Galan L, Matias-Guiu J, Vela A, Guerrero A, Garcia AG. CSF from amyotrophic lateral sclerosis patients produces glutamate independent death of rat motor brain cortical neurons: protection by resveratrol but not riluzole. Brain Res 2011;1423:77-86.PubMedCrossRef
80.
go back to reference Shaw PJ, Forrest V, Ince PG, Richardson JP, Wastell HJ. CSF and plasma amino acid levels in motor neuron disease: elevation of CSF glutamate in a subset of patients. Neurodegeneration 1995;4(2):209-216.PubMedCrossRef Shaw PJ, Forrest V, Ince PG, Richardson JP, Wastell HJ. CSF and plasma amino acid levels in motor neuron disease: elevation of CSF glutamate in a subset of patients. Neurodegeneration 1995;4(2):209-216.PubMedCrossRef
81.
go back to reference Rothstein JD, Tsai G, Kuncl RW, et al. Abnormal excitatory amino acid metabolism in amyotrophic lateral sclerosis. Ann Neurol 1990;28(1):18-25.PubMedCrossRef Rothstein JD, Tsai G, Kuncl RW, et al. Abnormal excitatory amino acid metabolism in amyotrophic lateral sclerosis. Ann Neurol 1990;28(1):18-25.PubMedCrossRef
82.
go back to reference Rothstein JD, Kuncl R, Chaudhry V, et al. Excitatory amino acids in amyotrophic lateral sclerosis: an update. Ann Neurol 1991;30(2):224-225.PubMedCrossRef Rothstein JD, Kuncl R, Chaudhry V, et al. Excitatory amino acids in amyotrophic lateral sclerosis: an update. Ann Neurol 1991;30(2):224-225.PubMedCrossRef
83.
go back to reference Perry TL, Krieger C, Hansen S, Eisen A. Amyotrophic lateral sclerosis: amino acid levels in plasma and cerebrospinal fluid. Ann Neurol 1990;28(1):12-17.PubMedCrossRef Perry TL, Krieger C, Hansen S, Eisen A. Amyotrophic lateral sclerosis: amino acid levels in plasma and cerebrospinal fluid. Ann Neurol 1990;28(1):12-17.PubMedCrossRef
84.
go back to reference Blin O, Samuel D, Nieoullon A, Serratice G. Changes in CSF amino acid concentrations during the evolution of amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry 1994;57(1):119-120.PubMedPubMedCentralCrossRef Blin O, Samuel D, Nieoullon A, Serratice G. Changes in CSF amino acid concentrations during the evolution of amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry 1994;57(1):119-120.PubMedPubMedCentralCrossRef
85.
go back to reference Tikka TM, Vartiainen NE, Goldsteins G, et al. Minocycline prevents neurotoxicity induced by cerebrospinal fluid from patients with motor neurone disease. Brain 2002;125(Pt 4):722-731.PubMedCrossRef Tikka TM, Vartiainen NE, Goldsteins G, et al. Minocycline prevents neurotoxicity induced by cerebrospinal fluid from patients with motor neurone disease. Brain 2002;125(Pt 4):722-731.PubMedCrossRef
86.
go back to reference Wuolikainen A, Moritz T, Marklund SL, Antti H, Andersen PM. Disease-related changes in the cerebrospinal fluid metabolome in amyotrophic lateral sclerosis detected by GC/TOFMS. PLOS ONE 2011;6(4):e17947.PubMedPubMedCentralCrossRef Wuolikainen A, Moritz T, Marklund SL, Antti H, Andersen PM. Disease-related changes in the cerebrospinal fluid metabolome in amyotrophic lateral sclerosis detected by GC/TOFMS. PLOS ONE 2011;6(4):e17947.PubMedPubMedCentralCrossRef
87.
go back to reference Wuolikainen A, Jonsson P, Ahnlund M, et al. Multi-platform mass spectrometry analysis of the CSF and plasma metabolomes of rigorously matched amyotrophic lateral sclerosis, Parkinson's disease and control subjects. Mol Biosyst 2016;12:1287-1298.PubMedCrossRef Wuolikainen A, Jonsson P, Ahnlund M, et al. Multi-platform mass spectrometry analysis of the CSF and plasma metabolomes of rigorously matched amyotrophic lateral sclerosis, Parkinson's disease and control subjects. Mol Biosyst 2016;12:1287-1298.PubMedCrossRef
88.
go back to reference Bozik ME, Mitsumoto H, Brooks BR, et al. A post hoc analysis of subgroup outcomes and creatinine in the phase III clinical trial (EMPOWER) of dexpramipexole in ALS. Amyotroph Lateral Scler Frontotemporal Degener 2014;15(5-6):406-413.PubMedCrossRef Bozik ME, Mitsumoto H, Brooks BR, et al. A post hoc analysis of subgroup outcomes and creatinine in the phase III clinical trial (EMPOWER) of dexpramipexole in ALS. Amyotroph Lateral Scler Frontotemporal Degener 2014;15(5-6):406-413.PubMedCrossRef
89.
go back to reference Neumann M, Sampathu DM, Kwong LK, et al. Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 2006;314(5796):130-133.PubMedCrossRef Neumann M, Sampathu DM, Kwong LK, et al. Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 2006;314(5796):130-133.PubMedCrossRef
90.
go back to reference Arai T, Hasegawa M, Akiyama H, et al. TDP-43 is a component of ubiquitin-positive tau-negative inclusions in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Biochem Biophys Res Commun 2006;351:602-611.PubMedCrossRef Arai T, Hasegawa M, Akiyama H, et al. TDP-43 is a component of ubiquitin-positive tau-negative inclusions in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Biochem Biophys Res Commun 2006;351:602-611.PubMedCrossRef
92.
go back to reference Noto Y, Shibuya K, Sato Y, et al. Elevated CSF TDP-43 levels in amyotrophic lateral sclerosis: Specificity, sensitivity, and a possible prognostic value. Amyotroph Lateral Scler 2011;12(2):140-143.PubMedCrossRef Noto Y, Shibuya K, Sato Y, et al. Elevated CSF TDP-43 levels in amyotrophic lateral sclerosis: Specificity, sensitivity, and a possible prognostic value. Amyotroph Lateral Scler 2011;12(2):140-143.PubMedCrossRef
93.
go back to reference Kasai T, Tokuda T, Ishigami N, et al. Increased TDP-43 protein in cerebrospinal fluid of patients with amyotrophic lateral sclerosis. Acta Neuropathol 2009;117(1):55-62.PubMedCrossRef Kasai T, Tokuda T, Ishigami N, et al. Increased TDP-43 protein in cerebrospinal fluid of patients with amyotrophic lateral sclerosis. Acta Neuropathol 2009;117(1):55-62.PubMedCrossRef
94.
go back to reference Junttila A, Kuvaja M, Hartikainen P, et al. Cerebrospinal fluid TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis patients with and without the C9ORF72 hexanucleotide expansion. Dement Geriatr Cogn Disord Extra 2016;6:142-149.CrossRef Junttila A, Kuvaja M, Hartikainen P, et al. Cerebrospinal fluid TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis patients with and without the C9ORF72 hexanucleotide expansion. Dement Geriatr Cogn Disord Extra 2016;6:142-149.CrossRef
95.
go back to reference Steinacker P, Hendrich C, Sperfeld AD, et al. TDP-43 in cerebrospinal fluid of patients with frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Arch Neurol 2008;65(11):1481-1487.PubMedPubMedCentralCrossRef Steinacker P, Hendrich C, Sperfeld AD, et al. TDP-43 in cerebrospinal fluid of patients with frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Arch Neurol 2008;65(11):1481-1487.PubMedPubMedCentralCrossRef
96.
go back to reference Xiao S, Sanelli T, Chiang H, et al. Low molecular weight species of TDP-43 generated by abnormal splicing form inclusions in amyotrophic lateral sclerosis and result in motor neuron death. Acta Neuropathol 2015;130(1):49-61.PubMedPubMedCentralCrossRef Xiao S, Sanelli T, Chiang H, et al. Low molecular weight species of TDP-43 generated by abnormal splicing form inclusions in amyotrophic lateral sclerosis and result in motor neuron death. Acta Neuropathol 2015;130(1):49-61.PubMedPubMedCentralCrossRef
97.
go back to reference Ranganathan S, Williams E, Ganchev P, et al. Proteomic profiling of cerebrospinal fluid identifies biomarkers for amyotrophic lateral sclerosis. J Neurochem 2005;95:1461-1471.PubMedPubMedCentralCrossRef Ranganathan S, Williams E, Ganchev P, et al. Proteomic profiling of cerebrospinal fluid identifies biomarkers for amyotrophic lateral sclerosis. J Neurochem 2005;95:1461-1471.PubMedPubMedCentralCrossRef
98.
go back to reference Ryberg H, An J, Darko S, et al. Discovery and verification of amyotrophic lateral sclerosis biomarkers by mass spectrometry based proteomics. Muscle Nerve 2010;42:104-111.PubMedPubMedCentralCrossRef Ryberg H, An J, Darko S, et al. Discovery and verification of amyotrophic lateral sclerosis biomarkers by mass spectrometry based proteomics. Muscle Nerve 2010;42:104-111.PubMedPubMedCentralCrossRef
99.
go back to reference Pasinetti GM, Ungar LH, Lange DJ, et al. Identification of potential CSF biomarkers in ALS. Neurology 2006;66:1218-1222.PubMedCrossRef Pasinetti GM, Ungar LH, Lange DJ, et al. Identification of potential CSF biomarkers in ALS. Neurology 2006;66:1218-1222.PubMedCrossRef
100.
go back to reference Tsuji-Akimoto S, Yabe I, Niino M, Kikuchi S, Sasaki H. Cystatin C in cerebrospinal fluid as a biomarker of ALS. Neurosci Lett 2009;452(1):52-55.PubMedCrossRef Tsuji-Akimoto S, Yabe I, Niino M, Kikuchi S, Sasaki H. Cystatin C in cerebrospinal fluid as a biomarker of ALS. Neurosci Lett 2009;452(1):52-55.PubMedCrossRef
101.
102.
go back to reference Nagai A, Terashima M, Sheikh AM, et al. Involvement of cystatin C in pathophysiology of CNS diseases. Front Biosci 2008;13:3470-3479.PubMedCrossRef Nagai A, Terashima M, Sheikh AM, et al. Involvement of cystatin C in pathophysiology of CNS diseases. Front Biosci 2008;13:3470-3479.PubMedCrossRef
103.
go back to reference Okamoto K, Hirai S, Amari M, Watanabe M, Sakurai A. Bunina bodies in amyotrophic lateral sclerosis immunostained with rabbit anti-cystatin C serum. Neurosci Lett 1993;162(1-2):125-128.PubMedCrossRef Okamoto K, Hirai S, Amari M, Watanabe M, Sakurai A. Bunina bodies in amyotrophic lateral sclerosis immunostained with rabbit anti-cystatin C serum. Neurosci Lett 1993;162(1-2):125-128.PubMedCrossRef
104.
go back to reference Mori F, Tanji K, Miki Y, Wakabayashi K. Decreased cystatin C immunoreactivity in spinal motor neurons and astrocytes in amyotrophic lateral sclerosis. J Neuropathol Exp Neurol 2009;68(11):1200-1206.PubMedCrossRef Mori F, Tanji K, Miki Y, Wakabayashi K. Decreased cystatin C immunoreactivity in spinal motor neurons and astrocytes in amyotrophic lateral sclerosis. J Neuropathol Exp Neurol 2009;68(11):1200-1206.PubMedCrossRef
106.
go back to reference Wilson ME, Boumaza I, Bowser R. Measurement of cystatin C functional activity in the cerebrospinal fluid of amyotrophic lateral sclerosis and control subjects. Fluids Barriers CNS 2013;10:15.PubMedPubMedCentralCrossRef Wilson ME, Boumaza I, Bowser R. Measurement of cystatin C functional activity in the cerebrospinal fluid of amyotrophic lateral sclerosis and control subjects. Fluids Barriers CNS 2013;10:15.PubMedPubMedCentralCrossRef
107.
109.
go back to reference Eitan C, Hornstein E. Vulnerability of microRNA biogenesis in FTD-ALS. Brain Res 2016;1647:105-111. Eitan C, Hornstein E. Vulnerability of microRNA biogenesis in FTD-ALS. Brain Res 2016;1647:105-111.
110.
go back to reference Kocerha J, Kauppinen S, Wahlestedt C. microRNAs in CNS disorders. Neuromol Med 2009;11(3):162-172.CrossRef Kocerha J, Kauppinen S, Wahlestedt C. microRNAs in CNS disorders. Neuromol Med 2009;11(3):162-172.CrossRef
111.
go back to reference Weinberg MS, Wood MJ. Short non-coding RNA biology and neurodegenerative disorders: novel disease targets and therapeutics. Hum Mol Genet 2009;18(R1):R27-R39.PubMedPubMedCentralCrossRef Weinberg MS, Wood MJ. Short non-coding RNA biology and neurodegenerative disorders: novel disease targets and therapeutics. Hum Mol Genet 2009;18(R1):R27-R39.PubMedPubMedCentralCrossRef
112.
go back to reference Goodall EF, Heath PR, Bandmann O, Kirby J, Shaw PJ. Neuronal dark matter: the emerging role of microRNAs in neurodegeneration. Front Cell Neurosci 2013;7:178.PubMedPubMedCentralCrossRef Goodall EF, Heath PR, Bandmann O, Kirby J, Shaw PJ. Neuronal dark matter: the emerging role of microRNAs in neurodegeneration. Front Cell Neurosci 2013;7:178.PubMedPubMedCentralCrossRef
113.
114.
go back to reference Campos-Melo D, Droppelmann CA, He Z, Volkening K, Strong MJ. Altered microRNA expression profile in amyotrophic lateral sclerosis: a role in the regulation of NFL mRNA levels. Mol Brain 2013;6:26.PubMedPubMedCentralCrossRef Campos-Melo D, Droppelmann CA, He Z, Volkening K, Strong MJ. Altered microRNA expression profile in amyotrophic lateral sclerosis: a role in the regulation of NFL mRNA levels. Mol Brain 2013;6:26.PubMedPubMedCentralCrossRef
115.
go back to reference Emde A, Eitan C, Liou LL, et al. Dysregulated miRNA biogenesis downstream of cellular stress and ALS-causing mutations: a new mechanism for ALS. EMBOJ 2015;34:2633-2651.CrossRef Emde A, Eitan C, Liou LL, et al. Dysregulated miRNA biogenesis downstream of cellular stress and ALS-causing mutations: a new mechanism for ALS. EMBOJ 2015;34:2633-2651.CrossRef
116.
go back to reference Benigni M, Ricci C, Jones AR, Giannini F, Al-Chalabi A, Battistini S. Identification of miRNAs as potential biomarkers in cerebrospinal fluid from amyotrophic lateral sclerosis patients. Neuromolecular Med 2016;18:551-560.PubMedCrossRef Benigni M, Ricci C, Jones AR, Giannini F, Al-Chalabi A, Battistini S. Identification of miRNAs as potential biomarkers in cerebrospinal fluid from amyotrophic lateral sclerosis patients. Neuromolecular Med 2016;18:551-560.PubMedCrossRef
117.
go back to reference Freischmidt A, Muller K, Ludolph AC, Weishaupt JH. Systemic dysregulation of TDP-43 binding microRNAs in amyotrophic lateral sclerosis. Acta Neuropathol Commun 2013;1:42.PubMedPubMedCentralCrossRef Freischmidt A, Muller K, Ludolph AC, Weishaupt JH. Systemic dysregulation of TDP-43 binding microRNAs in amyotrophic lateral sclerosis. Acta Neuropathol Commun 2013;1:42.PubMedPubMedCentralCrossRef
118.
go back to reference De Felice B, Annunziata A, Fiorentino G, et al. miR-338-3p is over-expressed in blood, CFS, serum and spinal cord from sporadic amyotrophic lateral sclerosis patients. Neurogenetics 2014;15(4):243-253.PubMedCrossRef De Felice B, Annunziata A, Fiorentino G, et al. miR-338-3p is over-expressed in blood, CFS, serum and spinal cord from sporadic amyotrophic lateral sclerosis patients. Neurogenetics 2014;15(4):243-253.PubMedCrossRef
119.
go back to reference Freischmidt A, Muller K, Zondler L, et al. Serum microRNAs in sporadic amyotrophic lateral sclerosis. Neurobiol Aging 2015;36(9):2660.PubMedCrossRef Freischmidt A, Muller K, Zondler L, et al. Serum microRNAs in sporadic amyotrophic lateral sclerosis. Neurobiol Aging 2015;36(9):2660.PubMedCrossRef
120.
go back to reference Takahashi I, Hama Y, Matsushima M, et al. Identification of plasma microRNAs as a biomarker of sporadic amyotrophic lateral sclerosis. Mol Brain 2015;8(1):67.PubMedPubMedCentralCrossRef Takahashi I, Hama Y, Matsushima M, et al. Identification of plasma microRNAs as a biomarker of sporadic amyotrophic lateral sclerosis. Mol Brain 2015;8(1):67.PubMedPubMedCentralCrossRef
121.
go back to reference Bunton-Stasyshyn RK, Saccon RA, Fratta P, Fisher EM. SOD1 function and its implications for amyotrophic lateral sclerosis pathology: new and renascent themes. Neuroscientist 2015;21(5):519-529.PubMedCrossRef Bunton-Stasyshyn RK, Saccon RA, Fratta P, Fisher EM. SOD1 function and its implications for amyotrophic lateral sclerosis pathology: new and renascent themes. Neuroscientist 2015;21(5):519-529.PubMedCrossRef
122.
go back to reference Andersen PM, Sims KB, Xin WW, et al. Sixteen novel mutations in the Cu/Zn superoxide dismutase gene in amyotrophic lateral sclerosis: a decade of discoveries, defects and disputes. Amyotroph Lateral Scler Other Motor Neuron Disord 2003;4(2):62-73.PubMedCrossRef Andersen PM, Sims KB, Xin WW, et al. Sixteen novel mutations in the Cu/Zn superoxide dismutase gene in amyotrophic lateral sclerosis: a decade of discoveries, defects and disputes. Amyotroph Lateral Scler Other Motor Neuron Disord 2003;4(2):62-73.PubMedCrossRef
123.
go back to reference Kaur SJ, McKeown SR, Rashid S. Mutant SOD1 mediated pathogenesis of amyotrophic lateral sclerosis. Gene 2016;577(2):109-118.PubMedCrossRef Kaur SJ, McKeown SR, Rashid S. Mutant SOD1 mediated pathogenesis of amyotrophic lateral sclerosis. Gene 2016;577(2):109-118.PubMedCrossRef
124.
go back to reference Frutiger K, Lukas TJ, Gorrie G, Ajroud-Driss S, Siddique T. Gender difference in levels of Cu/Zn superoxide dismutase (SOD1) in cerebrospinal fluid of patients with amyotrophic lateral sclerosis. Amyotroph Lateral Scler 2008;9(3):184-187.PubMedCrossRef Frutiger K, Lukas TJ, Gorrie G, Ajroud-Driss S, Siddique T. Gender difference in levels of Cu/Zn superoxide dismutase (SOD1) in cerebrospinal fluid of patients with amyotrophic lateral sclerosis. Amyotroph Lateral Scler 2008;9(3):184-187.PubMedCrossRef
125.
go back to reference Miller TM, Kaspar BK, Kops GJ, et al. Virus-delivered small RNA silencing sustains strength in amyotrophic lateral sclerosis. Ann Neurol 2005;57(5):773-776.PubMedPubMedCentralCrossRef Miller TM, Kaspar BK, Kops GJ, et al. Virus-delivered small RNA silencing sustains strength in amyotrophic lateral sclerosis. Ann Neurol 2005;57(5):773-776.PubMedPubMedCentralCrossRef
126.
go back to reference Ralph GS, Radcliffe PA, Day DM, et al. Silencing mutant SOD1 using RNAi protects against neurodegeneration and extends survival in an ALS model. Nat Med 2005;11(4):429-433.PubMedCrossRef Ralph GS, Radcliffe PA, Day DM, et al. Silencing mutant SOD1 using RNAi protects against neurodegeneration and extends survival in an ALS model. Nat Med 2005;11(4):429-433.PubMedCrossRef
127.
go back to reference Lange DJ, Andersen PM, Remanan R, Marklund S, Benjamin D. Pyrimethamine decreases levels of SOD1 in leukocytes and cerebrospinal fluid of ALS patients: a phase I pilot study. Amyotroph Lateral Scler Frontotemporal Degener 2013;14:199-204.PubMedCrossRef Lange DJ, Andersen PM, Remanan R, Marklund S, Benjamin D. Pyrimethamine decreases levels of SOD1 in leukocytes and cerebrospinal fluid of ALS patients: a phase I pilot study. Amyotroph Lateral Scler Frontotemporal Degener 2013;14:199-204.PubMedCrossRef
128.
go back to reference Winer L, Srinivasan D, Chun S, et al. SOD1 in cerebral spinal fluid as a pharmacodynamic marker for antisense oligonucleotide therapy. JAMA Neurol 2013;70:201-207.PubMedCrossRef Winer L, Srinivasan D, Chun S, et al. SOD1 in cerebral spinal fluid as a pharmacodynamic marker for antisense oligonucleotide therapy. JAMA Neurol 2013;70:201-207.PubMedCrossRef
129.
go back to reference Miller TM, Pestronk A, David W, et al. An antisense oligonucleotide against SOD1 delivered intrathecally for patients with SOD1 familial amyotrophic lateral sclerosis: a phase 1, randomised, first-in-man study. Lancet Neurol 2013;12(5):435-442.PubMedPubMedCentralCrossRef Miller TM, Pestronk A, David W, et al. An antisense oligonucleotide against SOD1 delivered intrathecally for patients with SOD1 familial amyotrophic lateral sclerosis: a phase 1, randomised, first-in-man study. Lancet Neurol 2013;12(5):435-442.PubMedPubMedCentralCrossRef
130.
go back to reference Johanson CE, Stopa EG, McMillan PN. The blood-cerebrospinal fluid barrier: structure and functional significance. Methods Mol Biol 2011;686:101-131.PubMedCrossRef Johanson CE, Stopa EG, McMillan PN. The blood-cerebrospinal fluid barrier: structure and functional significance. Methods Mol Biol 2011;686:101-131.PubMedCrossRef
131.
go back to reference Spector R, Keep RF, Robert Snodgrass S, Smith QR, Johanson CE. A balanced view of choroid plexus structure and function: focus on adult humans. Exp Neurol 2015;267:78-86.PubMedCrossRef Spector R, Keep RF, Robert Snodgrass S, Smith QR, Johanson CE. A balanced view of choroid plexus structure and function: focus on adult humans. Exp Neurol 2015;267:78-86.PubMedCrossRef
132.
go back to reference Boylan K, Yang C, Crook J, et al. Immunoreactivity of the phosphorylated axonal neurofilament H subunit (pNF-H) in blood of ALS model rodents and ALS patients: evaluation of blood pNF-H as a potential ALS biomarker. J Neurochem 2009;111(5):1182-1191.PubMedCrossRef Boylan K, Yang C, Crook J, et al. Immunoreactivity of the phosphorylated axonal neurofilament H subunit (pNF-H) in blood of ALS model rodents and ALS patients: evaluation of blood pNF-H as a potential ALS biomarker. J Neurochem 2009;111(5):1182-1191.PubMedCrossRef
133.
go back to reference de Andrade HM, de Albuquerque M, Avansini SH, et al. MicroRNAs-424 and 206 are potential prognostic markers in spinal onset amyotrophic lateral sclerosis. J Neurol Sci 2016;368:19-24.PubMedCrossRef de Andrade HM, de Albuquerque M, Avansini SH, et al. MicroRNAs-424 and 206 are potential prognostic markers in spinal onset amyotrophic lateral sclerosis. J Neurol Sci 2016;368:19-24.PubMedCrossRef
134.
135.
go back to reference Houi K, Kobayashi T, Kato S, Mochio S, Inoue K. Increased plasma TGF-beta1 in patients with amyotrophic lateral sclerosis. Acta Neurol Scand 2002;106(5):299-301.PubMedCrossRef Houi K, Kobayashi T, Kato S, Mochio S, Inoue K. Increased plasma TGF-beta1 in patients with amyotrophic lateral sclerosis. Acta Neurol Scand 2002;106(5):299-301.PubMedCrossRef
136.
go back to reference Ilzecka J, Stelmasiak Z, Dobosz B. Transforming growth factor-Beta 1 (tgf-Beta 1) in patients with amyotrophic lateral sclerosis. Cytokine 2002;20(5):239-243.PubMedCrossRef Ilzecka J, Stelmasiak Z, Dobosz B. Transforming growth factor-Beta 1 (tgf-Beta 1) in patients with amyotrophic lateral sclerosis. Cytokine 2002;20(5):239-243.PubMedCrossRef
137.
go back to reference Lu CH, Allen K, Oei F, et al. Systemic inflammatory response and neuromuscular involvement in amyotrophic lateral sclerosis. Neurol Neuroimmunol Neuroinflammation 2016;3(4):e244.CrossRef Lu CH, Allen K, Oei F, et al. Systemic inflammatory response and neuromuscular involvement in amyotrophic lateral sclerosis. Neurol Neuroimmunol Neuroinflammation 2016;3(4):e244.CrossRef
138.
go back to reference Cereda C, Baiocchi C, Bongioanni P, et al. TNF and sTNFR1/2 plasma levels in ALS patients. J Neuroimmunol 2008;194(1-2):123-131.PubMedCrossRef Cereda C, Baiocchi C, Bongioanni P, et al. TNF and sTNFR1/2 plasma levels in ALS patients. J Neuroimmunol 2008;194(1-2):123-131.PubMedCrossRef
139.
go back to reference Zonder L, Muller K, Khalaji S, et al. Peripheral monocytes are functionally altered and invade the CNS in ALS patients. Acta Neuropathol 2016;132(3):391-411.CrossRef Zonder L, Muller K, Khalaji S, et al. Peripheral monocytes are functionally altered and invade the CNS in ALS patients. Acta Neuropathol 2016;132(3):391-411.CrossRef
140.
go back to reference Henkel JS, Beers DR, Wen S, et al. Regulatory T-lymphocytes mediate amyotrophic lateral sclerosis progression and survival. EMBO Mol Med 2013;5:64-79.PubMedCrossRef Henkel JS, Beers DR, Wen S, et al. Regulatory T-lymphocytes mediate amyotrophic lateral sclerosis progression and survival. EMBO Mol Med 2013;5:64-79.PubMedCrossRef
141.
go back to reference Verstraete E, Kuiperij HB, van Blitterswijk MM, et al. TDP-43 plasma levels are higher in amyotrophic lateral sclerosis. Amyotroph Lateral Scler 2012;13(5):446-451.PubMedCrossRef Verstraete E, Kuiperij HB, van Blitterswijk MM, et al. TDP-43 plasma levels are higher in amyotrophic lateral sclerosis. Amyotroph Lateral Scler 2012;13(5):446-451.PubMedCrossRef
142.
go back to reference Suarez-Calvet M, Dols-Icardo O, Llado A, et al. Plasma phosphorylated TDP-43 levels are elevated in patients with frontotemporal dementia carrying a C9orf72 repeat expansion or a GRN mutation. J Neurol Neurosurg Psychiatry 2014;85(6):684-691.PubMedCrossRef Suarez-Calvet M, Dols-Icardo O, Llado A, et al. Plasma phosphorylated TDP-43 levels are elevated in patients with frontotemporal dementia carrying a C9orf72 repeat expansion or a GRN mutation. J Neurol Neurosurg Psychiatry 2014;85(6):684-691.PubMedCrossRef
143.
go back to reference De Marco G, Lupino E, Calvo A, et al. Cytoplasmic accumulation of TDP-43 in circulating lymphomonocytes of ALS patients with and without TARDBP mutations. Acta Neuropathol 2011;121(5):611-622.PubMedCrossRef De Marco G, Lupino E, Calvo A, et al. Cytoplasmic accumulation of TDP-43 in circulating lymphomonocytes of ALS patients with and without TARDBP mutations. Acta Neuropathol 2011;121(5):611-622.PubMedCrossRef
144.
go back to reference Cecchi M, Messina P, Airoldi L, et al. Plasma amino acids patterns and age of onset of amyotrophic lateral sclerosis. Amyotroph Lateral Scler Frontotemporal Degener 2014;15(5-6):371-375.PubMedCrossRef Cecchi M, Messina P, Airoldi L, et al. Plasma amino acids patterns and age of onset of amyotrophic lateral sclerosis. Amyotroph Lateral Scler Frontotemporal Degener 2014;15(5-6):371-375.PubMedCrossRef
145.
go back to reference Andreadou E, Kapaki E, Kokotis P, et al. Plasma glutamate and glycine levels in patients with amyotrophic lateral sclerosis. In Vivo 2008;22(1):137-141.PubMed Andreadou E, Kapaki E, Kokotis P, et al. Plasma glutamate and glycine levels in patients with amyotrophic lateral sclerosis. In Vivo 2008;22(1):137-141.PubMed
146.
go back to reference Andreadou E, Kapaki E, Kokotis P, et al. Plasma glutamate and glycine levels in patients with amyotrophic lateral sclerosis: the effect of riluzole treatment. Clin Neurol Neurosurg 2008;110(3):222-226.PubMedCrossRef Andreadou E, Kapaki E, Kokotis P, et al. Plasma glutamate and glycine levels in patients with amyotrophic lateral sclerosis: the effect of riluzole treatment. Clin Neurol Neurosurg 2008;110(3):222-226.PubMedCrossRef
147.
go back to reference Niebroj-Dobosz I, Janik P, Kwiecinski H. Effect of Riluzole on serum amino acids in patients with amyotrophic lateral sclerosis. Acta Neurol Scand 2002;106(1):39-43.PubMedCrossRef Niebroj-Dobosz I, Janik P, Kwiecinski H. Effect of Riluzole on serum amino acids in patients with amyotrophic lateral sclerosis. Acta Neurol Scand 2002;106(1):39-43.PubMedCrossRef
148.
go back to reference Paganoni S, Zhang M, Quiroz Zarate A, et al. Uric acid levels predict survival in men with amyotrophic lateral sclerosis. J Neurol 2012;259(9):1923-1928.PubMedPubMedCentralCrossRef Paganoni S, Zhang M, Quiroz Zarate A, et al. Uric acid levels predict survival in men with amyotrophic lateral sclerosis. J Neurol 2012;259(9):1923-1928.PubMedPubMedCentralCrossRef
149.
go back to reference Lawton KA, Brown MV, Alexander D, et al. Plasma metabolomic biomarker panel to distinguish patients with amyotrophic lateral sclerosis from disease mimics. Amyotroph Lateral Scler Frontotemporal Degener 2014;15(5-6):362-370.PubMedCrossRef Lawton KA, Brown MV, Alexander D, et al. Plasma metabolomic biomarker panel to distinguish patients with amyotrophic lateral sclerosis from disease mimics. Amyotroph Lateral Scler Frontotemporal Degener 2014;15(5-6):362-370.PubMedCrossRef
151.
go back to reference Zhang J, Goodlett DR, Peskind ER, et al. Quantitative proteomic analysis of age-related changes in human cerebrospinal fluid. Neurobiol Aging 2005;26(2):207-227.PubMedCrossRef Zhang J, Goodlett DR, Peskind ER, et al. Quantitative proteomic analysis of age-related changes in human cerebrospinal fluid. Neurobiol Aging 2005;26(2):207-227.PubMedCrossRef
152.
go back to reference Shepheard SR, Chataway T, Schultz DW, Rush RA, Rogers ML. The extracellular domain of neurotrophin receptor p75 as a candidate biomarker for amyotrophic lateral sclerosis. PLOS ONE 2014;9(1):9.CrossRef Shepheard SR, Chataway T, Schultz DW, Rush RA, Rogers ML. The extracellular domain of neurotrophin receptor p75 as a candidate biomarker for amyotrophic lateral sclerosis. PLOS ONE 2014;9(1):9.CrossRef
153.
go back to reference Ono S, Shimizu N, Imai T, Rodriguez GP. Urinary collagen metabolite excretion in amyotrophic lateral sclerosis. Muscle Nerve 2001;24:821-825.PubMedCrossRef Ono S, Shimizu N, Imai T, Rodriguez GP. Urinary collagen metabolite excretion in amyotrophic lateral sclerosis. Muscle Nerve 2001;24:821-825.PubMedCrossRef
154.
go back to reference Ono S, Imai T, Matsubara S, et al. Decreased urinary concentrations of type IV collagen in amyotrophic lateral sclerosis. Acta Neurol Scand 1999;100(2):111-116.PubMedCrossRef Ono S, Imai T, Matsubara S, et al. Decreased urinary concentrations of type IV collagen in amyotrophic lateral sclerosis. Acta Neurol Scand 1999;100(2):111-116.PubMedCrossRef
155.
go back to reference Bogdanov M, Brown RH, Matson WR, et al. Increased oxidative damage to DNA in ALS patients. Free Radical Biol Med 2000;29(7):652-658.CrossRef Bogdanov M, Brown RH, Matson WR, et al. Increased oxidative damage to DNA in ALS patients. Free Radical Biol Med 2000;29(7):652-658.CrossRef
157.
go back to reference Ono S, Imai T, Munakata S, et al. Collagen abnormalities in the spinal cord from patients with amyotrophic lateral sclerosis. J Neurol Sci 1998;160(2):140-147.PubMedCrossRef Ono S, Imai T, Munakata S, et al. Collagen abnormalities in the spinal cord from patients with amyotrophic lateral sclerosis. J Neurol Sci 1998;160(2):140-147.PubMedCrossRef
158.
go back to reference Obayashi K, Sato K, Shimazaki R, et al. Salivary chromogranin A: useful and quantitative biochemical marker of affective state in patients with amyotrophic lateral sclerosis. Intern Med 2008;47(21):1875-1879.PubMedCrossRef Obayashi K, Sato K, Shimazaki R, et al. Salivary chromogranin A: useful and quantitative biochemical marker of affective state in patients with amyotrophic lateral sclerosis. Intern Med 2008;47(21):1875-1879.PubMedCrossRef
159.
go back to reference Roozendaal B, Kim S, Wolf OT, Kim MS, Sung KK, Lee S. The cortisol awakening response in amyotrophic lateral sclerosis is blunted and correlates with clinical status and depressive mood. Psychoneuroendocrinology 2012;37(1):20-26.PubMedCrossRef Roozendaal B, Kim S, Wolf OT, Kim MS, Sung KK, Lee S. The cortisol awakening response in amyotrophic lateral sclerosis is blunted and correlates with clinical status and depressive mood. Psychoneuroendocrinology 2012;37(1):20-26.PubMedCrossRef
160.
go back to reference Maier A, Deigendesch N, Muller K, et al. Interleukin-1 antagonist anakinra in amyotrophic lateral sclerosis—a pilot study. PLOS ONE 2015;10(10):e0139684.PubMedPubMedCentralCrossRef Maier A, Deigendesch N, Muller K, et al. Interleukin-1 antagonist anakinra in amyotrophic lateral sclerosis—a pilot study. PLOS ONE 2015;10(10):e0139684.PubMedPubMedCentralCrossRef
161.
go back to reference Fiala M, Mizwicki MT, Weitzman R, Magpantay L, Nishimoto N. Tocilizumab infusion therapy normalizes inflammation in sporadic ALS patients. Am J Neurodegener Dis 2013;2(2):129-139.PubMedPubMedCentral Fiala M, Mizwicki MT, Weitzman R, Magpantay L, Nishimoto N. Tocilizumab infusion therapy normalizes inflammation in sporadic ALS patients. Am J Neurodegener Dis 2013;2(2):129-139.PubMedPubMedCentral
162.
go back to reference Mizwicki MT, Fiala M, Magpantay L, et al. Tocilizumab attenuates inflammation in ALS patients through inhibition of IL6 receptor signaling. Am J Neurodegener Dis 2012;1(3):305-315.PubMedPubMedCentral Mizwicki MT, Fiala M, Magpantay L, et al. Tocilizumab attenuates inflammation in ALS patients through inhibition of IL6 receptor signaling. Am J Neurodegener Dis 2012;1(3):305-315.PubMedPubMedCentral
163.
go back to reference Lu CH, Petzold A, Kalmar B, Dick J, Malaspina A, Greensmith L. Plasma neurofilament heavy chain levels correlate to markers of late stage disease progression and treatment response in SOD1(G93A) mice that model ALS. PLOS ONE 2012;7(7):e40998.PubMedPubMedCentralCrossRef Lu CH, Petzold A, Kalmar B, Dick J, Malaspina A, Greensmith L. Plasma neurofilament heavy chain levels correlate to markers of late stage disease progression and treatment response in SOD1(G93A) mice that model ALS. PLOS ONE 2012;7(7):e40998.PubMedPubMedCentralCrossRef
164.
go back to reference Stommel EW, Cohen JA, Fadul CE, et al. Efficacy of thalidomide for the treatment of amyotrophic lateral sclerosis: a phase II open label clinical trial. Amyotroph Lateral Scler 2009;10(5-6):393-404.PubMedCrossRef Stommel EW, Cohen JA, Fadul CE, et al. Efficacy of thalidomide for the treatment of amyotrophic lateral sclerosis: a phase II open label clinical trial. Amyotroph Lateral Scler 2009;10(5-6):393-404.PubMedCrossRef
165.
go back to reference Levine TD, Bowser R, Hank N, Saperstein D. A pilot trial of memantine and riluzole in ALS: correlation to CSF biomarkers. Amyotroph Lateral Scler 2010;11(6):514-519.PubMedCrossRef Levine TD, Bowser R, Hank N, Saperstein D. A pilot trial of memantine and riluzole in ALS: correlation to CSF biomarkers. Amyotroph Lateral Scler 2010;11(6):514-519.PubMedCrossRef
166.
go back to reference Cudkowicz ME, Shefner JM, Schoenfeld DA, et al. Trial of celecoxib in amyotrophic lateral sclerosis. Ann Neurol 2006;60(1):22-31.PubMedCrossRef Cudkowicz ME, Shefner JM, Schoenfeld DA, et al. Trial of celecoxib in amyotrophic lateral sclerosis. Ann Neurol 2006;60(1):22-31.PubMedCrossRef
167.
go back to reference Bakkar N, Boehringer A, Bowser R. Use of biomarkers in ALS drug development and clinical trials. Brain Res 2015;1607:94-107. Bakkar N, Boehringer A, Bowser R. Use of biomarkers in ALS drug development and clinical trials. Brain Res 2015;1607:94-107.
168.
go back to reference Sussmuth SD, Sperfeld AD, Hinz A, et al. CSF glial markers correlate with survival in amyotrophic lateral sclerosis. Neurology 2010;74:982-987.PubMedCrossRef Sussmuth SD, Sperfeld AD, Hinz A, et al. CSF glial markers correlate with survival in amyotrophic lateral sclerosis. Neurology 2010;74:982-987.PubMedCrossRef
169.
go back to reference Lu CH, Petzold A, Topping J, et al. Plasma neurofilament heavy chain levels and disease progression in amyotrophic lateral sclerosis: insights from a longitudinal study. J Neurol Neurosurg Psychiatry 2015;86(5):565-573.PubMedCrossRef Lu CH, Petzold A, Topping J, et al. Plasma neurofilament heavy chain levels and disease progression in amyotrophic lateral sclerosis: insights from a longitudinal study. J Neurol Neurosurg Psychiatry 2015;86(5):565-573.PubMedCrossRef
170.
go back to reference Blasco H, Patin F, Madji Hounoum B, et al. Metabolomics in amyotrophic lateral sclerosis: how far can it take us? Eur J Neurol 2016;23(3):447-454.PubMedCrossRef Blasco H, Patin F, Madji Hounoum B, et al. Metabolomics in amyotrophic lateral sclerosis: how far can it take us? Eur J Neurol 2016;23(3):447-454.PubMedCrossRef
171.
go back to reference Gray E, Larkin JR, Claridge TD, Talbot K, Sibson NR, Turner MR. The longitudinal cerebrospinal fluid metabolomic profile of amyotrophic lateral sclerosis. Amyotroph Lateral Scler Frontotemporal Degener 2015;16(7-8):456-463.PubMedPubMedCentralCrossRef Gray E, Larkin JR, Claridge TD, Talbot K, Sibson NR, Turner MR. The longitudinal cerebrospinal fluid metabolomic profile of amyotrophic lateral sclerosis. Amyotroph Lateral Scler Frontotemporal Degener 2015;16(7-8):456-463.PubMedPubMedCentralCrossRef
172.
go back to reference Blasco H, Corcia P, Pradat PF, et al. Metabolomics in cerebrospinal fluid of patients with amyotrophic lateral sclerosis: an untargeted approach via high-resolution mass spectrometry. J Proteome Res 2013;12(8):3746-3754. Blasco H, Corcia P, Pradat PF, et al. Metabolomics in cerebrospinal fluid of patients with amyotrophic lateral sclerosis: an untargeted approach via high-resolution mass spectrometry. J Proteome Res 2013;12(8):3746-3754.
173.
go back to reference Lawton KA, Cudkowicz ME, Brown MV, et al. Biochemical alterations associated with ALS. Amyotroph Lateral Scler 2012;13(1):110-118.PubMedCrossRef Lawton KA, Cudkowicz ME, Brown MV, et al. Biochemical alterations associated with ALS. Amyotroph Lateral Scler 2012;13(1):110-118.PubMedCrossRef
174.
go back to reference Kumar A, Bala L, Kalita J, et al. Metabolomic analysis of serum by (1) H NMR spectroscopy in amyotrophic lateral sclerosis. Clin Chim Acta 2010;411(7-8):563-567.PubMedCrossRef Kumar A, Bala L, Kalita J, et al. Metabolomic analysis of serum by (1) H NMR spectroscopy in amyotrophic lateral sclerosis. Clin Chim Acta 2010;411(7-8):563-567.PubMedCrossRef
176.
go back to reference Wishart DS, Jewison T, Guo AC, et al. HMDB 3.0—The Human Metabolome Database in 2013. Nucl Acids Res 2013;41:D801-D807.PubMedCrossRef Wishart DS, Jewison T, Guo AC, et al. HMDB 3.0—The Human Metabolome Database in 2013. Nucl Acids Res 2013;41:D801-D807.PubMedCrossRef
Metadata
Title
Fluid-Based Biomarkers for Amyotrophic Lateral Sclerosis
Authors
Lucas T. Vu
Robert Bowser
Publication date
01-01-2017
Publisher
Springer US
Published in
Neurotherapeutics / Issue 1/2017
Print ISSN: 1933-7213
Electronic ISSN: 1878-7479
DOI
https://doi.org/10.1007/s13311-016-0503-x

Other articles of this Issue 1/2017

Neurotherapeutics 1/2017 Go to the issue