Skip to main content
Top
Published in: Molecular Brain 1/2013

Open Access 01-12-2013 | Research

Altered microRNA expression profile in amyotrophic lateral sclerosis: a role in the regulation of NFL mRNA levels

Authors: Danae Campos-Melo, Cristian A Droppelmann, Zhongping He, Kathryn Volkening, Michael J Strong

Published in: Molecular Brain | Issue 1/2013

Login to get access

Abstract

Background

Amyotrophic Lateral Sclerosis (ALS) is a progressive, adult onset, fatal neurodegenerative disease of motor neurons. There is emerging evidence that alterations in RNA metabolism may be critical in the pathogenesis of ALS. MicroRNAs (miRNAs) are small non-coding RNAs that are key determinants of mRNA stability. Considering that miRNAs are increasingly being recognized as having a role in a variety of neurodegenerative diseases, we decided to characterize the miRNA expression profile in spinal cord (SC) tissue in sporadic ALS (sALS) and controls. Furthermore, we performed functional analysis to identify a group of dysregulated miRNAs that could be responsible for the selective suppression of low molecular weight neurofilament (NFL) mRNA observed in ALS.

Results

Using TaqMan arrays we analyzed 664 miRNAs and found that a large number of miRNAs are differentially expressed in ventral lumbar SC in sALS compared to controls. We observed that the majority of dysregulated miRNAs are down-regulated in sALS SC tissues. Ingenuity Pathway Analysis (IPA) showed that dysregulated miRNAs are linked with nervous system function and cell death. We used two prediction algorithms to develop a panel of miRNAs that have recognition elements within the human NFL mRNA 3′UTR, and then we performed functional analysis for these miRNAs. Our results demonstrate that three miRNAs that are dysregulated in sALS (miR-146a*, miR-524-5p and miR-582-3p) are capable of interacting with NFL mRNA 3′UTR in a manner that is consistent with the suppressed steady state mRNA levels observed in spinal motor neurons in ALS.

Conclusions

The miRNA expression profile is broadly altered in the SC in sALS. Amongst these is a group of dysregulated miRNAs directly regulate the NFL mRNA 3′UTR, suggesting a role in the selective suppression of NFL mRNA in the ALS spinal motor neuron neurofilamentous aggregate formation.
Appendix
Available only for authorised users
Literature
1.
go back to reference Rosen DR: Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature. 1993, 364: 362-PubMed Rosen DR: Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature. 1993, 364: 362-PubMed
2.
go back to reference Greenway MJ, Andersen PM, Russ C, Ennis S, Cashman S, Donaghy C, Patterson V, Swingler R, Kieran D, Prehn J: ANG mutations segregate with familial and ‘sporadic’ amyotrophic lateral sclerosis. Nat Genet. 2006, 38: 411-413. 10.1038/ng1742.CrossRefPubMed Greenway MJ, Andersen PM, Russ C, Ennis S, Cashman S, Donaghy C, Patterson V, Swingler R, Kieran D, Prehn J: ANG mutations segregate with familial and ‘sporadic’ amyotrophic lateral sclerosis. Nat Genet. 2006, 38: 411-413. 10.1038/ng1742.CrossRefPubMed
3.
go back to reference Wu D, Yu W, Kishikawa H, Folkerth RD, Iafrate AJ, Shen Y, Xin W, Sims K, Hu GF: Angiogenin loss-of-function mutations in amyotrophic lateral sclerosis. Ann Neurol. 2007, 62: 609-617. 10.1002/ana.21221.PubMedCentralCrossRefPubMed Wu D, Yu W, Kishikawa H, Folkerth RD, Iafrate AJ, Shen Y, Xin W, Sims K, Hu GF: Angiogenin loss-of-function mutations in amyotrophic lateral sclerosis. Ann Neurol. 2007, 62: 609-617. 10.1002/ana.21221.PubMedCentralCrossRefPubMed
4.
go back to reference Pesiridis GS, Lee VM, Trojanowski JQ: Mutations in TDP-43 link glycine-rich domain functions to amyotrophic lateral sclerosis. Hum Mol Genet. 2009, 18: R156-R162. 10.1093/hmg/ddp303.PubMedCentralCrossRefPubMed Pesiridis GS, Lee VM, Trojanowski JQ: Mutations in TDP-43 link glycine-rich domain functions to amyotrophic lateral sclerosis. Hum Mol Genet. 2009, 18: R156-R162. 10.1093/hmg/ddp303.PubMedCentralCrossRefPubMed
5.
go back to reference Kabashi E, Valdmanis PN, Dion P, Spiegelman D, McConkey BJ, Vande Velde C, Bouchard JP, Lacomblez L, Pochigaeva K, Salachas F: TARDBP mutations in individuals with sporadic and familial amyotrophic lateral sclerosis. Nat Genet. 2008, 40: 572-574. 10.1038/ng.132.CrossRefPubMed Kabashi E, Valdmanis PN, Dion P, Spiegelman D, McConkey BJ, Vande Velde C, Bouchard JP, Lacomblez L, Pochigaeva K, Salachas F: TARDBP mutations in individuals with sporadic and familial amyotrophic lateral sclerosis. Nat Genet. 2008, 40: 572-574. 10.1038/ng.132.CrossRefPubMed
6.
go back to reference Sreedharan J, Blair IP, Tripathi VB, Hu X, Vance C, Rogelj B, Ackerley S, Durnall JC, Williams KL, Buratti E: TDP-43 mutations in familial and sporadic amyotrophic lateral sclerosis. Science. 2008, 319: 1668-1672. 10.1126/science.1154584.CrossRefPubMed Sreedharan J, Blair IP, Tripathi VB, Hu X, Vance C, Rogelj B, Ackerley S, Durnall JC, Williams KL, Buratti E: TDP-43 mutations in familial and sporadic amyotrophic lateral sclerosis. Science. 2008, 319: 1668-1672. 10.1126/science.1154584.CrossRefPubMed
7.
go back to reference Vance C, Rogelj B, Hortobagyi T, De Vos KJ, Nishimura AL, Sreedharan J, Hu X, Smith B, Ruddy D, Wright P: Mutations in FUS, an RNA processing protein, cause familial amyotrophic lateral sclerosis type 6. Science. 2009, 323: 1208-1211. 10.1126/science.1165942.PubMedCentralCrossRefPubMed Vance C, Rogelj B, Hortobagyi T, De Vos KJ, Nishimura AL, Sreedharan J, Hu X, Smith B, Ruddy D, Wright P: Mutations in FUS, an RNA processing protein, cause familial amyotrophic lateral sclerosis type 6. Science. 2009, 323: 1208-1211. 10.1126/science.1165942.PubMedCentralCrossRefPubMed
8.
go back to reference Kwiatkowski TJ, Bosco DA, Leclerc AL, Tamrazian E, Vanderburg CR, Russ C, Davis A, Gilchrist J, Kasarskis EJ, Munsat T: Mutations in the FUS/TLS gene on chromosome 16 cause familial amyotrophic lateral sclerosis. Science. 2009, 323: 1205-1208. 10.1126/science.1166066.CrossRefPubMed Kwiatkowski TJ, Bosco DA, Leclerc AL, Tamrazian E, Vanderburg CR, Russ C, Davis A, Gilchrist J, Kasarskis EJ, Munsat T: Mutations in the FUS/TLS gene on chromosome 16 cause familial amyotrophic lateral sclerosis. Science. 2009, 323: 1205-1208. 10.1126/science.1166066.CrossRefPubMed
9.
go back to reference DeJesus-Hernandez M, Mackenzie IR, Boeve BF, Boxer AL, Baker M, Rutherford NJ, Nicholson AM, Finch NA, Flynn H, Adamson J: Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron. 2011, 72: 245-256. 10.1016/j.neuron.2011.09.011.PubMedCentralCrossRefPubMed DeJesus-Hernandez M, Mackenzie IR, Boeve BF, Boxer AL, Baker M, Rutherford NJ, Nicholson AM, Finch NA, Flynn H, Adamson J: Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron. 2011, 72: 245-256. 10.1016/j.neuron.2011.09.011.PubMedCentralCrossRefPubMed
10.
go back to reference Renton AE, Majounie E, Waite A, Simon-Sanchez J, Rollinson S, Gibbs JR, Schymick JC, Laaksovirta H, van Swieten JC, Myllykangas L: A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron. 2011, 72: 257-268. 10.1016/j.neuron.2011.09.010.PubMedCentralCrossRefPubMed Renton AE, Majounie E, Waite A, Simon-Sanchez J, Rollinson S, Gibbs JR, Schymick JC, Laaksovirta H, van Swieten JC, Myllykangas L: A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron. 2011, 72: 257-268. 10.1016/j.neuron.2011.09.010.PubMedCentralCrossRefPubMed
11.
go back to reference Strong MJ: The evidence for altered RNA metabolism in amyotrophic lateral sclerosis (ALS). J Neurol Sci. 2010, 288: 1-12. 10.1016/j.jns.2009.09.029.CrossRefPubMed Strong MJ: The evidence for altered RNA metabolism in amyotrophic lateral sclerosis (ALS). J Neurol Sci. 2010, 288: 1-12. 10.1016/j.jns.2009.09.029.CrossRefPubMed
12.
go back to reference Volkening K, Leystra-Lantz C, Yang W, Jaffee H, Strong MJ: Tar DNA binding protein of 43 kDa (TDP-43), 14-3-3 proteins and copper/zinc superoxide dismutase (SOD1) interact to modulate NFL mRNA stability. Implications for altered RNA processing in amyotrophic lateral sclerosis (ALS). Brain Res. 2009, 1305: 168-182.CrossRefPubMed Volkening K, Leystra-Lantz C, Yang W, Jaffee H, Strong MJ: Tar DNA binding protein of 43 kDa (TDP-43), 14-3-3 proteins and copper/zinc superoxide dismutase (SOD1) interact to modulate NFL mRNA stability. Implications for altered RNA processing in amyotrophic lateral sclerosis (ALS). Brain Res. 2009, 1305: 168-182.CrossRefPubMed
13.
go back to reference Bergeron C, Beric-Maskarel K, Muntasser S, Weyer L, Somerville MJ, Percy ME: Neurofilament light and polyadenylated mRNA levels are decreased in amyotrophic lateral sclerosis motor neurons. J Neuropathol Exp Neurol. 1994, 53: 221-230. 10.1097/00005072-199405000-00002.CrossRefPubMed Bergeron C, Beric-Maskarel K, Muntasser S, Weyer L, Somerville MJ, Percy ME: Neurofilament light and polyadenylated mRNA levels are decreased in amyotrophic lateral sclerosis motor neurons. J Neuropathol Exp Neurol. 1994, 53: 221-230. 10.1097/00005072-199405000-00002.CrossRefPubMed
14.
go back to reference Menzies FM, Grierson AJ, Cookson MR, Heath PR, Tomkins J, Figlewicz DA, Ince PG, Shaw PJ: Selective loss of neurofilament expression in Cu/Zn superoxide dismutase (SOD1) linked amyotrophic lateral sclerosis. J Neurochem. 2002, 82: 1118-1128.CrossRefPubMed Menzies FM, Grierson AJ, Cookson MR, Heath PR, Tomkins J, Figlewicz DA, Ince PG, Shaw PJ: Selective loss of neurofilament expression in Cu/Zn superoxide dismutase (SOD1) linked amyotrophic lateral sclerosis. J Neurochem. 2002, 82: 1118-1128.CrossRefPubMed
15.
go back to reference Wong NK, He BP, Strong MJ: Characterization of neuronal intermediate filament protein expression in cervical spinal motor neurons in sporadic amyotrophic lateral sclerosis (ALS). J Neuropathol Exp Neurol. 2000, 59: 972-982.PubMed Wong NK, He BP, Strong MJ: Characterization of neuronal intermediate filament protein expression in cervical spinal motor neurons in sporadic amyotrophic lateral sclerosis (ALS). J Neuropathol Exp Neurol. 2000, 59: 972-982.PubMed
16.
go back to reference Ge WW, Wen W, Strong W, Leystra-Lantz C, Strong MJ: Mutant copper-zinc superoxide dismutase binds to and destabilizes human low molecular weight neurofilament mRNA. J Biol Chem. 2005, 280: 118-124.CrossRefPubMed Ge WW, Wen W, Strong W, Leystra-Lantz C, Strong MJ: Mutant copper-zinc superoxide dismutase binds to and destabilizes human low molecular weight neurofilament mRNA. J Biol Chem. 2005, 280: 118-124.CrossRefPubMed
17.
go back to reference Strong MJ, Volkening K, Hammond R, Yang W, Strong W, Leystra-Lantz C, Shoesmith C: TDP43 is a human low molecular weight neurofilament (hNFL) mRNA-binding protein. Mol Cell Neurosci. 2007, 35: 320-327. 10.1016/j.mcn.2007.03.007.CrossRefPubMed Strong MJ, Volkening K, Hammond R, Yang W, Strong W, Leystra-Lantz C, Shoesmith C: TDP43 is a human low molecular weight neurofilament (hNFL) mRNA-binding protein. Mol Cell Neurosci. 2007, 35: 320-327. 10.1016/j.mcn.2007.03.007.CrossRefPubMed
18.
go back to reference Droppelmann CA, Keller BA, Campos-Melo D, Volkening K, Strong MJ: Rho Guanine nucleotide exchange factor is a NFL mRNA destabilizing factor that forms cytoplasmic inclusions in amyotrophic lateral sclerosis. Neurobiol Aging. 2013, 34: 248-262. 10.1016/j.neurobiolaging.2012.06.021.CrossRefPubMed Droppelmann CA, Keller BA, Campos-Melo D, Volkening K, Strong MJ: Rho Guanine nucleotide exchange factor is a NFL mRNA destabilizing factor that forms cytoplasmic inclusions in amyotrophic lateral sclerosis. Neurobiol Aging. 2013, 34: 248-262. 10.1016/j.neurobiolaging.2012.06.021.CrossRefPubMed
19.
go back to reference Moisse K, Volkening K, Leystra-Lantz C, Welch I, Hill T, Strong MJ: Divergent patterns of cytosolic TDP-43 and neuronal progranulin expression following axotomy: implications for TDP-43 in the physiological response to neuronal injury. Brain Res. 2009, 1249: 202-211.CrossRefPubMed Moisse K, Volkening K, Leystra-Lantz C, Welch I, Hill T, Strong MJ: Divergent patterns of cytosolic TDP-43 and neuronal progranulin expression following axotomy: implications for TDP-43 in the physiological response to neuronal injury. Brain Res. 2009, 1249: 202-211.CrossRefPubMed
20.
go back to reference Wang IF, Wu LS, Chang HY, Shen CK: TDP-43, the signature protein of FTLD-U, is a neuronal activity-responsive factor. J Neurochem. 2008, 105: 797-806. 10.1111/j.1471-4159.2007.05190.x.CrossRefPubMed Wang IF, Wu LS, Chang HY, Shen CK: TDP-43, the signature protein of FTLD-U, is a neuronal activity-responsive factor. J Neurochem. 2008, 105: 797-806. 10.1111/j.1471-4159.2007.05190.x.CrossRefPubMed
21.
22.
go back to reference Anderson P, Kedersha N: Stress granules: the Tao of RNA triage. Trends Biochem Sci. 2008, 33: 141-150. 10.1016/j.tibs.2007.12.003.CrossRefPubMed Anderson P, Kedersha N: Stress granules: the Tao of RNA triage. Trends Biochem Sci. 2008, 33: 141-150. 10.1016/j.tibs.2007.12.003.CrossRefPubMed
23.
go back to reference Du T, Zamore PD: microPrimer: the biogenesis and function of microRNA. Development. 2005, 132: 4645-4652. 10.1242/dev.02070.CrossRefPubMed Du T, Zamore PD: microPrimer: the biogenesis and function of microRNA. Development. 2005, 132: 4645-4652. 10.1242/dev.02070.CrossRefPubMed
24.
go back to reference Kapsimali M, Kloosterman WP, de Bruijn E, Rosa F, Plasterk RH, Wilson SW: MicroRNAs show a wide diversity of expression profiles in the developing and mature central nervous system. Genome Biol. 2007, 8: R173-10.1186/gb-2007-8-8-r173.PubMedCentralCrossRefPubMed Kapsimali M, Kloosterman WP, de Bruijn E, Rosa F, Plasterk RH, Wilson SW: MicroRNAs show a wide diversity of expression profiles in the developing and mature central nervous system. Genome Biol. 2007, 8: R173-10.1186/gb-2007-8-8-r173.PubMedCentralCrossRefPubMed
25.
go back to reference Cheng LC, Pastrana E, Tavazoie M, Doetsch F: miR-124 regulates adult neurogenesis in the subventricular zone stem cell niche. Nat Neurosci. 2009, 12: 399-408. 10.1038/nn.2294.PubMedCentralCrossRefPubMed Cheng LC, Pastrana E, Tavazoie M, Doetsch F: miR-124 regulates adult neurogenesis in the subventricular zone stem cell niche. Nat Neurosci. 2009, 12: 399-408. 10.1038/nn.2294.PubMedCentralCrossRefPubMed
26.
go back to reference Liu C, Teng ZQ, Santistevan NJ, Szulwach KE, Guo W, Jin P, Zhao X: Epigenetic regulation of miR-184 by MBD1 governs neural stem cell proliferation and differentiation. Cell Stem Cell. 2010, 6: 433-444. 10.1016/j.stem.2010.02.017.PubMedCentralCrossRefPubMed Liu C, Teng ZQ, Santistevan NJ, Szulwach KE, Guo W, Jin P, Zhao X: Epigenetic regulation of miR-184 by MBD1 governs neural stem cell proliferation and differentiation. Cell Stem Cell. 2010, 6: 433-444. 10.1016/j.stem.2010.02.017.PubMedCentralCrossRefPubMed
27.
go back to reference Tognini P, Putignano E, Coatti A, Pizzorusso T: Experience-dependent expression of miR-132 regulates ocular dominance plasticity. Nat Neurosci. 2011, 14: 1237-1239. 10.1038/nn.2920.PubMedCentralCrossRefPubMed Tognini P, Putignano E, Coatti A, Pizzorusso T: Experience-dependent expression of miR-132 regulates ocular dominance plasticity. Nat Neurosci. 2011, 14: 1237-1239. 10.1038/nn.2920.PubMedCentralCrossRefPubMed
28.
go back to reference Kim J, Inoue K, Ishii J, Vanti WB, Voronov SV, Murchison E, Hannon G, Abeliovich A: A MicroRNA feedback circuit in midbrain dopamine neurons. Science. 2007, 317: 1220-1224. 10.1126/science.1140481.PubMedCentralCrossRefPubMed Kim J, Inoue K, Ishii J, Vanti WB, Voronov SV, Murchison E, Hannon G, Abeliovich A: A MicroRNA feedback circuit in midbrain dopamine neurons. Science. 2007, 317: 1220-1224. 10.1126/science.1140481.PubMedCentralCrossRefPubMed
29.
go back to reference Wang WX, Huang Q, Hu Y, Stromberg AJ, Nelson PT: Patterns of microRNA expression in normal and early Alzheimer’s disease human temporal cortex: white matter versus gray matter. Acta Neuropathol. 2011, 121: 193-205. 10.1007/s00401-010-0756-0.PubMedCentralCrossRefPubMed Wang WX, Huang Q, Hu Y, Stromberg AJ, Nelson PT: Patterns of microRNA expression in normal and early Alzheimer’s disease human temporal cortex: white matter versus gray matter. Acta Neuropathol. 2011, 121: 193-205. 10.1007/s00401-010-0756-0.PubMedCentralCrossRefPubMed
30.
go back to reference Lee ST, Chu K, Im WS, Yoon HJ, Im JY, Park JE, Park KH, Jung KH, Lee SK, Kim M, Roh JK: Altered microRNA regulation in Huntington’s disease models. Exp Neurol. 2011, 227: 172-179. 10.1016/j.expneurol.2010.10.012.CrossRefPubMed Lee ST, Chu K, Im WS, Yoon HJ, Im JY, Park JE, Park KH, Jung KH, Lee SK, Kim M, Roh JK: Altered microRNA regulation in Huntington’s disease models. Exp Neurol. 2011, 227: 172-179. 10.1016/j.expneurol.2010.10.012.CrossRefPubMed
31.
go back to reference Boissonneault V, Plante I, Rivest S, Provost P: MicroRNA-298 and microRNA-328 regulate expression of mouse beta-amyloid precursor protein-converting enzyme 1. J Biol Chem. 2009, 284: 1971-1981.PubMedCentralCrossRefPubMed Boissonneault V, Plante I, Rivest S, Provost P: MicroRNA-298 and microRNA-328 regulate expression of mouse beta-amyloid precursor protein-converting enzyme 1. J Biol Chem. 2009, 284: 1971-1981.PubMedCentralCrossRefPubMed
32.
33.
go back to reference Nelson PT, Keller JN: RNA in brain disease: no longer just “the messenger in the middle”. J Neuropathol Exp Neurol. 2007, 66: 461-468. 10.1097/01.jnen.0000240474.27791.f3.CrossRefPubMed Nelson PT, Keller JN: RNA in brain disease: no longer just “the messenger in the middle”. J Neuropathol Exp Neurol. 2007, 66: 461-468. 10.1097/01.jnen.0000240474.27791.f3.CrossRefPubMed
34.
go back to reference Saba R, Goodman CD, Huzarewich RL, Robertson C, Booth SA: A miRNA signature of prion induced neurodegeneration. PLoS One. 2008, 3: e3652-10.1371/journal.pone.0003652.PubMedCentralCrossRefPubMed Saba R, Goodman CD, Huzarewich RL, Robertson C, Booth SA: A miRNA signature of prion induced neurodegeneration. PLoS One. 2008, 3: e3652-10.1371/journal.pone.0003652.PubMedCentralCrossRefPubMed
35.
go back to reference Haramati S, Chapnik E, Sztainberg Y, Eilam R, Zwang R, Gershoni N, McGlinn E, Heiser PW, Wills AM, Wirguin I: miRNA malfunction causes spinal motor neuron disease. Proc Natl Acad Sci U S A. 2010, 107: 13111-13116. 10.1073/pnas.1006151107.PubMedCentralCrossRefPubMed Haramati S, Chapnik E, Sztainberg Y, Eilam R, Zwang R, Gershoni N, McGlinn E, Heiser PW, Wills AM, Wirguin I: miRNA malfunction causes spinal motor neuron disease. Proc Natl Acad Sci U S A. 2010, 107: 13111-13116. 10.1073/pnas.1006151107.PubMedCentralCrossRefPubMed
36.
37.
go back to reference Wang WX, Rajeev BW, Stromberg AJ, Ren N, Tang G, Huang Q, Rigoutsos I, Nelson PT: The expression of microRNA miR-107 decreases early in Alzheimer’s disease and may accelerate disease progression through regulation of beta-site amyloid precursor protein-cleaving enzyme 1. J Neurosci. 2008, 28: 1213-1223. 10.1523/JNEUROSCI.5065-07.2008.PubMedCentralCrossRefPubMed Wang WX, Rajeev BW, Stromberg AJ, Ren N, Tang G, Huang Q, Rigoutsos I, Nelson PT: The expression of microRNA miR-107 decreases early in Alzheimer’s disease and may accelerate disease progression through regulation of beta-site amyloid precursor protein-cleaving enzyme 1. J Neurosci. 2008, 28: 1213-1223. 10.1523/JNEUROSCI.5065-07.2008.PubMedCentralCrossRefPubMed
38.
go back to reference Minones-Moyano E, Porta S, Escaramis G, Rabionet R, Iraola S, Kagerbauer B, Espinosa-Parrilla Y, Ferrer I, Estivill X, Marti E: MicroRNA profiling of Parkinson’s disease brains identifies early downregulation of miR-34b/c which modulate mitochondrial function. Hum Mol Genet. 2011, 20: 3067-3078. 10.1093/hmg/ddr210.CrossRefPubMed Minones-Moyano E, Porta S, Escaramis G, Rabionet R, Iraola S, Kagerbauer B, Espinosa-Parrilla Y, Ferrer I, Estivill X, Marti E: MicroRNA profiling of Parkinson’s disease brains identifies early downregulation of miR-34b/c which modulate mitochondrial function. Hum Mol Genet. 2011, 20: 3067-3078. 10.1093/hmg/ddr210.CrossRefPubMed
39.
go back to reference Marti E, Pantano L, Banez-Coronel M, Llorens F, Minones-Moyano E, Porta S, Sumoy L, Ferrer I, Estivill X: A myriad of miRNA variants in control and Huntington’s disease brain regions detected by massively parallel sequencing. Nucleic Acids Res. 2010, 38: 7219-7235. 10.1093/nar/gkq575.PubMedCentralCrossRefPubMed Marti E, Pantano L, Banez-Coronel M, Llorens F, Minones-Moyano E, Porta S, Sumoy L, Ferrer I, Estivill X: A myriad of miRNA variants in control and Huntington’s disease brain regions detected by massively parallel sequencing. Nucleic Acids Res. 2010, 38: 7219-7235. 10.1093/nar/gkq575.PubMedCentralCrossRefPubMed
40.
go back to reference Kocerha J, Kouri N, Baker M, Finch N, DeJesus-Hernandez M, Gonzalez J, Chidamparam K, Josephs KA, Boeve BF, Graff-Radford NR: Altered microRNA expression in frontotemporal lobar degeneration with TDP-43 pathology caused by progranulin mutations. BMC Genomics. 2011, 12: 527-10.1186/1471-2164-12-527.PubMedCentralCrossRefPubMed Kocerha J, Kouri N, Baker M, Finch N, DeJesus-Hernandez M, Gonzalez J, Chidamparam K, Josephs KA, Boeve BF, Graff-Radford NR: Altered microRNA expression in frontotemporal lobar degeneration with TDP-43 pathology caused by progranulin mutations. BMC Genomics. 2011, 12: 527-10.1186/1471-2164-12-527.PubMedCentralCrossRefPubMed
41.
go back to reference Ge WW, Leystra-Lantz C, Wen W, Strong MJ: Selective loss of trans-acting instability determinants of neurofilament mRNA in amyotrophic lateral sclerosis spinal cord. J Biol Chem. 2003, 278: 26558-26563. 10.1074/jbc.M302886200.CrossRefPubMed Ge WW, Leystra-Lantz C, Wen W, Strong MJ: Selective loss of trans-acting instability determinants of neurofilament mRNA in amyotrophic lateral sclerosis spinal cord. J Biol Chem. 2003, 278: 26558-26563. 10.1074/jbc.M302886200.CrossRefPubMed
42.
go back to reference Strong MJ, Leystra-Lantz C, Ge WW: Intermediate filament steady-state mRNA levels in amyotrophic lateral sclerosis. Biochem Biophys Res Commun. 2004, 316: 317-322. 10.1016/j.bbrc.2004.02.051.CrossRefPubMed Strong MJ, Leystra-Lantz C, Ge WW: Intermediate filament steady-state mRNA levels in amyotrophic lateral sclerosis. Biochem Biophys Res Commun. 2004, 316: 317-322. 10.1016/j.bbrc.2004.02.051.CrossRefPubMed
43.
go back to reference Ghosh T, Soni K, Scaria V, Halimani M, Bhattacharjee C, Pillai B: MicroRNA-mediated up-regulation of an alternatively polyadenylated variant of the mouse cytoplasmic {beta}-actin gene. Nucleic Acids Res. 2008, 36: 6318-6332. 10.1093/nar/gkn624.PubMedCentralCrossRefPubMed Ghosh T, Soni K, Scaria V, Halimani M, Bhattacharjee C, Pillai B: MicroRNA-mediated up-regulation of an alternatively polyadenylated variant of the mouse cytoplasmic {beta}-actin gene. Nucleic Acids Res. 2008, 36: 6318-6332. 10.1093/nar/gkn624.PubMedCentralCrossRefPubMed
44.
go back to reference Ma F, Liu X, Li D, Wang P, Li N, Lu L, Cao X: MicroRNA-466l upregulates IL-10 expression in TLR-triggered macrophages by antagonizing RNA-binding protein tristetraprolin-mediated IL-10 mRNA degradation. J Immunol. 2010, 184: 6053-6059. 10.4049/jimmunol.0902308.CrossRefPubMed Ma F, Liu X, Li D, Wang P, Li N, Lu L, Cao X: MicroRNA-466l upregulates IL-10 expression in TLR-triggered macrophages by antagonizing RNA-binding protein tristetraprolin-mediated IL-10 mRNA degradation. J Immunol. 2010, 184: 6053-6059. 10.4049/jimmunol.0902308.CrossRefPubMed
45.
go back to reference Grimson A, Farh KK, Johnston WK, Garrett-Engele P, Lim LP, Bartel DP: MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol Cell. 2007, 27: 91-105. 10.1016/j.molcel.2007.06.017.PubMedCentralCrossRefPubMed Grimson A, Farh KK, Johnston WK, Garrett-Engele P, Lim LP, Bartel DP: MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol Cell. 2007, 27: 91-105. 10.1016/j.molcel.2007.06.017.PubMedCentralCrossRefPubMed
46.
47.
go back to reference Wu S, Huang S, Ding J, Zhao Y, Liang L, Liu T, Zhan R, He X: Multiple microRNAs modulate p21Cip1/Waf1 expression by directly targeting its 3′ untranslated region. Oncogene. 2010, 29: 2302-2308. 10.1038/onc.2010.34.CrossRefPubMed Wu S, Huang S, Ding J, Zhao Y, Liang L, Liu T, Zhan R, He X: Multiple microRNAs modulate p21Cip1/Waf1 expression by directly targeting its 3′ untranslated region. Oncogene. 2010, 29: 2302-2308. 10.1038/onc.2010.34.CrossRefPubMed
48.
go back to reference Butz H, Liko I, Czirjak S, Igaz P, Korbonits M, Racz K, Patocs A: MicroRNA profile indicates downregulation of the TGFbeta pathway in sporadic non-functioning pituitary adenomas. Pituitary. 2011, 14: 112-124. 10.1007/s11102-010-0268-x.CrossRefPubMed Butz H, Liko I, Czirjak S, Igaz P, Korbonits M, Racz K, Patocs A: MicroRNA profile indicates downregulation of the TGFbeta pathway in sporadic non-functioning pituitary adenomas. Pituitary. 2011, 14: 112-124. 10.1007/s11102-010-0268-x.CrossRefPubMed
50.
51.
go back to reference Rehmsmeier M, Steffen P, Hochsmann M, Giegerich R: Fast and effective prediction of microRNA/target duplexes. RNA. 2004, 10: 1507-1517. 10.1261/rna.5248604.PubMedCentralCrossRefPubMed Rehmsmeier M, Steffen P, Hochsmann M, Giegerich R: Fast and effective prediction of microRNA/target duplexes. RNA. 2004, 10: 1507-1517. 10.1261/rna.5248604.PubMedCentralCrossRefPubMed
Metadata
Title
Altered microRNA expression profile in amyotrophic lateral sclerosis: a role in the regulation of NFL mRNA levels
Authors
Danae Campos-Melo
Cristian A Droppelmann
Zhongping He
Kathryn Volkening
Michael J Strong
Publication date
01-12-2013
Publisher
BioMed Central
Published in
Molecular Brain / Issue 1/2013
Electronic ISSN: 1756-6606
DOI
https://doi.org/10.1186/1756-6606-6-26

Other articles of this Issue 1/2013

Molecular Brain 1/2013 Go to the issue