Skip to main content
Top
Published in: Neurotherapeutics 1/2017

Open Access 01-01-2017 | Review

Neuroimaging Endpoints in Amyotrophic Lateral Sclerosis

Authors: Ricarda A. L. Menke, Federica Agosta, Julian Grosskreutz, Massimo Filippi, Martin R. Turner

Published in: Neurotherapeutics | Issue 1/2017

Login to get access

Abstract

Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative, clinically heterogeneous syndrome pathologically overlapping with frontotemporal dementia. To date, therapeutic trials in animal models have not been able to predict treatment response in humans, and the revised ALS Functional Rating Scale, which is based on coarse disability measures, remains the gold-standard measure of disease progression. Advances in neuroimaging have enabled mapping of functional, structural, and molecular aspects of ALS pathology, and these objective measures may be uniquely sensitive to the detection of propagation of pathology in vivo. Abnormalities are detectable before clinical symptoms develop, offering the potential for neuroprotective intervention in familial cases. Although promising neuroimaging biomarker candidates for diagnosis, prognosis, and disease progression have emerged, these have been from the study of necessarily select patient cohorts identified in specialized referral centers. Further multicenter research is now needed to establish their validity as therapeutic outcome measures.
Appendix
Available only for authorised users
Literature
1.
2.
go back to reference Turner MR, Swash M. The expanding syndrome of amyotrophic lateral sclerosis: a clinical and molecular odyssey. J Neurol Neurosurg Psychiatry 2015;86:667-73.PubMedPubMedCentralCrossRef Turner MR, Swash M. The expanding syndrome of amyotrophic lateral sclerosis: a clinical and molecular odyssey. J Neurol Neurosurg Psychiatry 2015;86:667-73.PubMedPubMedCentralCrossRef
5.
6.
go back to reference Brooks BR, Miller RG, Swash M, et al. El Escorial revisited: revised criteria for the diagnosis of amyotrophic lateral sclerosis. Amyotroph Lateral Scler Other Motor Neuron Disord 2000;1:293-299.PubMedCrossRef Brooks BR, Miller RG, Swash M, et al. El Escorial revisited: revised criteria for the diagnosis of amyotrophic lateral sclerosis. Amyotroph Lateral Scler Other Motor Neuron Disord 2000;1:293-299.PubMedCrossRef
7.
go back to reference Swank RL, Putnam TJ. Amyotrophic lateral sclerosis and related conditions: a clinical analysis. Arch Neurol Psychiatry 1943;49:151-177.CrossRef Swank RL, Putnam TJ. Amyotrophic lateral sclerosis and related conditions: a clinical analysis. Arch Neurol Psychiatry 1943;49:151-177.CrossRef
8.
go back to reference Turner MR, Parton MJ, Shaw CE, et al. Prolonged survival in motor neuron disease: a descriptive study of the King's database 1990–2002. J Neurol Neurosurg Psychiatry 2003;74:995-997.PubMedPubMedCentralCrossRef Turner MR, Parton MJ, Shaw CE, et al. Prolonged survival in motor neuron disease: a descriptive study of the King's database 1990–2002. J Neurol Neurosurg Psychiatry 2003;74:995-997.PubMedPubMedCentralCrossRef
9.
go back to reference Chio A, Calvo A, Moglia C, et al. Phenotypic heterogeneity of amyotrophic lateral sclerosis: a population based study. J Neurol Neurosurg Psychiatry 2011;82:740-746.PubMedCrossRef Chio A, Calvo A, Moglia C, et al. Phenotypic heterogeneity of amyotrophic lateral sclerosis: a population based study. J Neurol Neurosurg Psychiatry 2011;82:740-746.PubMedCrossRef
10.
go back to reference Elamin M, Bede P, Byrne S, et al. Cognitive changes predict functional decline in ALS: A population-based longitudinal study. Neurology 2013;80:1590-1597.PubMedCrossRef Elamin M, Bede P, Byrne S, et al. Cognitive changes predict functional decline in ALS: A population-based longitudinal study. Neurology 2013;80:1590-1597.PubMedCrossRef
11.
go back to reference Cedarbaum JM, Stambler N, Malta E, et al. The ALSFRS-R: a revised ALS functional rating scale that incorporates assessments of respiratory function. BDNF ALS Study Group (Phase III). J Neurol Sci 1999;169:13-21.PubMedCrossRef Cedarbaum JM, Stambler N, Malta E, et al. The ALSFRS-R: a revised ALS functional rating scale that incorporates assessments of respiratory function. BDNF ALS Study Group (Phase III). J Neurol Sci 1999;169:13-21.PubMedCrossRef
12.
go back to reference Proudfoot M, Jones A, Talbot K, et al. The ALSFRS as an outcome measure in therapeutic trials and its relationship to symptom onset. Amyotroph Lateral Scler Frontotemporal Degener 2016;17:414-425.PubMedPubMedCentralCrossRef Proudfoot M, Jones A, Talbot K, et al. The ALSFRS as an outcome measure in therapeutic trials and its relationship to symptom onset. Amyotroph Lateral Scler Frontotemporal Degener 2016;17:414-425.PubMedPubMedCentralCrossRef
13.
go back to reference Menon P, Geevasinga N, Yiannikas C, et al. Sensitivity and specificity of threshold tracking transcranial magnetic stimulation for diagnosis of amyotrophic lateral sclerosis: a prospective study. Lancet Neurol 2015;14:478-484.PubMedCrossRef Menon P, Geevasinga N, Yiannikas C, et al. Sensitivity and specificity of threshold tracking transcranial magnetic stimulation for diagnosis of amyotrophic lateral sclerosis: a prospective study. Lancet Neurol 2015;14:478-484.PubMedCrossRef
14.
go back to reference Lu CH, Macdonald-Wallis C, Gray E, et al. Neurofilament light chain: A prognostic biomarker in amyotrophic lateral sclerosis. Neurology 2015;84:2247-2257.PubMedPubMedCentralCrossRef Lu CH, Macdonald-Wallis C, Gray E, et al. Neurofilament light chain: A prognostic biomarker in amyotrophic lateral sclerosis. Neurology 2015;84:2247-2257.PubMedPubMedCentralCrossRef
15.
go back to reference Shefner JM, Watson ML, Simionescu L, et al. Multipoint incremental motor unit number estimation as an outcome measure in ALS. Neurology 2011;77:235-241.PubMedPubMedCentralCrossRef Shefner JM, Watson ML, Simionescu L, et al. Multipoint incremental motor unit number estimation as an outcome measure in ALS. Neurology 2011;77:235-241.PubMedPubMedCentralCrossRef
16.
go back to reference Rutkove SB, Caress JB, Cartwright MS, et al. Electrical impedance myography as a biomarker to assess ALS progression. Amyotroph Lateral Scler 2012;13:439-445.PubMedPubMedCentralCrossRef Rutkove SB, Caress JB, Cartwright MS, et al. Electrical impedance myography as a biomarker to assess ALS progression. Amyotroph Lateral Scler 2012;13:439-445.PubMedPubMedCentralCrossRef
19.
20.
go back to reference Turner MR, Agosta F, Bede P, et al. Neuroimaging in amyotrophic lateral sclerosis. Biomark Med 2012;6:319-337.PubMedCrossRef Turner MR, Agosta F, Bede P, et al. Neuroimaging in amyotrophic lateral sclerosis. Biomark Med 2012;6:319-337.PubMedCrossRef
21.
go back to reference Babalola KO, Patenaude B, Aljabar P, et al. An evaluation of four automatic methods of segmenting the subcortical structures in the brain. Neuroimage 2009;47:1435-1447.PubMedCrossRef Babalola KO, Patenaude B, Aljabar P, et al. An evaluation of four automatic methods of segmenting the subcortical structures in the brain. Neuroimage 2009;47:1435-1447.PubMedCrossRef
22.
go back to reference Fischl B, Salat DH, Busa E, et al. Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron 2002;33:341-355.PubMedCrossRef Fischl B, Salat DH, Busa E, et al. Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron 2002;33:341-355.PubMedCrossRef
23.
go back to reference Good CD, Johnsrude IS, Ashburner J, et al. A voxel-based morphometric study of ageing in 465 normal adult human brains. Neuroimage 2001;14:21-36.PubMedCrossRef Good CD, Johnsrude IS, Ashburner J, et al. A voxel-based morphometric study of ageing in 465 normal adult human brains. Neuroimage 2001;14:21-36.PubMedCrossRef
24.
25.
go back to reference Hartung V, Prell T, Gaser C, et al. Voxel-based MRI intensitometry reveals extent of cerebral white matter pathology in amyotrophic lateral sclerosis. PLOS ONE 2014;9:e104894.PubMedPubMedCentralCrossRef Hartung V, Prell T, Gaser C, et al. Voxel-based MRI intensitometry reveals extent of cerebral white matter pathology in amyotrophic lateral sclerosis. PLOS ONE 2014;9:e104894.PubMedPubMedCentralCrossRef
26.
go back to reference Lebihan D, Breton E, Lallemand D, et al. Mr Imaging of intravoxel incoherent motions—application to diffusion and perfusion in neurologic disorders. Radiology. 1986;161:401-407.CrossRef Lebihan D, Breton E, Lallemand D, et al. Mr Imaging of intravoxel incoherent motions—application to diffusion and perfusion in neurologic disorders. Radiology. 1986;161:401-407.CrossRef
27.
go back to reference Basser PJ, Mattiello J, LeBihan D. Estimation of the effective self-diffusion tensor from the NMR spin echo. J Magn Reson Ser B 1994;103:247-254.CrossRef Basser PJ, Mattiello J, LeBihan D. Estimation of the effective self-diffusion tensor from the NMR spin echo. J Magn Reson Ser B 1994;103:247-254.CrossRef
28.
go back to reference Beaulieu C. The basis of anisotropic water diffusion in the nervous system—a technical review. NMR Biomed 2002;15:435-455.PubMedCrossRef Beaulieu C. The basis of anisotropic water diffusion in the nervous system—a technical review. NMR Biomed 2002;15:435-455.PubMedCrossRef
29.
go back to reference Douaud G, Jbabdi S, Behrens TE, et al. DTI measures in crossing-fibre areas: increased diffusion anisotropy reveals early white matter alteration in MCI and mild Alzheimer's disease. Neuroimage 2011;55:880-890.PubMedCrossRef Douaud G, Jbabdi S, Behrens TE, et al. DTI measures in crossing-fibre areas: increased diffusion anisotropy reveals early white matter alteration in MCI and mild Alzheimer's disease. Neuroimage 2011;55:880-890.PubMedCrossRef
30.
go back to reference Smith SM, Jenkinson M, Johansen-Berg H, et al. Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data. Neuroimage 2006;31:1487-1505.PubMedCrossRef Smith SM, Jenkinson M, Johansen-Berg H, et al. Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data. Neuroimage 2006;31:1487-1505.PubMedCrossRef
31.
32.
go back to reference Iturria-Medina Y, Canales-Rodriguez EJ, Melie-Garcia L, et al. Characterizing brain anatomical connections using diffusion weighted MRI and graph theory. Neuroimage 2007;36:645-660.PubMedCrossRef Iturria-Medina Y, Canales-Rodriguez EJ, Melie-Garcia L, et al. Characterizing brain anatomical connections using diffusion weighted MRI and graph theory. Neuroimage 2007;36:645-660.PubMedCrossRef
33.
go back to reference Damoiseaux JS, Rombouts SARB, Barkhof F, et al. Consistent resting-state networks across healthy subjects. Proc Natl Acad Sci U S A 2006;103:13848-13853.PubMedPubMedCentralCrossRef Damoiseaux JS, Rombouts SARB, Barkhof F, et al. Consistent resting-state networks across healthy subjects. Proc Natl Acad Sci U S A 2006;103:13848-13853.PubMedPubMedCentralCrossRef
34.
go back to reference Smith SM, Fox PT, Miller KL, et al. Correspondence of the brain's functional architecture during activation and rest. Proc Natl Acad Sci U S A 2009;106:13040-13045.PubMedPubMedCentralCrossRef Smith SM, Fox PT, Miller KL, et al. Correspondence of the brain's functional architecture during activation and rest. Proc Natl Acad Sci U S A 2009;106:13040-13045.PubMedPubMedCentralCrossRef
35.
go back to reference Cole DM, Smith SM, Beckmann CF. Advances and pitfalls in the analysis and interpretation of resting-state FMRI data. Front Syst Neurosci 2010;4:8.PubMedPubMedCentral Cole DM, Smith SM, Beckmann CF. Advances and pitfalls in the analysis and interpretation of resting-state FMRI data. Front Syst Neurosci 2010;4:8.PubMedPubMedCentral
36.
go back to reference Beckmann CF, Smith SM. Probabilistic independent component analysis for functional magnetic resonance imaging. IEEE Trans Med Imaging 2004;23:137-152.PubMedCrossRef Beckmann CF, Smith SM. Probabilistic independent component analysis for functional magnetic resonance imaging. IEEE Trans Med Imaging 2004;23:137-152.PubMedCrossRef
37.
go back to reference Beckmann CF, DeLuca M, Devlin JT, et al. Investigations into resting-state connectivity using independent component analysis. Philos Trans R Soc Lond B Biol Sci 2005;360:1001-1013.PubMedPubMedCentralCrossRef Beckmann CF, DeLuca M, Devlin JT, et al. Investigations into resting-state connectivity using independent component analysis. Philos Trans R Soc Lond B Biol Sci 2005;360:1001-1013.PubMedPubMedCentralCrossRef
38.
go back to reference Turner MR, Leigh PN. Positron emission tomography (PET)—its potential to provide surrogate markers in ALS. Amyotroph Lateral Scle rOther Motor Neuron Disord 2000;1(Suppl. 2):S17-S22.CrossRef Turner MR, Leigh PN. Positron emission tomography (PET)—its potential to provide surrogate markers in ALS. Amyotroph Lateral Scle rOther Motor Neuron Disord 2000;1(Suppl. 2):S17-S22.CrossRef
39.
go back to reference Evans MC, Couch Y, Sibson N, et al. Inflammation and neurovascular changes in amyotrophic lateral sclerosis. Mol Cell Neurosci 2012;53:34-41.PubMedCrossRef Evans MC, Couch Y, Sibson N, et al. Inflammation and neurovascular changes in amyotrophic lateral sclerosis. Mol Cell Neurosci 2012;53:34-41.PubMedCrossRef
40.
go back to reference Turner MR, Benatar M. Ensuring continued progress in biomarkers for amyotrophic lateral sclerosis. Muscle Nerve 2015;51:14-18.PubMedCrossRef Turner MR, Benatar M. Ensuring continued progress in biomarkers for amyotrophic lateral sclerosis. Muscle Nerve 2015;51:14-18.PubMedCrossRef
41.
go back to reference Huynh W, Simon NG, Grosskreutz J, et al. Assessment of the upper motor neuron in amyotrophic lateral sclerosis. Clin Neurophysiol 2016;127:2643-2660.PubMedCrossRef Huynh W, Simon NG, Grosskreutz J, et al. Assessment of the upper motor neuron in amyotrophic lateral sclerosis. Clin Neurophysiol 2016;127:2643-2660.PubMedCrossRef
42.
go back to reference Abe O, Yamada H, Masutani Y, et al. Amyotrophic lateral sclerosis: diffusion tensor tractography and voxel-based analysis. NMR Biomed 2004;17:411-416.PubMedCrossRef Abe O, Yamada H, Masutani Y, et al. Amyotrophic lateral sclerosis: diffusion tensor tractography and voxel-based analysis. NMR Biomed 2004;17:411-416.PubMedCrossRef
43.
go back to reference Sach M, Winkler G, Glauche V, et al. Diffusion tensor MRI of early upper motor neuron involvement in amyotrophic lateral sclerosis. Brain 2004;127:340-350.PubMedCrossRef Sach M, Winkler G, Glauche V, et al. Diffusion tensor MRI of early upper motor neuron involvement in amyotrophic lateral sclerosis. Brain 2004;127:340-350.PubMedCrossRef
44.
go back to reference Cosottini M, Giannelli M, Siciliano G, et al. Diffusion-tensor MR imaging of corticospinal tract in amyotrophic lateral sclerosis and progressive muscular atrophy. Radiology 2005;237:258-264.PubMedCrossRef Cosottini M, Giannelli M, Siciliano G, et al. Diffusion-tensor MR imaging of corticospinal tract in amyotrophic lateral sclerosis and progressive muscular atrophy. Radiology 2005;237:258-264.PubMedCrossRef
45.
go back to reference Sage CA, Peeters RR, Gorner A, et al. Quantitative diffusion tensor imaging in amyotrophic lateral sclerosis. Neuroimage 2007;34:486-499.PubMedCrossRef Sage CA, Peeters RR, Gorner A, et al. Quantitative diffusion tensor imaging in amyotrophic lateral sclerosis. Neuroimage 2007;34:486-499.PubMedCrossRef
46.
go back to reference Thivard L, Pradat PF, Lehericy S, et al. Diffusion tensor imaging and voxel based morphometry study in amyotrophic lateral sclerosis: relationships with motor disability. J Neurol Neurosurg Psychiatry 2007;78:889-892.PubMedPubMedCentralCrossRef Thivard L, Pradat PF, Lehericy S, et al. Diffusion tensor imaging and voxel based morphometry study in amyotrophic lateral sclerosis: relationships with motor disability. J Neurol Neurosurg Psychiatry 2007;78:889-892.PubMedPubMedCentralCrossRef
47.
go back to reference Iwata NK, Aoki S, Okabe S, et al. Evaluation of corticospinal tracts in ALS with diffusion tensor MRI and brainstem stimulation. Neurology 2008;70:528-532.PubMedCrossRef Iwata NK, Aoki S, Okabe S, et al. Evaluation of corticospinal tracts in ALS with diffusion tensor MRI and brainstem stimulation. Neurology 2008;70:528-532.PubMedCrossRef
48.
go back to reference Agosta F, Pagani E, Petrolini M, et al. Assessment of white matter tract damage in patients with amyotrophic lateral sclerosis: a diffusion tensor MR imaging tractography study. AJNR Am J Neuroradiol 2010;31:1457-1461.PubMedCrossRef Agosta F, Pagani E, Petrolini M, et al. Assessment of white matter tract damage in patients with amyotrophic lateral sclerosis: a diffusion tensor MR imaging tractography study. AJNR Am J Neuroradiol 2010;31:1457-1461.PubMedCrossRef
49.
go back to reference van der Graaff MM, Sage CA, Caan MW, et al. Upper and extra-motoneuron involvement in early motoneuron disease: a diffusion tensor imaging study. Brain 2011;134:1211-1228.PubMedCrossRef van der Graaff MM, Sage CA, Caan MW, et al. Upper and extra-motoneuron involvement in early motoneuron disease: a diffusion tensor imaging study. Brain 2011;134:1211-1228.PubMedCrossRef
50.
go back to reference Menke RA, Korner S, Filippini N, et al. Widespread grey matter pathology dominates the longitudinal cerebral MRI and clinical landscape of amyotrophic lateral sclerosis. Brain 2014;137:2546-2555.PubMedPubMedCentralCrossRef Menke RA, Korner S, Filippini N, et al. Widespread grey matter pathology dominates the longitudinal cerebral MRI and clinical landscape of amyotrophic lateral sclerosis. Brain 2014;137:2546-2555.PubMedPubMedCentralCrossRef
51.
go back to reference Blain CR, Brunton S, Williams VC, et al. Differential corticospinal tract degeneration in homozygous 'D90A' SOD-1 ALS and sporadic ALS. J Neurol Neurosurg Psychiatry 2011;82:843-849.PubMedPubMedCentralCrossRef Blain CR, Brunton S, Williams VC, et al. Differential corticospinal tract degeneration in homozygous 'D90A' SOD-1 ALS and sporadic ALS. J Neurol Neurosurg Psychiatry 2011;82:843-849.PubMedPubMedCentralCrossRef
52.
go back to reference Verstraete E, Polders DL, Mandl RC, et al. Multimodal tract-based analysis in ALS patients at 7T: a specific white matter profile? Amyotroph Lateral Scler Frontotemporal Degener 2014;15:84-92.PubMedCrossRef Verstraete E, Polders DL, Mandl RC, et al. Multimodal tract-based analysis in ALS patients at 7T: a specific white matter profile? Amyotroph Lateral Scler Frontotemporal Degener 2014;15:84-92.PubMedCrossRef
53.
go back to reference Filippini N, Douaud G, Mackay CE, et al. Corpus callosum involvement is a consistent feature of amyotrophic lateral sclerosis. Neurology 2010;75:1645-1652.PubMedPubMedCentralCrossRef Filippini N, Douaud G, Mackay CE, et al. Corpus callosum involvement is a consistent feature of amyotrophic lateral sclerosis. Neurology 2010;75:1645-1652.PubMedPubMedCentralCrossRef
54.
go back to reference Chapman MC, Jelsone-Swain L, Johnson TD, et al. Diffusion tensor MRI of the corpus callosum in amyotrophic lateral sclerosis. J Magn Reson Imaging 2014;39:641-647.PubMedCrossRef Chapman MC, Jelsone-Swain L, Johnson TD, et al. Diffusion tensor MRI of the corpus callosum in amyotrophic lateral sclerosis. J Magn Reson Imaging 2014;39:641-647.PubMedCrossRef
55.
go back to reference Iwata NK, Kwan JY, Danielian LE, et al. White matter alterations differ in primary lateral sclerosis and amyotrophic lateral sclerosis. Brain 2011;134:2642-2655.PubMedPubMedCentralCrossRef Iwata NK, Kwan JY, Danielian LE, et al. White matter alterations differ in primary lateral sclerosis and amyotrophic lateral sclerosis. Brain 2011;134:2642-2655.PubMedPubMedCentralCrossRef
56.
go back to reference Senda J, Kato S, Kaga T, et al. Progressive and widespread brain damage in ALS: MRI voxel-based morphometry and diffusion tensor imaging study. Amyotroph Lateral Scler 2011;12:59-69.PubMedCrossRef Senda J, Kato S, Kaga T, et al. Progressive and widespread brain damage in ALS: MRI voxel-based morphometry and diffusion tensor imaging study. Amyotroph Lateral Scler 2011;12:59-69.PubMedCrossRef
57.
58.
go back to reference Agosta F, Ferraro PM, Riva N, et al. Structural brain correlates of cognitive and behavioral impairment in MND. Hum Brain Mapp 2016;37:1614-1626.PubMedCrossRef Agosta F, Ferraro PM, Riva N, et al. Structural brain correlates of cognitive and behavioral impairment in MND. Hum Brain Mapp 2016;37:1614-1626.PubMedCrossRef
59.
go back to reference Ng MC, Ho JT, Ho SL, Lee R, Li G, Cheng TS, et al. Abnormal diffusion tensor in nonsymptomatic familial amyotrophic lateral sclerosis with a causative superoxide dismutase 1 mutation. J Magn Reson Imaging 2008;27(1):8-13. Ng MC, Ho JT, Ho SL, Lee R, Li G, Cheng TS, et al. Abnormal diffusion tensor in nonsymptomatic familial amyotrophic lateral sclerosis with a causative superoxide dismutase 1 mutation. J Magn Reson Imaging 2008;27(1):8-13.
60.
go back to reference Vucic S, Winhammar JM, Rowe DB, et al. Corticomotoneuronal function in asymptomatic SOD-1 mutation carriers. Clin Neurophysiol 2010;121:1781-1785.PubMedCrossRef Vucic S, Winhammar JM, Rowe DB, et al. Corticomotoneuronal function in asymptomatic SOD-1 mutation carriers. Clin Neurophysiol 2010;121:1781-1785.PubMedCrossRef
61.
go back to reference Foerster BR, Dwamena BA, Petrou M, et al. Diagnostic accuracy using diffusion tensor imaging in the diagnosis of ALS: a meta-analysis. Acad Radiol 2012;19:1075-1086.PubMedPubMedCentralCrossRef Foerster BR, Dwamena BA, Petrou M, et al. Diagnostic accuracy using diffusion tensor imaging in the diagnosis of ALS: a meta-analysis. Acad Radiol 2012;19:1075-1086.PubMedPubMedCentralCrossRef
62.
go back to reference Grosskreutz J, Kaufmann J, Fradrich J, et al. Widespread sensorimotor and frontal cortical atrophy in amyotrophic lateral sclerosis. BMC Neurol 2006;6:17.PubMedPubMedCentralCrossRef Grosskreutz J, Kaufmann J, Fradrich J, et al. Widespread sensorimotor and frontal cortical atrophy in amyotrophic lateral sclerosis. BMC Neurol 2006;6:17.PubMedPubMedCentralCrossRef
63.
go back to reference Agosta F, Pagani E, Rocca MA, et al. Voxel-based morphometry study of brain volumetry and diffusivity in amyotrophic lateral sclerosis patients with mild disability. Hum Brain Mapp 2007;28:1430-1438.PubMedCrossRef Agosta F, Pagani E, Rocca MA, et al. Voxel-based morphometry study of brain volumetry and diffusivity in amyotrophic lateral sclerosis patients with mild disability. Hum Brain Mapp 2007;28:1430-1438.PubMedCrossRef
64.
go back to reference Roccatagliata L, Bonzano L, Mancardi G, et al. Detection of motor cortex thinning and corticospinal tract involvement by quantitative MRI in amyotrophic lateral sclerosis. Amyotroph Lateral Scler 2009;10:47-52.PubMedCrossRef Roccatagliata L, Bonzano L, Mancardi G, et al. Detection of motor cortex thinning and corticospinal tract involvement by quantitative MRI in amyotrophic lateral sclerosis. Amyotroph Lateral Scler 2009;10:47-52.PubMedCrossRef
65.
go back to reference Raaphorst J, van Tol MJ, de Visser M, et al. Prose memory impairment in amyotrophic lateral sclerosis patients is related to hippocampus volume. Eur J Neurol 2015;22:547-554.PubMedCrossRef Raaphorst J, van Tol MJ, de Visser M, et al. Prose memory impairment in amyotrophic lateral sclerosis patients is related to hippocampus volume. Eur J Neurol 2015;22:547-554.PubMedCrossRef
66.
go back to reference Shen D, Cui L, Fang J, et al. Voxel-wise meta-analysis of gray matter changes in amyotrophic lateral sclerosis. Front Aging Neurosci 2016;8:64.PubMedPubMedCentral Shen D, Cui L, Fang J, et al. Voxel-wise meta-analysis of gray matter changes in amyotrophic lateral sclerosis. Front Aging Neurosci 2016;8:64.PubMedPubMedCentral
68.
go back to reference Verstraete E, Veldink JH, Hendrikse J, et al. Structural MRI reveals cortical thinning in amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry 2012;83:383-388.PubMedCrossRef Verstraete E, Veldink JH, Hendrikse J, et al. Structural MRI reveals cortical thinning in amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry 2012;83:383-388.PubMedCrossRef
69.
go back to reference Schuster C, Kasper E, Machts J, et al. Focal thinning of the motor cortex mirrors clinical features of amyotrophic lateral sclerosis and their phenotypes: a neuroimaging study. J Neurol 2013;260:2856-2864.PubMedCrossRef Schuster C, Kasper E, Machts J, et al. Focal thinning of the motor cortex mirrors clinical features of amyotrophic lateral sclerosis and their phenotypes: a neuroimaging study. J Neurol 2013;260:2856-2864.PubMedCrossRef
70.
go back to reference Walhout R, Westeneng HJ, Verstraete E, et al. Cortical thickness in ALS: towards a marker for upper motor neuron involvement. J Neurol Neurosurg Psychiatry 2015;86:288-294.PubMedCrossRef Walhout R, Westeneng HJ, Verstraete E, et al. Cortical thickness in ALS: towards a marker for upper motor neuron involvement. J Neurol Neurosurg Psychiatry 2015;86:288-294.PubMedCrossRef
71.
go back to reference Douaud G, Filippini N, Knight S, et al. Integration of structural and functional magnetic resonance imaging in amyotrophic lateral sclerosis. Brain 2011;134:3470-3479.PubMedCrossRef Douaud G, Filippini N, Knight S, et al. Integration of structural and functional magnetic resonance imaging in amyotrophic lateral sclerosis. Brain 2011;134:3470-3479.PubMedCrossRef
72.
go back to reference Menke RAL, Gray E, Lu C-H, et al. CSF neurofilament light chain reflects corticospinal tract degeneration in ALS. Ann Clin Transl Neurol 2015;2:748-755.PubMedPubMedCentralCrossRef Menke RAL, Gray E, Lu C-H, et al. CSF neurofilament light chain reflects corticospinal tract degeneration in ALS. Ann Clin Transl Neurol 2015;2:748-755.PubMedPubMedCentralCrossRef
73.
go back to reference Rohrer JD, Nicholas JM, Cash DM, et al. Presymptomatic cognitive and neuroanatomical changes in genetic frontotemporal dementia in the Genetic Frontotemporal dementia Initiative (GENFI) study: a cross-sectional analysis. Lancet Neurol 2015;14:253-262.PubMedCrossRef Rohrer JD, Nicholas JM, Cash DM, et al. Presymptomatic cognitive and neuroanatomical changes in genetic frontotemporal dementia in the Genetic Frontotemporal dementia Initiative (GENFI) study: a cross-sectional analysis. Lancet Neurol 2015;14:253-262.PubMedCrossRef
74.
go back to reference Walhout R, Schmidt R, Westeneng HJ, et al. Brain morphologic changes in asymptomatic C9orf72 repeat expansion carriers. Neurology 2015;85:1780-1788.PubMedCrossRef Walhout R, Schmidt R, Westeneng HJ, et al. Brain morphologic changes in asymptomatic C9orf72 repeat expansion carriers. Neurology 2015;85:1780-1788.PubMedCrossRef
75.
go back to reference Schoenfeld MA, Tempelmann C, Gaul C, et al. Functional motor compensation in amyotrophic lateral sclerosis. J Neurol 2005;252:944-952.PubMedCrossRef Schoenfeld MA, Tempelmann C, Gaul C, et al. Functional motor compensation in amyotrophic lateral sclerosis. J Neurol 2005;252:944-952.PubMedCrossRef
76.
go back to reference Mohammadi B, Kollewe K, Samii A, et al. Functional neuroimaging at different disease stages reveals distinct phases of neuroplastic changes in amyotrophic lateral sclerosis. Hum Brain Mapp 2011;32:750-758.PubMedCrossRef Mohammadi B, Kollewe K, Samii A, et al. Functional neuroimaging at different disease stages reveals distinct phases of neuroplastic changes in amyotrophic lateral sclerosis. Hum Brain Mapp 2011;32:750-758.PubMedCrossRef
77.
go back to reference Witiuk K, Fernandez-Ruiz J, McKee R, et al. Cognitive deterioration and functional compensation in ALS measured with fMRI using an inhibitory task. J Neurosci 2014;34:14260-14271.PubMedCrossRef Witiuk K, Fernandez-Ruiz J, McKee R, et al. Cognitive deterioration and functional compensation in ALS measured with fMRI using an inhibitory task. J Neurosci 2014;34:14260-14271.PubMedCrossRef
78.
go back to reference Raaphorst J, van Tol MJ, Groot PF, et al. Prefrontal involvement related to cognitive impairment in progressive muscular atrophy. Neurology 2014;83:818-825.PubMedCrossRef Raaphorst J, van Tol MJ, Groot PF, et al. Prefrontal involvement related to cognitive impairment in progressive muscular atrophy. Neurology 2014;83:818-825.PubMedCrossRef
79.
go back to reference Mohammadi B, Kollewe K, Samii A, et al. Changes of resting state brain networks in amyotrophic lateral sclerosis. Exp Neurol 2009;217:147-153.PubMedCrossRef Mohammadi B, Kollewe K, Samii A, et al. Changes of resting state brain networks in amyotrophic lateral sclerosis. Exp Neurol 2009;217:147-153.PubMedCrossRef
80.
go back to reference Jelsone-Swain LM, Fling BW, Seidler RD, et al. Reduced interhemispheric functional connectivity in the motor cortex during rest in limb-onset amyotrophic lateral sclerosis. Front Syst Neurosci 2010;4:158.PubMedPubMedCentralCrossRef Jelsone-Swain LM, Fling BW, Seidler RD, et al. Reduced interhemispheric functional connectivity in the motor cortex during rest in limb-onset amyotrophic lateral sclerosis. Front Syst Neurosci 2010;4:158.PubMedPubMedCentralCrossRef
81.
go back to reference Tedeschi G, Trojsi F, Tessitore A, et al. Interaction between aging and neurodegeneration in amyotrophic lateral sclerosis. Neurobiol Aging 2012;33:886-898.PubMedCrossRef Tedeschi G, Trojsi F, Tessitore A, et al. Interaction between aging and neurodegeneration in amyotrophic lateral sclerosis. Neurobiol Aging 2012;33:886-898.PubMedCrossRef
82.
go back to reference Agosta F, Valsasina P, Absinta M, et al. Sensorimotor functional connectivity changes in amyotrophic lateral sclerosis. Cereb Cortex 2011;21:2291-2298.PubMedCrossRef Agosta F, Valsasina P, Absinta M, et al. Sensorimotor functional connectivity changes in amyotrophic lateral sclerosis. Cereb Cortex 2011;21:2291-2298.PubMedCrossRef
83.
go back to reference Agosta F, Canu E, Valsasina P, et al. Divergent brain network connectivity in amyotrophic lateral sclerosis. Neurobiol Aging 2013;34:419-427.PubMedCrossRef Agosta F, Canu E, Valsasina P, et al. Divergent brain network connectivity in amyotrophic lateral sclerosis. Neurobiol Aging 2013;34:419-427.PubMedCrossRef
84.
go back to reference Chenji S, Jha S, Lee D, et al. Investigating default mode and sensorimotor network connectivity in amyotrophic lateral sclerosis. PLOS ONE 2016;11:e0157443.PubMedPubMedCentralCrossRef Chenji S, Jha S, Lee D, et al. Investigating default mode and sensorimotor network connectivity in amyotrophic lateral sclerosis. PLOS ONE 2016;11:e0157443.PubMedPubMedCentralCrossRef
85.
go back to reference Schmidt R, Verstraete E, de Reus MA, et al. Correlation between structural and functional connectivity impairment in amyotrophic lateral sclerosis. Hum Brain Mapp 2014;35:4386-4395.PubMedPubMedCentralCrossRef Schmidt R, Verstraete E, de Reus MA, et al. Correlation between structural and functional connectivity impairment in amyotrophic lateral sclerosis. Hum Brain Mapp 2014;35:4386-4395.PubMedPubMedCentralCrossRef
86.
go back to reference Menke RA, Proudfoot M, Wuu J, et al. Increased functional connectivity common to symptomatic amyotrophic lateral sclerosis and those at genetic risk. J Neurol Neurosurg Psychiatry 2016;87:580-588.PubMedPubMedCentralCrossRef Menke RA, Proudfoot M, Wuu J, et al. Increased functional connectivity common to symptomatic amyotrophic lateral sclerosis and those at genetic risk. J Neurol Neurosurg Psychiatry 2016;87:580-588.PubMedPubMedCentralCrossRef
87.
go back to reference Dalakas MC, Hatazawa J, Brooks RA, et al. Lowered cerebral glucose-utilization in amyotrophic-lateral-sclerosis. Ann Neurol 1987;22:580-586.PubMedCrossRef Dalakas MC, Hatazawa J, Brooks RA, et al. Lowered cerebral glucose-utilization in amyotrophic-lateral-sclerosis. Ann Neurol 1987;22:580-586.PubMedCrossRef
88.
go back to reference Kew JJ, Leigh PN, Playford ED, et al. Cortical function in amyotrophic lateral sclerosis. A positron emission tomography study. Brain 1993;116:655-680.PubMedCrossRef Kew JJ, Leigh PN, Playford ED, et al. Cortical function in amyotrophic lateral sclerosis. A positron emission tomography study. Brain 1993;116:655-680.PubMedCrossRef
89.
go back to reference Turner MR, Cagnin A, Turkheimer FE, et al. Evidence of widespread cerebral microglial activation in amyotrophic lateral sclerosis: an [C-11](R)-PK11195 positron emission tomography study. Neurobiol Dis 2004;15:601-609.PubMedCrossRef Turner MR, Cagnin A, Turkheimer FE, et al. Evidence of widespread cerebral microglial activation in amyotrophic lateral sclerosis: an [C-11](R)-PK11195 positron emission tomography study. Neurobiol Dis 2004;15:601-609.PubMedCrossRef
90.
go back to reference Zurcher NR, Loggia ML, Lawson R, et al. Increased in vivo glial activation in patients with amyotrophic lateral sclerosis: Assessed with [(11)C]-PBR28. Neuroimage Clin 2015;7:409-414.PubMedPubMedCentralCrossRef Zurcher NR, Loggia ML, Lawson R, et al. Increased in vivo glial activation in patients with amyotrophic lateral sclerosis: Assessed with [(11)C]-PBR28. Neuroimage Clin 2015;7:409-414.PubMedPubMedCentralCrossRef
91.
go back to reference Lloyd CM, Richardson MP, Brooks DJ, et al. Extramotor involvement in ALS: PET studies with the GABA(A) ligand [(11)C]flumazenil. Brain 2000;123:2289-2296.PubMedCrossRef Lloyd CM, Richardson MP, Brooks DJ, et al. Extramotor involvement in ALS: PET studies with the GABA(A) ligand [(11)C]flumazenil. Brain 2000;123:2289-2296.PubMedCrossRef
92.
go back to reference Turner MR, Hammers A, Al-Chalabi A, et al. Distinct cerebral lesions in sporadic and 'D90A' SOD1 ALS: studies with [11C]flumazenil PET. Brain 2005;128:1323-1329.PubMedCrossRef Turner MR, Hammers A, Al-Chalabi A, et al. Distinct cerebral lesions in sporadic and 'D90A' SOD1 ALS: studies with [11C]flumazenil PET. Brain 2005;128:1323-1329.PubMedCrossRef
93.
go back to reference Turner MR, Rabiner EA, Hammers A, et al. (2005) [11C]-WAY100635 PET demonstrates marked 5-HT1A receptor changes in sporadic ALS. Brain 28:896-905.CrossRef Turner MR, Rabiner EA, Hammers A, et al. (2005) [11C]-WAY100635 PET demonstrates marked 5-HT1A receptor changes in sporadic ALS. Brain 28:896-905.CrossRef
94.
go back to reference Lanctot KL, Herrmann N, Ganjavi H, et al. Serotonin-1A receptors in frontotemporal dementia compared with controls. Psychiatry Res 2007;156:247-250.PubMedCrossRef Lanctot KL, Herrmann N, Ganjavi H, et al. Serotonin-1A receptors in frontotemporal dementia compared with controls. Psychiatry Res 2007;156:247-250.PubMedCrossRef
95.
go back to reference Majo VJ, Prabhakaran J, Mann JJ, et al. PET and SPECT tracers for glutamate receptors. Drug Discov Today 2013;18:173-184.PubMedCrossRef Majo VJ, Prabhakaran J, Mann JJ, et al. PET and SPECT tracers for glutamate receptors. Drug Discov Today 2013;18:173-184.PubMedCrossRef
96.
go back to reference Brownell AL, Kuruppu D, Kil KE, et al. PET imaging studies show enhanced expression of mGluR5 and inflammatory response during progressive degeneration in ALS mouse model expressing SOD1-G93A gene. J Neuroinflamm 2015;12:217.CrossRef Brownell AL, Kuruppu D, Kil KE, et al. PET imaging studies show enhanced expression of mGluR5 and inflammatory response during progressive degeneration in ALS mouse model expressing SOD1-G93A gene. J Neuroinflamm 2015;12:217.CrossRef
97.
go back to reference Pioro EP, Antel JP, Cashman NR, et al. Detection of cortical neuron loss in motor neuron disease by proton magnetic resonance spectroscopic imaging in vivo. Neurology 1994;44:1933-1938.PubMedCrossRef Pioro EP, Antel JP, Cashman NR, et al. Detection of cortical neuron loss in motor neuron disease by proton magnetic resonance spectroscopic imaging in vivo. Neurology 1994;44:1933-1938.PubMedCrossRef
98.
go back to reference Stagg CJ, Knight S, Talbot K, et al. Whole-brain magnetic resonance spectroscopic imaging measures are related to disability in ALS. Neurology 2013;80:610-615.PubMedPubMedCentralCrossRef Stagg CJ, Knight S, Talbot K, et al. Whole-brain magnetic resonance spectroscopic imaging measures are related to disability in ALS. Neurology 2013;80:610-615.PubMedPubMedCentralCrossRef
99.
go back to reference Foerster BR, Callaghan BC, Petrou M, et al. Decreased motor cortex gamma-aminobutyric acid in amyotrophic lateral sclerosis. Neurology 2012;78:1596-1600.PubMedPubMedCentralCrossRef Foerster BR, Callaghan BC, Petrou M, et al. Decreased motor cortex gamma-aminobutyric acid in amyotrophic lateral sclerosis. Neurology 2012;78:1596-1600.PubMedPubMedCentralCrossRef
100.
go back to reference Pioro EP, Majors AW, Mitsumoto H, et al. 1H-MRS evidence of neurodegeneration and excess glutamate + glutamine in ALS medulla. Neurology 1999;53:71-79.PubMedCrossRef Pioro EP, Majors AW, Mitsumoto H, et al. 1H-MRS evidence of neurodegeneration and excess glutamate + glutamine in ALS medulla. Neurology 1999;53:71-79.PubMedCrossRef
102.
go back to reference Muller HP, Unrath A, Huppertz HJ, et al. Neuroanatomical patterns of cerebral white matter involvement in different motor neuron diseases as studied by diffusion tensor imaging analysis. Amyotroph Lateral Scler 2012;13:254-264.PubMedCrossRef Muller HP, Unrath A, Huppertz HJ, et al. Neuroanatomical patterns of cerebral white matter involvement in different motor neuron diseases as studied by diffusion tensor imaging analysis. Amyotroph Lateral Scler 2012;13:254-264.PubMedCrossRef
103.
go back to reference Agosta F, Galantucci S, Riva N, et al. Intrahemispheric and interhemispheric structural network abnormalities in PLS and ALS. Hum Brain Mapp 2014;35:1710-1722.PubMedCrossRef Agosta F, Galantucci S, Riva N, et al. Intrahemispheric and interhemispheric structural network abnormalities in PLS and ALS. Hum Brain Mapp 2014;35:1710-1722.PubMedCrossRef
104.
go back to reference Cardenas-Blanco A, Machts J, Acosta-Cabronero J, et al. Central white matter degeneration in bulbar- and limb-onset amyotrophic lateral sclerosis. J Neurol 2014;261:1961-1967.PubMedCrossRef Cardenas-Blanco A, Machts J, Acosta-Cabronero J, et al. Central white matter degeneration in bulbar- and limb-onset amyotrophic lateral sclerosis. J Neurol 2014;261:1961-1967.PubMedCrossRef
105.
go back to reference Menke RA, Abraham I, Thiel CS, et al. Fractional anisotropy in the posterior limb of the internal capsule and prognosis in amyotrophic lateral sclerosis. Arch Neurol 2012;69:1493-1499.PubMedCrossRef Menke RA, Abraham I, Thiel CS, et al. Fractional anisotropy in the posterior limb of the internal capsule and prognosis in amyotrophic lateral sclerosis. Arch Neurol 2012;69:1493-1499.PubMedCrossRef
106.
go back to reference Blain CR, Williams VC, Johnston C, et al. A longitudinal study of diffusion tensor MRI in ALS. Amyotroph Lateral Scler 2007;8:348-355.PubMedCrossRef Blain CR, Williams VC, Johnston C, et al. A longitudinal study of diffusion tensor MRI in ALS. Amyotroph Lateral Scler 2007;8:348-355.PubMedCrossRef
107.
go back to reference Agosta F, Rocca MA, Valsasina P, et al. A longitudinal diffusion tensor MRI study of the cervical cord and brain in amyotrophic lateral sclerosis patients. J Neurol Neurosurg Psychiatry 2009;80:53-55.PubMedCrossRef Agosta F, Rocca MA, Valsasina P, et al. A longitudinal diffusion tensor MRI study of the cervical cord and brain in amyotrophic lateral sclerosis patients. J Neurol Neurosurg Psychiatry 2009;80:53-55.PubMedCrossRef
108.
go back to reference El Mendili MM, Cohen-Adad J, Pelegrini-Issac M, et al. Multi-parametric spinal cord MRI as potential progression marker in amyotrophic lateral sclerosis. PLOS ONE 2014;9:e95516.PubMedPubMedCentralCrossRef El Mendili MM, Cohen-Adad J, Pelegrini-Issac M, et al. Multi-parametric spinal cord MRI as potential progression marker in amyotrophic lateral sclerosis. PLOS ONE 2014;9:e95516.PubMedPubMedCentralCrossRef
109.
go back to reference Agosta F, Pagani E, Petrolini M, et al. MRI predictors of long-term evolution in amyotrophic lateral sclerosis. Eur J Neurosci 2010;32:1490-1496.PubMedCrossRef Agosta F, Pagani E, Petrolini M, et al. MRI predictors of long-term evolution in amyotrophic lateral sclerosis. Eur J Neurosci 2010;32:1490-1496.PubMedCrossRef
110.
go back to reference Zhang Y, Schuff N, Woolley SC, et al. Progression of white matter degeneration in amyotrophic lateral sclerosis: A diffusion tensor imaging study. Amyotroph Lateral Scler 2011;12:421-429.PubMedPubMedCentralCrossRef Zhang Y, Schuff N, Woolley SC, et al. Progression of white matter degeneration in amyotrophic lateral sclerosis: A diffusion tensor imaging study. Amyotroph Lateral Scler 2011;12:421-429.PubMedPubMedCentralCrossRef
112.
go back to reference Verstraete E, Veldink JH, van den Berg LH, et al. Structural brain network imaging shows expanding disconnection of the motor system in amyotrophic lateral sclerosis. Hum Brain Mapp 2014;35:1351-1361.PubMedCrossRef Verstraete E, Veldink JH, van den Berg LH, et al. Structural brain network imaging shows expanding disconnection of the motor system in amyotrophic lateral sclerosis. Hum Brain Mapp 2014;35:1351-1361.PubMedCrossRef
113.
go back to reference Agosta F, Gorno-Tempini ML, Pagani E, et al. Longitudinal assessment of grey matter contraction in amyotrophic lateral sclerosis: a tensor based morphometry study. Amyotroph Lateral Scler 2009;10:168-174.PubMedCrossRef Agosta F, Gorno-Tempini ML, Pagani E, et al. Longitudinal assessment of grey matter contraction in amyotrophic lateral sclerosis: a tensor based morphometry study. Amyotroph Lateral Scler 2009;10:168-174.PubMedCrossRef
114.
go back to reference Schuster C, Kasper E, Machts J, et al. Longitudinal course of cortical thickness decline in amyotrophic lateral sclerosis. J Neurol 2014;261:1871-1880.PubMedCrossRef Schuster C, Kasper E, Machts J, et al. Longitudinal course of cortical thickness decline in amyotrophic lateral sclerosis. J Neurol 2014;261:1871-1880.PubMedCrossRef
115.
go back to reference Westeneng HJ, Verstraete E, Walhout R, et al. Subcortical structures in amyotrophic lateral sclerosis. Neurobiol Aging 2015;36:1075-1082.PubMedCrossRef Westeneng HJ, Verstraete E, Walhout R, et al. Subcortical structures in amyotrophic lateral sclerosis. Neurobiol Aging 2015;36:1075-1082.PubMedCrossRef
116.
go back to reference Kwan JY, Meoded A, Danielian LE, et al. Structural imaging differences and longitudinal changes in primary lateral sclerosis and amyotrophic lateral sclerosis. Neuroimage Clin 2012;2:151-160.PubMedPubMedCentralCrossRef Kwan JY, Meoded A, Danielian LE, et al. Structural imaging differences and longitudinal changes in primary lateral sclerosis and amyotrophic lateral sclerosis. Neuroimage Clin 2012;2:151-160.PubMedPubMedCentralCrossRef
117.
go back to reference Cardenas-Blanco A, Machts J, Acosta-Cabronero J, et al. Structural and diffusion imaging versus clinical assessment to monitor amyotrophic lateral sclerosis. Neuroimage Clin 2016;11:408-414.PubMedPubMedCentralCrossRef Cardenas-Blanco A, Machts J, Acosta-Cabronero J, et al. Structural and diffusion imaging versus clinical assessment to monitor amyotrophic lateral sclerosis. Neuroimage Clin 2016;11:408-414.PubMedPubMedCentralCrossRef
118.
119.
go back to reference Rule RR, Suhy J, Schuff N, et al. Reduced NAA in motor and non-motor brain regions in amyotrophic lateral sclerosis: a cross-sectional and longitudinal study. Amyotroph Lateral Scler Other Motor Neuron Disord 2004;5:141-149.PubMedPubMedCentralCrossRef Rule RR, Suhy J, Schuff N, et al. Reduced NAA in motor and non-motor brain regions in amyotrophic lateral sclerosis: a cross-sectional and longitudinal study. Amyotroph Lateral Scler Other Motor Neuron Disord 2004;5:141-149.PubMedPubMedCentralCrossRef
120.
go back to reference Unrath A, Ludolph AC, Kassubek J. Brain metabolites in definite amyotrophic lateral sclerosis. A longitudinal proton magnetic resonance spectroscopy study. J Neurol 2007;254:1099-1106.PubMedCrossRef Unrath A, Ludolph AC, Kassubek J. Brain metabolites in definite amyotrophic lateral sclerosis. A longitudinal proton magnetic resonance spectroscopy study. J Neurol 2007;254:1099-1106.PubMedCrossRef
121.
122.
go back to reference Merlo Pich E, Jeromin A, Frisoni GB, et al. Imaging as a biomarker in drug discovery for Alzheimer's disease: is MRI a suitable technology? Alzheimers Res Ther 2014;6:51.PubMedPubMedCentralCrossRef Merlo Pich E, Jeromin A, Frisoni GB, et al. Imaging as a biomarker in drug discovery for Alzheimer's disease: is MRI a suitable technology? Alzheimers Res Ther 2014;6:51.PubMedPubMedCentralCrossRef
123.
go back to reference Burciu RG, Chung JW, Shukla P, et al. Functional MRI of disease progression in Parkinson disease and atypical parkinsonian syndromes. Neurology 2016;87:709-717.PubMedCrossRef Burciu RG, Chung JW, Shukla P, et al. Functional MRI of disease progression in Parkinson disease and atypical parkinsonian syndromes. Neurology 2016;87:709-717.PubMedCrossRef
124.
go back to reference Rosas HD, Doros G, Gevorkian S, et al. PRECREST: a phase II prevention and biomarker trial of creatine in at-risk Huntington disease. Neurology 2014;82:850-857.PubMedPubMedCentralCrossRef Rosas HD, Doros G, Gevorkian S, et al. PRECREST: a phase II prevention and biomarker trial of creatine in at-risk Huntington disease. Neurology 2014;82:850-857.PubMedPubMedCentralCrossRef
125.
go back to reference Zhang Y, Schuff N, Woolley SC, et al. Progression of white matter degeneration in amyotrophic lateral sclerosis: a diffusion tensor imaging study. Amyotroph Lateral Scler 2011;12:421-429.PubMedPubMedCentralCrossRef Zhang Y, Schuff N, Woolley SC, et al. Progression of white matter degeneration in amyotrophic lateral sclerosis: a diffusion tensor imaging study. Amyotroph Lateral Scler 2011;12:421-429.PubMedPubMedCentralCrossRef
126.
go back to reference Weidman EK, Dean KE, Rivera W, et al. MRI safety: a report of current practice and advancements in patient preparation and screening. Clin Imaging 2015;39:935-937.PubMedCrossRef Weidman EK, Dean KE, Rivera W, et al. MRI safety: a report of current practice and advancements in patient preparation and screening. Clin Imaging 2015;39:935-937.PubMedCrossRef
128.
go back to reference Pagani E, Hirsch JG, Pouwels PJ, et al. Intercenter differences in diffusion tensor MRI acquisition. J Magn Reson Imaging 2010;31:1458-1468.PubMedCrossRef Pagani E, Hirsch JG, Pouwels PJ, et al. Intercenter differences in diffusion tensor MRI acquisition. J Magn Reson Imaging 2010;31:1458-1468.PubMedCrossRef
129.
go back to reference Brueggen K, Grothe MJ, Dyrba M, et al. The European DTI Study on Dementia—a multicenter DTI and MRI study on Alzheimer's disease and mild cognitive impairment. Neuroimage 2016 Apr 2. Brueggen K, Grothe MJ, Dyrba M, et al. The European DTI Study on Dementia—a multicenter DTI and MRI study on Alzheimer's disease and mild cognitive impairment. Neuroimage 2016 Apr 2.
130.
go back to reference Muller HP, Turner MR, Grosskreutz J, et al. A large-scale multicentre cerebral diffusion tensor imaging study in amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry 2016;87:570-579.PubMedCrossRef Muller HP, Turner MR, Grosskreutz J, et al. A large-scale multicentre cerebral diffusion tensor imaging study in amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry 2016;87:570-579.PubMedCrossRef
131.
go back to reference Duning T, Kloska S, Steinstrater O, et al. Dehydration confounds the assessment of brain atrophy. Neurology 2005;64:548-550.PubMedCrossRef Duning T, Kloska S, Steinstrater O, et al. Dehydration confounds the assessment of brain atrophy. Neurology 2005;64:548-550.PubMedCrossRef
132.
go back to reference Smith SM, Zhang Y, Jenkinson M, et al. Accurate, robust, and automated longitudinal and cross-sectional brain change analysis. Neuroimage 2002;17:479-489.PubMedCrossRef Smith SM, Zhang Y, Jenkinson M, et al. Accurate, robust, and automated longitudinal and cross-sectional brain change analysis. Neuroimage 2002;17:479-489.PubMedCrossRef
134.
go back to reference Proudfoot M, Rohenkohl G, Quinn A, et al. Altered cortical beta-band oscillations reflect motor system degeneration in amyotrophic lateral sclerosis. Hum Brain Mapp 2016 Sep 13. Proudfoot M, Rohenkohl G, Quinn A, et al. Altered cortical beta-band oscillations reflect motor system degeneration in amyotrophic lateral sclerosis. Hum Brain Mapp 2016 Sep 13.
135.
136.
go back to reference Kassubek J, Muller HP, Del Tredici K, et al. Diffusion tensor imaging analysis of sequential spreading of disease in amyotrophic lateral sclerosis confirms patterns of TDP-43 pathology. Brain 2014;137:1733-1740.PubMedCrossRef Kassubek J, Muller HP, Del Tredici K, et al. Diffusion tensor imaging analysis of sequential spreading of disease in amyotrophic lateral sclerosis confirms patterns of TDP-43 pathology. Brain 2014;137:1733-1740.PubMedCrossRef
Metadata
Title
Neuroimaging Endpoints in Amyotrophic Lateral Sclerosis
Authors
Ricarda A. L. Menke
Federica Agosta
Julian Grosskreutz
Massimo Filippi
Martin R. Turner
Publication date
01-01-2017
Publisher
Springer US
Published in
Neurotherapeutics / Issue 1/2017
Print ISSN: 1933-7213
Electronic ISSN: 1878-7479
DOI
https://doi.org/10.1007/s13311-016-0484-9

Other articles of this Issue 1/2017

Neurotherapeutics 1/2017 Go to the issue