Skip to main content
Top
Published in: Translational Stroke Research 1/2016

01-02-2016 | Review Article

Cofilin as a Promising Therapeutic Target for Ischemic and Hemorrhagic Stroke

Authors: Qasim Alhadidi, Muhammad Shahdaat Bin Sayeed, Zahoor A. Shah

Published in: Translational Stroke Research | Issue 1/2016

Login to get access

Abstract

Neurovascular unit (NVU) is considered as a conceptual framework for investigating the mechanisms as well as developing therapeutic targets for ischemic and hemorrhagic stroke. From a molecular perspective, oxidative stress, excitotoxicity, inflammation, and disruption of the blood brain barrier are broad pathophysiological frameworks on the basis on which potential therapeutic candidates for ischemic and hemorrhagic stroke could be discussed. Cofilin is a potent actin-binding protein that severs and depolymerizes actin filaments in order to generate the dynamics of the actin cytoskeleton. Although studies of the molecular mechanisms of cofilin-induced reorganization of the actin cytoskeleton have been ongoing for decades, the multicellular functions of cofilin and its regulation in different molecular pathways are expanding beyond its primary role in actin cytoskeleton. This review focuses on the role of cofilin in oxidative stress, excitotoxicity, inflammation, and disruption of the blood brain barrier in the context of NVU as well as how and why cofilin could be studied further as a potential target for ischemic and hemorrhagic stroke.
Literature
1.
go back to reference Mozaffarian D et al. Heart disease and stroke statistics—2015 update: a report from the American Heart Association. Circulation. 2015;131(4):e29–322.PubMedCrossRef Mozaffarian D et al. Heart disease and stroke statistics—2015 update: a report from the American Heart Association. Circulation. 2015;131(4):e29–322.PubMedCrossRef
3.
go back to reference Dirnagl U, Iadecola C, Moskowitz MA. Pathobiology of ischaemic stroke: an integrated view. Trends Neurosci. 1999;22(9):391–7.PubMedCrossRef Dirnagl U, Iadecola C, Moskowitz MA. Pathobiology of ischaemic stroke: an integrated view. Trends Neurosci. 1999;22(9):391–7.PubMedCrossRef
4.
go back to reference Kleinig TJ, Vink R. Suppression of inflammation in ischemic and hemorrhagic stroke: therapeutic options. Curr Opin Neurol. 2009;22(3):294–301.PubMedCrossRef Kleinig TJ, Vink R. Suppression of inflammation in ischemic and hemorrhagic stroke: therapeutic options. Curr Opin Neurol. 2009;22(3):294–301.PubMedCrossRef
5.
go back to reference Kitagawa K. CREB and cAMP response element-mediated gene expression in the ischemic brain. FEBS J. 2007;274(13):3210–7.PubMedCrossRef Kitagawa K. CREB and cAMP response element-mediated gene expression in the ischemic brain. FEBS J. 2007;274(13):3210–7.PubMedCrossRef
9.
go back to reference Lyden P et al. Clomethiazole Acute Stroke Study in ischemic stroke (CLASS-I): final results. Stroke. 2002;33(1):122–8.PubMedCrossRef Lyden P et al. Clomethiazole Acute Stroke Study in ischemic stroke (CLASS-I): final results. Stroke. 2002;33(1):122–8.PubMedCrossRef
10.
go back to reference Shuaib A et al. NXY-059 for the treatment of acute ischemic stroke. N Engl J Med. 2007;357(6):562–71.PubMedCrossRef Shuaib A et al. NXY-059 for the treatment of acute ischemic stroke. N Engl J Med. 2007;357(6):562–71.PubMedCrossRef
11.
go back to reference Lo EH, Dalkara T, Moskowitz MA. Mechanisms, challenges and opportunities in stroke. Nat Rev Neurosci. 2003;4(5):399–415.PubMedCrossRef Lo EH, Dalkara T, Moskowitz MA. Mechanisms, challenges and opportunities in stroke. Nat Rev Neurosci. 2003;4(5):399–415.PubMedCrossRef
12.
go back to reference Gladstone DJ et al. Toward wisdom from failure: lessons from neuroprotective stroke trials and new therapeutic directions. Stroke. 2002;33(8):2123–36.PubMedCrossRef Gladstone DJ et al. Toward wisdom from failure: lessons from neuroprotective stroke trials and new therapeutic directions. Stroke. 2002;33(8):2123–36.PubMedCrossRef
14.
go back to reference Rosell A, Lo EH. Multiphasic roles for matrix metalloproteinases after stroke. Curr Opin Pharmacol. 2008;8(1):82–9.PubMedCrossRef Rosell A, Lo EH. Multiphasic roles for matrix metalloproteinases after stroke. Curr Opin Pharmacol. 2008;8(1):82–9.PubMedCrossRef
15.
16.
go back to reference Van Troys M et al. Ins and outs of ADF/cofilin activity and regulation. Eur J Cell Biol. 2008;87(8–9):649–67.PubMed Van Troys M et al. Ins and outs of ADF/cofilin activity and regulation. Eur J Cell Biol. 2008;87(8–9):649–67.PubMed
17.
go back to reference Bellenchi GC et al. N-cofilin is associated with neuronal migration disorders and cell cycle control in the cerebral cortex. Genes Dev. 2007;21(18):2347–57.PubMedCentralPubMedCrossRef Bellenchi GC et al. N-cofilin is associated with neuronal migration disorders and cell cycle control in the cerebral cortex. Genes Dev. 2007;21(18):2347–57.PubMedCentralPubMedCrossRef
18.
go back to reference Andrianantoandro E, Pollard TD. Mechanism of actin filament turnover by severing and nucleation at different concentrations of ADF/cofilin. Mol Cell. 2006;24(1):13–23.PubMedCrossRef Andrianantoandro E, Pollard TD. Mechanism of actin filament turnover by severing and nucleation at different concentrations of ADF/cofilin. Mol Cell. 2006;24(1):13–23.PubMedCrossRef
20.
go back to reference Niwa R et al. Control of actin reorganization by Slingshot, a family of phosphatases that dephosphorylate ADF/cofilin. Cell. 2002;108(2):233–46.PubMedCrossRef Niwa R et al. Control of actin reorganization by Slingshot, a family of phosphatases that dephosphorylate ADF/cofilin. Cell. 2002;108(2):233–46.PubMedCrossRef
21.
go back to reference Ambach A et al. The serine phosphatases PP1 and PP2A associate with and activate the actin-binding protein cofilin in human T lymphocytes. Eur J Immunol. 2000;30(12):3422–31.PubMedCrossRef Ambach A et al. The serine phosphatases PP1 and PP2A associate with and activate the actin-binding protein cofilin in human T lymphocytes. Eur J Immunol. 2000;30(12):3422–31.PubMedCrossRef
22.
go back to reference Gohla A, Birkenfeld J, Bokoch GM. Chronophin, a novel HAD-type serine protein phosphatase, regulates cofilin-dependent actin dynamics. Nat Cell Biol. 2005;7(1):21–9.PubMedCrossRef Gohla A, Birkenfeld J, Bokoch GM. Chronophin, a novel HAD-type serine protein phosphatase, regulates cofilin-dependent actin dynamics. Nat Cell Biol. 2005;7(1):21–9.PubMedCrossRef
23.
24.
go back to reference Wang Y, Shibasaki F, Mizuno K. Calcium signal-induced cofilin dephosphorylation is mediated by Slingshot via calcineurin. J Biol Chem. 2005;280(13):12683–9.PubMedCrossRef Wang Y, Shibasaki F, Mizuno K. Calcium signal-induced cofilin dephosphorylation is mediated by Slingshot via calcineurin. J Biol Chem. 2005;280(13):12683–9.PubMedCrossRef
25.
go back to reference Huang TY et al. Chronophin mediates an ATP-sensing mechanism for cofilin dephosphorylation and neuronal cofilin-actin rod formation. Dev Cell. 2008;15(5):691–703.PubMedCentralPubMedCrossRef Huang TY et al. Chronophin mediates an ATP-sensing mechanism for cofilin dephosphorylation and neuronal cofilin-actin rod formation. Dev Cell. 2008;15(5):691–703.PubMedCentralPubMedCrossRef
26.
go back to reference Park S, Jung Y. Combined actions of Na/K-ATPase, NCX1 and glutamate dependent NMDA receptors in ischemic rat brain penumbra. Anat Cell Biol. 2010;43(3):201–10.PubMedCentralPubMedCrossRef Park S, Jung Y. Combined actions of Na/K-ATPase, NCX1 and glutamate dependent NMDA receptors in ischemic rat brain penumbra. Anat Cell Biol. 2010;43(3):201–10.PubMedCentralPubMedCrossRef
28.
go back to reference Bamburg JR. Proteins of the ADF/cofilin family: essential regulators of actin dynamics. Annu Rev Cell Dev Biol. 1999;15:185–230.PubMedCrossRef Bamburg JR. Proteins of the ADF/cofilin family: essential regulators of actin dynamics. Annu Rev Cell Dev Biol. 1999;15:185–230.PubMedCrossRef
29.
go back to reference Huang TY, DerMardirossian C, Bokoch GM. Cofilin phosphatases and regulation of actin dynamics. Curr Opin Cell Biol. 2006;18(1):26–31.PubMedCrossRef Huang TY, DerMardirossian C, Bokoch GM. Cofilin phosphatases and regulation of actin dynamics. Curr Opin Cell Biol. 2006;18(1):26–31.PubMedCrossRef
30.
31.
go back to reference Nusco GA et al. Modulation of calcium signalling by the actin-binding protein cofilin. Biochem Biophys Res Commun. 2006;348(1):109–14.PubMedCrossRef Nusco GA et al. Modulation of calcium signalling by the actin-binding protein cofilin. Biochem Biophys Res Commun. 2006;348(1):109–14.PubMedCrossRef
32.
go back to reference Ohashi K. Roles of cofilin in development and its mechanisms of regulation. Dev Growth Differ. 2015;57(4):275–90.PubMedCrossRef Ohashi K. Roles of cofilin in development and its mechanisms of regulation. Dev Growth Differ. 2015;57(4):275–90.PubMedCrossRef
33.
go back to reference Schonhofen P et al. Cofilin/actin rod formation by dysregulation of cofilin-1 activity as a central initial step in neurodegeneration. Mini Rev Med Chem. 2014;14(5):393–400.PubMedCrossRef Schonhofen P et al. Cofilin/actin rod formation by dysregulation of cofilin-1 activity as a central initial step in neurodegeneration. Mini Rev Med Chem. 2014;14(5):393–400.PubMedCrossRef
34.
35.
go back to reference Carmichael ST. Cellular and molecular mechanisms of neural repair after stroke: making waves. Ann Neurol. 2006;59(5):735–42.PubMedCrossRef Carmichael ST. Cellular and molecular mechanisms of neural repair after stroke: making waves. Ann Neurol. 2006;59(5):735–42.PubMedCrossRef
36.
go back to reference Hermann DM, Chopp M. Promoting brain remodelling and plasticity for stroke recovery: therapeutic promise and potential pitfalls of clinical translation. Lancet Neurol. 2012;11(4):369–80.PubMedCentralPubMedCrossRef Hermann DM, Chopp M. Promoting brain remodelling and plasticity for stroke recovery: therapeutic promise and potential pitfalls of clinical translation. Lancet Neurol. 2012;11(4):369–80.PubMedCentralPubMedCrossRef
37.
go back to reference Kriz J, Lalancette-Hebert M. Inflammation, plasticity and real-time imaging after cerebral ischemia. Acta Neuropathol. 2009;117(5):497–509.PubMedCrossRef Kriz J, Lalancette-Hebert M. Inflammation, plasticity and real-time imaging after cerebral ischemia. Acta Neuropathol. 2009;117(5):497–509.PubMedCrossRef
38.
go back to reference Murphy TH, Corbett D. Plasticity during stroke recovery: from synapse to behaviour. Nat Rev Neurosci. 2009;10(12):861–72.PubMedCrossRef Murphy TH, Corbett D. Plasticity during stroke recovery: from synapse to behaviour. Nat Rev Neurosci. 2009;10(12):861–72.PubMedCrossRef
39.
go back to reference Wolf M et al. ADF/cofilin controls synaptic actin dynamics and regulates synaptic vesicle mobilization and exocytosis. Cereb Cortex. 2015;25(9):2863–75.PubMedCrossRef Wolf M et al. ADF/cofilin controls synaptic actin dynamics and regulates synaptic vesicle mobilization and exocytosis. Cereb Cortex. 2015;25(9):2863–75.PubMedCrossRef
40.
41.
go back to reference Yuen EY et al. Regulation of AMPA receptor channels and synaptic plasticity by cofilin phosphatase Slingshot in cortical neurons. J Physiol. 2010;588(Pt 13):2361–71.PubMedCentralPubMedCrossRef Yuen EY et al. Regulation of AMPA receptor channels and synaptic plasticity by cofilin phosphatase Slingshot in cortical neurons. J Physiol. 2010;588(Pt 13):2361–71.PubMedCentralPubMedCrossRef
42.
43.
go back to reference Arvidsson A et al. Neuronal replacement from endogenous precursors in the adult brain after stroke. Nat Med. 2002;8(9):963–70.PubMedCrossRef Arvidsson A et al. Neuronal replacement from endogenous precursors in the adult brain after stroke. Nat Med. 2002;8(9):963–70.PubMedCrossRef
44.
go back to reference Zhang RL et al. Patterns and dynamics of subventricular zone neuroblast migration in the ischemic striatum of the adult mouse. J Cereb Blood Flow Metab. 2009;29(7):1240–50.PubMedCentralPubMedCrossRef Zhang RL et al. Patterns and dynamics of subventricular zone neuroblast migration in the ischemic striatum of the adult mouse. J Cereb Blood Flow Metab. 2009;29(7):1240–50.PubMedCentralPubMedCrossRef
45.
go back to reference Nawaz S et al. Actin filament turnover drives leading edge growth during myelin sheath formation in the central nervous system. Dev Cell. 2015;34(2):139–51.PubMedCrossRefPubMedCentral Nawaz S et al. Actin filament turnover drives leading edge growth during myelin sheath formation in the central nervous system. Dev Cell. 2015;34(2):139–51.PubMedCrossRefPubMedCentral
46.
go back to reference Pedraza, C.E., et al., Induction of oligodendrocyte differentiation and in vitro myelination by inhibition of rho-associated kinase. ASN Neuro, 2014. 6(4). Pedraza, C.E., et al., Induction of oligodendrocyte differentiation and in vitro myelination by inhibition of rho-associated kinase. ASN Neuro, 2014. 6(4).
48.
go back to reference Napoli I, Neumann H. Protective effects of microglia in multiple sclerosis. Exp Neurol. 2010;225(1):24–8.PubMedCrossRef Napoli I, Neumann H. Protective effects of microglia in multiple sclerosis. Exp Neurol. 2010;225(1):24–8.PubMedCrossRef
49.
go back to reference Gitik M et al. Phagocytic receptors activate and immune inhibitory receptor SIRPalpha inhibits phagocytosis through paxillin and cofilin. Front Cell Neurosci. 2014;8:104.PubMedCentralPubMedCrossRef Gitik M et al. Phagocytic receptors activate and immune inhibitory receptor SIRPalpha inhibits phagocytosis through paxillin and cofilin. Front Cell Neurosci. 2014;8:104.PubMedCentralPubMedCrossRef
50.
go back to reference Cao W et al. Oxygen free radical involvement in ischemia and reperfusion injury to brain. Neurosci Lett. 1988;88(2):233–8.PubMedCrossRef Cao W et al. Oxygen free radical involvement in ischemia and reperfusion injury to brain. Neurosci Lett. 1988;88(2):233–8.PubMedCrossRef
52.
go back to reference Gouriou Y et al. Mitochondrial calcium handling during ischemia-induced cell death in neurons. Biochimie. 2011;93(12):2060–7.PubMedCrossRef Gouriou Y et al. Mitochondrial calcium handling during ischemia-induced cell death in neurons. Biochimie. 2011;93(12):2060–7.PubMedCrossRef
53.
go back to reference Zhang Y et al. Peroxynitrite-induced neuronal apoptosis is mediated by intracellular zinc release and 12-lipoxygenase activation. J Neurosci. 2004;24(47):10616–27.PubMedCentralPubMedCrossRef Zhang Y et al. Peroxynitrite-induced neuronal apoptosis is mediated by intracellular zinc release and 12-lipoxygenase activation. J Neurosci. 2004;24(47):10616–27.PubMedCentralPubMedCrossRef
54.
55.
go back to reference Wabnitz GH et al. Mitochondrial translocation of oxidized cofilin induces caspase-independent necrotic-like programmed cell death of T cells. Cell Death Dis. 2010;1:e58.PubMedCentralPubMedCrossRef Wabnitz GH et al. Mitochondrial translocation of oxidized cofilin induces caspase-independent necrotic-like programmed cell death of T cells. Cell Death Dis. 2010;1:e58.PubMedCentralPubMedCrossRef
56.
go back to reference Madineni, A., Q. Alhadidi, and Z.A. Shah, Cofilin inhibition restores neuronal cell death in oxygen-glucose deprivation model of ischemia. Mol Neurobiol, 2015. doi:10.1007/s12035-014-9056-3. Madineni, A., Q. Alhadidi, and Z.A. Shah, Cofilin inhibition restores neuronal cell death in oxygen-glucose deprivation model of ischemia. Mol Neurobiol, 2015. doi:10.​1007/​s12035-014-9056-3.
57.
go back to reference Lo EH. A new penumbra: transitioning from injury into repair after stroke. Nat Med. 2008;14(5):497–500.PubMedCrossRef Lo EH. A new penumbra: transitioning from injury into repair after stroke. Nat Med. 2008;14(5):497–500.PubMedCrossRef
58.
59.
60.
go back to reference Fleissner F, Thum T. Critical role of the nitric oxide/reactive oxygen species balance in endothelial progenitor dysfunction. Antioxid Redox Signal. 2011;15(4):933–48.PubMedCentralPubMedCrossRef Fleissner F, Thum T. Critical role of the nitric oxide/reactive oxygen species balance in endothelial progenitor dysfunction. Antioxid Redox Signal. 2011;15(4):933–48.PubMedCentralPubMedCrossRef
61.
go back to reference Miller AA, Drummond GR, Sobey CG. Novel isoforms of NADPH-oxidase in cerebral vascular control. Pharmacol Ther. 2006;111(3):928–48.PubMedCrossRef Miller AA, Drummond GR, Sobey CG. Novel isoforms of NADPH-oxidase in cerebral vascular control. Pharmacol Ther. 2006;111(3):928–48.PubMedCrossRef
63.
go back to reference Lee MY et al. Mechanisms of vascular smooth muscle NADPH oxidase 1 (Nox1) contribution to injury-induced neointimal formation. Arterioscler Thromb Vasc Biol. 2009;29(4):480–7.PubMedCentralPubMedCrossRef Lee MY et al. Mechanisms of vascular smooth muscle NADPH oxidase 1 (Nox1) contribution to injury-induced neointimal formation. Arterioscler Thromb Vasc Biol. 2009;29(4):480–7.PubMedCentralPubMedCrossRef
64.
go back to reference Juurlink BH, Thorburne SK, Hertz L. Peroxide-scavenging deficit underlies oligodendrocyte susceptibility to oxidative stress. Glia. 1998;22(4):371–8.PubMedCrossRef Juurlink BH, Thorburne SK, Hertz L. Peroxide-scavenging deficit underlies oligodendrocyte susceptibility to oxidative stress. Glia. 1998;22(4):371–8.PubMedCrossRef
65.
go back to reference Mronga T et al. Mitochondrial pathway is involved in hydrogen-peroxide-induced apoptotic cell death of oligodendrocytes. Glia. 2004;46(4):446–55.PubMedCrossRef Mronga T et al. Mitochondrial pathway is involved in hydrogen-peroxide-induced apoptotic cell death of oligodendrocytes. Glia. 2004;46(4):446–55.PubMedCrossRef
66.
go back to reference Lindenau J et al. Cellular distribution of superoxide dismutases in the rat CNS. Glia. 2000;29(1):25–34.PubMedCrossRef Lindenau J et al. Cellular distribution of superoxide dismutases in the rat CNS. Glia. 2000;29(1):25–34.PubMedCrossRef
67.
go back to reference Dringen R, Gutterer JM, Hirrlinger J. Glutathione metabolism in brain metabolic interaction between astrocytes and neurons in the defense against reactive oxygen species. Eur J Biochem. 2000;267(16):4912–6.PubMedCrossRef Dringen R, Gutterer JM, Hirrlinger J. Glutathione metabolism in brain metabolic interaction between astrocytes and neurons in the defense against reactive oxygen species. Eur J Biochem. 2000;267(16):4912–6.PubMedCrossRef
68.
go back to reference Chen Y et al. Astrocytes protect neurons from nitric oxide toxicity by a glutathione-dependent mechanism. J Neurochem. 2001;77(6):1601–10.PubMedCrossRef Chen Y et al. Astrocytes protect neurons from nitric oxide toxicity by a glutathione-dependent mechanism. J Neurochem. 2001;77(6):1601–10.PubMedCrossRef
69.
go back to reference Wang Y, Qin ZH. Molecular and cellular mechanisms of excitotoxic neuronal death. Apoptosis. 2010;15(11):1382–402.PubMedCrossRef Wang Y, Qin ZH. Molecular and cellular mechanisms of excitotoxic neuronal death. Apoptosis. 2010;15(11):1382–402.PubMedCrossRef
70.
go back to reference Mabuchi T et al. Phosphorylation of cAMP response element-binding protein in hippocampal neurons as a protective response after exposure to glutamate in vitro and ischemia in vivo. J Neurosci. 2001;21(23):9204–13.PubMed Mabuchi T et al. Phosphorylation of cAMP response element-binding protein in hippocampal neurons as a protective response after exposure to glutamate in vitro and ischemia in vivo. J Neurosci. 2001;21(23):9204–13.PubMed
71.
go back to reference Choi DW, Maulucci-Gedde M, Kriegstein AR. Glutamate neurotoxicity in cortical cell culture. J Neurosci. 1987;7(2):357–68.PubMed Choi DW, Maulucci-Gedde M, Kriegstein AR. Glutamate neurotoxicity in cortical cell culture. J Neurosci. 1987;7(2):357–68.PubMed
72.
go back to reference Kostandy BB. The role of glutamate in neuronal ischemic injury: the role of spark in fire. Neurol Sci. 2012;33(2):223–37.PubMedCrossRef Kostandy BB. The role of glutamate in neuronal ischemic injury: the role of spark in fire. Neurol Sci. 2012;33(2):223–37.PubMedCrossRef
73.
74.
go back to reference Rossi DJ, Oshima T, Attwell D. Glutamate release in severe brain ischaemia is mainly by reversed uptake. Nature. 2000;403(6767):316–21.PubMedCrossRef Rossi DJ, Oshima T, Attwell D. Glutamate release in severe brain ischaemia is mainly by reversed uptake. Nature. 2000;403(6767):316–21.PubMedCrossRef
75.
go back to reference Posadas I et al. Cofilin activation mediates Bax translocation to mitochondria during excitotoxic neuronal death. J Neurochem. 2012;120(4):515–27.PubMedCrossRef Posadas I et al. Cofilin activation mediates Bax translocation to mitochondria during excitotoxic neuronal death. J Neurochem. 2012;120(4):515–27.PubMedCrossRef
76.
go back to reference Chen B et al. Both NMDA and non-NMDA receptors mediate glutamate stimulation induced cofilin rod formation in cultured hippocampal neurons. Brain Res. 2012;1486:1–13.PubMedCrossRef Chen B et al. Both NMDA and non-NMDA receptors mediate glutamate stimulation induced cofilin rod formation in cultured hippocampal neurons. Brain Res. 2012;1486:1–13.PubMedCrossRef
78.
79.
go back to reference Anderson CM, Swanson RA. Astrocyte glutamate transport: review of properties, regulation, and physiological functions. Glia. 2000;32(1):1–14.PubMedCrossRef Anderson CM, Swanson RA. Astrocyte glutamate transport: review of properties, regulation, and physiological functions. Glia. 2000;32(1):1–14.PubMedCrossRef
80.
go back to reference Martinez-Hernandez A, Bell KP, Norenberg MD. Glutamine synthetase: glial localization in brain. Science. 1977;195(4284):1356–8.PubMedCrossRef Martinez-Hernandez A, Bell KP, Norenberg MD. Glutamine synthetase: glial localization in brain. Science. 1977;195(4284):1356–8.PubMedCrossRef
81.
go back to reference Chaudhry FA et al. Glutamine uptake by neurons: interaction of protons with system a transporters. J Neurosci. 2002;22(1):62–72.PubMed Chaudhry FA et al. Glutamine uptake by neurons: interaction of protons with system a transporters. J Neurosci. 2002;22(1):62–72.PubMed
82.
go back to reference Kvamme E, Roberg B, Torgner IA. Phosphate-activated glutaminase and mitochondrial glutamine transport in the brain. Neurochem Res. 2000;25(9–10):1407–19.PubMedCrossRef Kvamme E, Roberg B, Torgner IA. Phosphate-activated glutaminase and mitochondrial glutamine transport in the brain. Neurochem Res. 2000;25(9–10):1407–19.PubMedCrossRef
83.
go back to reference McKenna MC. The glutamate-glutamine cycle is not stoichiometric: fates of glutamate in brain. J Neurosci Res. 2007;85(15):3347–58.PubMedCrossRef McKenna MC. The glutamate-glutamine cycle is not stoichiometric: fates of glutamate in brain. J Neurosci Res. 2007;85(15):3347–58.PubMedCrossRef
85.
go back to reference Adolph O et al. Rapid increase of glial glutamate uptake via blockade of the protein kinase A pathway. Glia. 2007;55(16):1699–707.PubMedCrossRef Adolph O et al. Rapid increase of glial glutamate uptake via blockade of the protein kinase A pathway. Glia. 2007;55(16):1699–707.PubMedCrossRef
86.
go back to reference Sheean RK et al. Links between L-glutamate transporters, Na+/K + −ATPase and cytoskeleton in astrocytes: evidence following inhibition with rottlerin. Neuroscience. 2013;254:335–46.PubMedCrossRef Sheean RK et al. Links between L-glutamate transporters, Na+/K + −ATPase and cytoskeleton in astrocytes: evidence following inhibition with rottlerin. Neuroscience. 2013;254:335–46.PubMedCrossRef
87.
go back to reference Yan X et al. Interleukin-1 beta enhances endocytosis of glial glutamate transporters in the spinal dorsal horn through activating protein kinase C. Glia. 2014;62(7):1093–109.PubMedCentralPubMedCrossRef Yan X et al. Interleukin-1 beta enhances endocytosis of glial glutamate transporters in the spinal dorsal horn through activating protein kinase C. Glia. 2014;62(7):1093–109.PubMedCentralPubMedCrossRef
88.
go back to reference Funfschilling U et al. Glycolytic oligodendrocytes maintain myelin and long-term axonal integrity. Nature. 2012;485(7399):517–21.PubMedCentralPubMed Funfschilling U et al. Glycolytic oligodendrocytes maintain myelin and long-term axonal integrity. Nature. 2012;485(7399):517–21.PubMedCentralPubMed
89.
go back to reference Wilkins A et al. Oligodendrocytes promote neuronal survival and axonal length by distinct intracellular mechanisms: a novel role for oligodendrocyte-derived glial cell line-derived neurotrophic factor. J Neurosci. 2003;23(12):4967–74.PubMed Wilkins A et al. Oligodendrocytes promote neuronal survival and axonal length by distinct intracellular mechanisms: a novel role for oligodendrocyte-derived glial cell line-derived neurotrophic factor. J Neurosci. 2003;23(12):4967–74.PubMed
90.
go back to reference Dewar D, Underhill SM, Goldberg MP. Oligodendrocytes and ischemic brain injury. J Cereb Blood Flow Metab. 2003;23(3):263–74.PubMedCrossRef Dewar D, Underhill SM, Goldberg MP. Oligodendrocytes and ischemic brain injury. J Cereb Blood Flow Metab. 2003;23(3):263–74.PubMedCrossRef
92.
go back to reference Yoshioka A et al. Alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptors mediate excitotoxicity in the oligodendroglial lineage. J Neurochem. 1995;64(6):2442–8.PubMedCrossRef Yoshioka A et al. Alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptors mediate excitotoxicity in the oligodendroglial lineage. J Neurochem. 1995;64(6):2442–8.PubMedCrossRef
93.
go back to reference Simonishvili S et al. Identification of Bax-interacting proteins in oligodendrocyte progenitors during glutamate excitotoxicity and perinatal hypoxia-ischemia. ASN Neuro. 2013;5(5):e00131.PubMedCentralPubMedCrossRef Simonishvili S et al. Identification of Bax-interacting proteins in oligodendrocyte progenitors during glutamate excitotoxicity and perinatal hypoxia-ischemia. ASN Neuro. 2013;5(5):e00131.PubMedCentralPubMedCrossRef
94.
go back to reference Mathur BN, Deutch AY. Rat meningeal and brain microvasculature pericytes co-express the vesicular glutamate transporters 2 and 3. Neurosci Lett. 2008;435(2):90–4.PubMedCentralPubMedCrossRef Mathur BN, Deutch AY. Rat meningeal and brain microvasculature pericytes co-express the vesicular glutamate transporters 2 and 3. Neurosci Lett. 2008;435(2):90–4.PubMedCentralPubMedCrossRef
95.
go back to reference Sharp CD et al. Glutamate causes a loss in human cerebral endothelial barrier integrity through activation of NMDA receptor. Am J Physiol Heart Circ Physiol. 2003;285(6):H2592–8.PubMedCrossRef Sharp CD et al. Glutamate causes a loss in human cerebral endothelial barrier integrity through activation of NMDA receptor. Am J Physiol Heart Circ Physiol. 2003;285(6):H2592–8.PubMedCrossRef
96.
go back to reference Basuroy S, Leffler CW, Parfenova H. CORM-A1 prevents blood-brain barrier dysfunction caused by ionotropic glutamate receptor-mediated endothelial oxidative stress and apoptosis. Am J Physiol Cell Physiol. 2013;304(11):C1105–15.PubMedCentralPubMedCrossRef Basuroy S, Leffler CW, Parfenova H. CORM-A1 prevents blood-brain barrier dysfunction caused by ionotropic glutamate receptor-mediated endothelial oxidative stress and apoptosis. Am J Physiol Cell Physiol. 2013;304(11):C1105–15.PubMedCentralPubMedCrossRef
97.
go back to reference Block ML, Zecca L, Hong JS. Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat Rev Neurosci. 2007;8(1):57–69.PubMedCrossRef Block ML, Zecca L, Hong JS. Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat Rev Neurosci. 2007;8(1):57–69.PubMedCrossRef
98.
100.
101.
go back to reference Wagner KR. Modeling intracerebral hemorrhage: glutamate, nuclear factor-kappa B signaling and cytokines. Stroke. 2007;38(2 Suppl):753–8.PubMedCrossRef Wagner KR. Modeling intracerebral hemorrhage: glutamate, nuclear factor-kappa B signaling and cytokines. Stroke. 2007;38(2 Suppl):753–8.PubMedCrossRef
105.
go back to reference Zhou Y et al. Inflammation in intracerebral hemorrhage: from mechanisms to clinical translation. Prog Neurobiol. 2014;115:25–44.PubMedCrossRef Zhou Y et al. Inflammation in intracerebral hemorrhage: from mechanisms to clinical translation. Prog Neurobiol. 2014;115:25–44.PubMedCrossRef
106.
go back to reference Lee Y et al. Therapeutically targeting neuroinflammation and microglia after acute ischemic stroke. Biomed Res Int. 2014;2014:297241.PubMedCentralPubMed Lee Y et al. Therapeutically targeting neuroinflammation and microglia after acute ischemic stroke. Biomed Res Int. 2014;2014:297241.PubMedCentralPubMed
107.
go back to reference Jin R et al. Role of inflammation and its mediators in acute ischemic stroke. J Cardiovasc Transl Res. 2013;6(5):834–51.PubMedCrossRef Jin R et al. Role of inflammation and its mediators in acute ischemic stroke. J Cardiovasc Transl Res. 2013;6(5):834–51.PubMedCrossRef
108.
go back to reference Jonsson F et al. Immunological responses and actin dynamics in macrophages are controlled by N-cofilin but are independent from ADF. PLoS One. 2012;7(4):e36034.PubMedCentralPubMedCrossRef Jonsson F et al. Immunological responses and actin dynamics in macrophages are controlled by N-cofilin but are independent from ADF. PLoS One. 2012;7(4):e36034.PubMedCentralPubMedCrossRef
109.
go back to reference Li J et al. Caspase-11 regulates cell migration by promoting Aip1-Cofilin-mediated actin depolymerization. Nat Cell Biol. 2007;9(3):276–86.PubMedCrossRef Li J et al. Caspase-11 regulates cell migration by promoting Aip1-Cofilin-mediated actin depolymerization. Nat Cell Biol. 2007;9(3):276–86.PubMedCrossRef
111.
go back to reference Hadas S et al. Complement receptor-3 negatively regulates the phagocytosis of degenerated myelin through tyrosine kinase Syk and cofilin. J Neuroinflammation. 2012;9:166.PubMedCentralPubMedCrossRef Hadas S et al. Complement receptor-3 negatively regulates the phagocytosis of degenerated myelin through tyrosine kinase Syk and cofilin. J Neuroinflammation. 2012;9:166.PubMedCentralPubMedCrossRef
113.
go back to reference Walsh KP et al. Amyloid-beta and proinflammatory cytokines utilize a prion protein-dependent pathway to activate NADPH oxidase and induce cofilin-actin rods in hippocampal neurons. PLoS One. 2014;9(4):e95995.PubMedCentralPubMedCrossRef Walsh KP et al. Amyloid-beta and proinflammatory cytokines utilize a prion protein-dependent pathway to activate NADPH oxidase and induce cofilin-actin rods in hippocampal neurons. PLoS One. 2014;9(4):e95995.PubMedCentralPubMedCrossRef
114.
go back to reference Engelhardt S, Patkar S, Ogunshola OO. Cell-specific blood-brain barrier regulation in health and disease: a focus on hypoxia. Br J Pharmacol. 2014;171(5):1210–30.PubMedCentralPubMedCrossRef Engelhardt S, Patkar S, Ogunshola OO. Cell-specific blood-brain barrier regulation in health and disease: a focus on hypoxia. Br J Pharmacol. 2014;171(5):1210–30.PubMedCentralPubMedCrossRef
116.
go back to reference Structure and function of the blood-brain barrier. 2010. 37(1): p. 13–25. Structure and function of the blood-brain barrier. 2010. 37(1): p. 13–25.
119.
go back to reference Koto T et al. Hypoxia disrupts the barrier function of neural blood vessels through changes in the expression of claudin-5 in endothelial cells. Am J Pathol. 2007;170(4):1389–97.PubMedCentralPubMedCrossRef Koto T et al. Hypoxia disrupts the barrier function of neural blood vessels through changes in the expression of claudin-5 in endothelial cells. Am J Pathol. 2007;170(4):1389–97.PubMedCentralPubMedCrossRef
120.
go back to reference Bauer AT et al. Matrix metalloproteinase-9 mediates hypoxia-induced vascular leakage in the brain via tight junction rearrangement. J Cereb Blood Flow Metab. 2010;30(4):837–48.PubMedCentralPubMedCrossRef Bauer AT et al. Matrix metalloproteinase-9 mediates hypoxia-induced vascular leakage in the brain via tight junction rearrangement. J Cereb Blood Flow Metab. 2010;30(4):837–48.PubMedCentralPubMedCrossRef
121.
go back to reference Willis CL, Meske DS, Davis TP. Protein kinase C activation modulates reversible increase in cortical blood-brain barrier permeability and tight junction protein expression during hypoxia and posthypoxic reoxygenation. J Cereb Blood Flow Metab. 2010;30(11):1847–59.PubMedCentralPubMedCrossRef Willis CL, Meske DS, Davis TP. Protein kinase C activation modulates reversible increase in cortical blood-brain barrier permeability and tight junction protein expression during hypoxia and posthypoxic reoxygenation. J Cereb Blood Flow Metab. 2010;30(11):1847–59.PubMedCentralPubMedCrossRef
122.
go back to reference Kondo N et al. Thrombin induces rapid disassembly of claudin-5 from the tight junction of endothelial cells. Exp Cell Res. 2009;315(17):2879–87.PubMedCrossRef Kondo N et al. Thrombin induces rapid disassembly of claudin-5 from the tight junction of endothelial cells. Exp Cell Res. 2009;315(17):2879–87.PubMedCrossRef
123.
go back to reference Moller T, Weinstein JR, Hanisch UK. Activation of microglial cells by thrombin: past, present, and future. Semin Thromb Hemost. 2006;32 Suppl 1:69–76.PubMedCrossRef Moller T, Weinstein JR, Hanisch UK. Activation of microglial cells by thrombin: past, present, and future. Semin Thromb Hemost. 2006;32 Suppl 1:69–76.PubMedCrossRef
124.
go back to reference Wang J, Dore S. Inflammation after intracerebral hemorrhage. J Cereb Blood Flow Metab. 2007;27(5):894–908.PubMed Wang J, Dore S. Inflammation after intracerebral hemorrhage. J Cereb Blood Flow Metab. 2007;27(5):894–908.PubMed
126.
go back to reference Engelhardt S et al. Differential responses of blood-brain barrier associated cells to hypoxia and ischemia: a comparative study. Fluids Barriers CNS. 2015;12:4.PubMedCentralPubMedCrossRef Engelhardt S et al. Differential responses of blood-brain barrier associated cells to hypoxia and ischemia: a comparative study. Fluids Barriers CNS. 2015;12:4.PubMedCentralPubMedCrossRef
127.
go back to reference Liu LB et al. Bradykinin increases blood-tumor barrier permeability by down-regulating the expression levels of ZO-1, occludin, and claudin-5 and rearranging actin cytoskeleton. J Neurosci Res. 2008;86(5):1153–68.PubMedCrossRef Liu LB et al. Bradykinin increases blood-tumor barrier permeability by down-regulating the expression levels of ZO-1, occludin, and claudin-5 and rearranging actin cytoskeleton. J Neurosci Res. 2008;86(5):1153–68.PubMedCrossRef
128.
go back to reference Suurna MV et al. Cofilin mediates ATP depletion-induced endothelial cell actin alterations. Am J Physiol Renal Physiol. 2006;290(6):F1398–407.PubMedCrossRef Suurna MV et al. Cofilin mediates ATP depletion-induced endothelial cell actin alterations. Am J Physiol Renal Physiol. 2006;290(6):F1398–407.PubMedCrossRef
129.
go back to reference Toshima J et al. Cofilin phosphorylation by protein kinase testicular protein kinase 1 and its role in integrin-mediated actin reorganization and focal adhesion formation. Mol Biol Cell. 2001;12(4):1131–45.PubMedCentralPubMedCrossRef Toshima J et al. Cofilin phosphorylation by protein kinase testicular protein kinase 1 and its role in integrin-mediated actin reorganization and focal adhesion formation. Mol Biol Cell. 2001;12(4):1131–45.PubMedCentralPubMedCrossRef
130.
go back to reference Kobayashi M et al. MAPKAPK-2-mediated LIM-kinase activation is critical for VEGF-induced actin remodeling and cell migration. EMBO J. 2006;25(4):713–26.PubMedCentralPubMedCrossRef Kobayashi M et al. MAPKAPK-2-mediated LIM-kinase activation is critical for VEGF-induced actin remodeling and cell migration. EMBO J. 2006;25(4):713–26.PubMedCentralPubMedCrossRef
131.
go back to reference Nagumo Y et al. Cofilin mediates tight-junction opening by redistributing actin and tight-junction proteins. Biochem Biophys Res Commun. 2008;377(3):921–5.PubMedCrossRef Nagumo Y et al. Cofilin mediates tight-junction opening by redistributing actin and tight-junction proteins. Biochem Biophys Res Commun. 2008;377(3):921–5.PubMedCrossRef
132.
go back to reference Shiobara T et al. The reversible increase in tight junction permeability induced by capsaicin is mediated via cofilin-actin cytoskeletal dynamics and decreased level of occludin. PLoS One. 2013;8(11):e79954.PubMedCentralPubMedCrossRef Shiobara T et al. The reversible increase in tight junction permeability induced by capsaicin is mediated via cofilin-actin cytoskeletal dynamics and decreased level of occludin. PLoS One. 2013;8(11):e79954.PubMedCentralPubMedCrossRef
133.
go back to reference Leonard A et al. Thrombin selectively engages LIM kinase 1 and slingshot-1L phosphatase to regulate NF-kappaB activation and endothelial cell inflammation. Am J Physiol Lung Cell Mol Physiol. 2013;305(9):L651–64.PubMedCentralPubMedCrossRef Leonard A et al. Thrombin selectively engages LIM kinase 1 and slingshot-1L phosphatase to regulate NF-kappaB activation and endothelial cell inflammation. Am J Physiol Lung Cell Mol Physiol. 2013;305(9):L651–64.PubMedCentralPubMedCrossRef
134.
go back to reference Tominaga N et al. Brain metastatic cancer cells release microRNA-181c-containing extracellular vesicles capable of destructing blood-brain barrier. Nat Commun. 2015;6:6716.PubMedCentralPubMedCrossRef Tominaga N et al. Brain metastatic cancer cells release microRNA-181c-containing extracellular vesicles capable of destructing blood-brain barrier. Nat Commun. 2015;6:6716.PubMedCentralPubMedCrossRef
Metadata
Title
Cofilin as a Promising Therapeutic Target for Ischemic and Hemorrhagic Stroke
Authors
Qasim Alhadidi
Muhammad Shahdaat Bin Sayeed
Zahoor A. Shah
Publication date
01-02-2016
Publisher
Springer US
Published in
Translational Stroke Research / Issue 1/2016
Print ISSN: 1868-4483
Electronic ISSN: 1868-601X
DOI
https://doi.org/10.1007/s12975-015-0438-2

Other articles of this Issue 1/2016

Translational Stroke Research 1/2016 Go to the issue