Skip to main content
Top
Published in: Journal of Neuroinflammation 1/2012

Open Access 01-12-2012 | Research

Complement receptor-3 negatively regulates the phagocytosis of degenerated myelin through tyrosine kinase Syk and cofilin

Authors: Smadar Hadas, Maya Spira, Uwe-Karsten Hanisch, Fanny Reichert, Shlomo Rotshenker

Published in: Journal of Neuroinflammation | Issue 1/2012

Login to get access

Abstract

Background

Intact myelin, which normally surrounds axons, breaks down in Wallerian degeneration following axonal injury and during neurodegenerative diseases such as multiple sclerosis. Clearance of degenerated myelin by phagocytosis is essential since myelin impedes repair and exacerbates damage. CR3 (complement receptor-3) is a principal phagocytic receptor in myelin phagocytosis. We studied how tyrosine kinase Syk (spleen tyrosine kinase) and cofilin control phagocytosis of degenerated myelin by CR3 in microglia and macrophages. Syk is a non-receptor tyrosine kinase that CR3 recruits to convey cellular functions. Cofilin is an actin-depolymerizing protein that controls F-actin (filamentous actin) remodeling (i.e., disassembly and reassembly) by shifting between active unphosphorylated and inactive phosphorylated states.

Results

Syk was continuously activated during prolonged phagocytosis. Phagocytosis increased when Syk activity and expression were reduced, suggesting that normally Syk down regulates CR3-mediated myelin phagocytosis. Levels of inactive p-cofilin (phosphorylated cofilin) decreased transiently during prolonged phagocytosis. In contrast, p-cofilin levels decreased continuously when Syk activity and expression were continuously reduced, suggesting that normally Syk advances the inactive state of cofilin. Observations also revealed inverse relationships between levels of phagocytosis and levels of inactive p-cofilin, suggesting that active unphosphorylated cofilin advances phagocytosis. Active cofilin could advance phagocytosis by promoting F-actin remodeling, which supports the production of membrane protrusions (e.g., filopodia), which, as we also revealed, are instrumental in myelin phagocytosis.

Conclusions

CR3 both activates and downregulates myelin phagocytosis at the same time. Activation was previously documented. We presently demonstrate that downregulation is mediated through Syk, which advances the inactive phosphorylated state of cofilin. Self-negative control of phagocytosis by the phagocytic receptor can be useful in protecting phagocytes from excessive phagocytosis (i.e., “overeating”) during extended exposure to particles that are destined for ingestion.
Literature
1.
go back to reference Waller A: Experiments on the section of the glossopharyngeal and hypoglossal nerves of the frog, observations of the alterations produced thereby in the structure of their primitive fibers. Phil Transact Royal Soc London 1850, 140:423–429.CrossRef Waller A: Experiments on the section of the glossopharyngeal and hypoglossal nerves of the frog, observations of the alterations produced thereby in the structure of their primitive fibers. Phil Transact Royal Soc London 1850, 140:423–429.CrossRef
2.
go back to reference Vargas ME, Barres BA: Why is Wallerian degeneration in the CNS so slow? Annu Rev Neurosci 2007, 30:153–179.CrossRefPubMed Vargas ME, Barres BA: Why is Wallerian degeneration in the CNS so slow? Annu Rev Neurosci 2007, 30:153–179.CrossRefPubMed
4.
go back to reference Gao Z, Tsirka SE: Animal models of ms reveal multiple roles of microglia in disease pathogenesis. Neurol Res Int 2011,201(1):383087. Gao Z, Tsirka SE: Animal models of ms reveal multiple roles of microglia in disease pathogenesis. Neurol Res Int 2011,201(1):383087.
5.
go back to reference David S, Aguayo AJ: Axonal elongation into peripheral nervous system "bridges" after central nervous system injury in adult rats. Science 1981, 214:931–933.CrossRefPubMed David S, Aguayo AJ: Axonal elongation into peripheral nervous system "bridges" after central nervous system injury in adult rats. Science 1981, 214:931–933.CrossRefPubMed
7.
go back to reference Cao Z, Gao Y, Deng K, Williams G, Doherty P, Walsh FS: Receptors for myelin inhibitors: Structures and therapeutic opportunities. Mol Cell Neurosci 2010, 43:1–14.CrossRefPubMed Cao Z, Gao Y, Deng K, Williams G, Doherty P, Walsh FS: Receptors for myelin inhibitors: Structures and therapeutic opportunities. Mol Cell Neurosci 2010, 43:1–14.CrossRefPubMed
8.
go back to reference Kotter MR, Li WW, Zhao C, Franklin RJM: Myelin Impairs CNS Remyelination by Inhibiting Oligodendrocyte Precursor Cell Differentiation. J Neurosci 2006, 26:328–332.CrossRefPubMed Kotter MR, Li WW, Zhao C, Franklin RJM: Myelin Impairs CNS Remyelination by Inhibiting Oligodendrocyte Precursor Cell Differentiation. J Neurosci 2006, 26:328–332.CrossRefPubMed
9.
go back to reference Silverman BA, Carney DF, Johnston CA, Vanguri P, Shin ML: Isolation of membrane attack complex of complement from myelin membranes treated with serum complement. J Neurochem 1984, 42:1024–1029.CrossRefPubMed Silverman BA, Carney DF, Johnston CA, Vanguri P, Shin ML: Isolation of membrane attack complex of complement from myelin membranes treated with serum complement. J Neurochem 1984, 42:1024–1029.CrossRefPubMed
10.
go back to reference Mead RJ, Singhrao SK, Neal JW, Lassmann H, Morgan BP: The membrane attack complex of complement causes severe demyelination associated with acute axonal injury. J Immunol 2002, 168:458–465.CrossRefPubMed Mead RJ, Singhrao SK, Neal JW, Lassmann H, Morgan BP: The membrane attack complex of complement causes severe demyelination associated with acute axonal injury. J Immunol 2002, 168:458–465.CrossRefPubMed
11.
go back to reference Smith ME: Phagocytic properties of microglia in vitro: implications for a role in multiple sclerosis and EAE. Microsc Res Tech 2001, 54:81–94.CrossRefPubMed Smith ME: Phagocytic properties of microglia in vitro: implications for a role in multiple sclerosis and EAE. Microsc Res Tech 2001, 54:81–94.CrossRefPubMed
12.
go back to reference Reichert F, Slobodov U, Makranz C, Rotshenker S: Modulation (inhibition and augmentation) of complement receptor-3- mediated myelin phagocytosis. Neurobiol Dis 2001, 8:504–512.CrossRefPubMed Reichert F, Slobodov U, Makranz C, Rotshenker S: Modulation (inhibition and augmentation) of complement receptor-3- mediated myelin phagocytosis. Neurobiol Dis 2001, 8:504–512.CrossRefPubMed
13.
go back to reference Reichert F, Rotshenker S: Complement-receptor-3 and scavenger-receptor-AI/II mediated myelin phagocytosis in microglia and macrophages. Neurobiol Dis 2003, 12:65–72.CrossRefPubMed Reichert F, Rotshenker S: Complement-receptor-3 and scavenger-receptor-AI/II mediated myelin phagocytosis in microglia and macrophages. Neurobiol Dis 2003, 12:65–72.CrossRefPubMed
14.
go back to reference Rotshenker S: Microglia and macrophage activation and the regulation of complement-receptor-3 (cr3/mac-1)-mediated myelin phagocytosis in injury and disease. J Mol Neurosci 2003, 21:65–72.CrossRefPubMed Rotshenker S: Microglia and macrophage activation and the regulation of complement-receptor-3 (cr3/mac-1)-mediated myelin phagocytosis in injury and disease. J Mol Neurosci 2003, 21:65–72.CrossRefPubMed
15.
go back to reference Yan SR, Huang M, Berton G: Signaling by adhesion in human neutrophils: activation of the p72syk tyrosine kinase and formation of protein complexes containing p72syk and Src family kinases in neutrophils spreading over fibrinogen. J Immunol 1997, 158:1902–1910.PubMed Yan SR, Huang M, Berton G: Signaling by adhesion in human neutrophils: activation of the p72syk tyrosine kinase and formation of protein complexes containing p72syk and Src family kinases in neutrophils spreading over fibrinogen. J Immunol 1997, 158:1902–1910.PubMed
16.
go back to reference Schymeinsky J, Mocsai A, Walzog B: Neutrophil activation via beta2 integrins (CD11/CD18): molecular mechanisms and clinical implications. Thromb Haemost 2007, 98:262–273.PubMed Schymeinsky J, Mocsai A, Walzog B: Neutrophil activation via beta2 integrins (CD11/CD18): molecular mechanisms and clinical implications. Thromb Haemost 2007, 98:262–273.PubMed
17.
go back to reference Berton G, Mocsai A, Lowell CA: Src and Syk kinases: key regulators of phagocytic cell activation. Trends Immunol 2005, 26:208–214.CrossRefPubMed Berton G, Mocsai A, Lowell CA: Src and Syk kinases: key regulators of phagocytic cell activation. Trends Immunol 2005, 26:208–214.CrossRefPubMed
18.
go back to reference Tohyama Y, Yamamura H: Protein tyrosine kinase, Syk: a key player in phagocytic cells. J Biochem 2009, 145:267–273.CrossRefPubMed Tohyama Y, Yamamura H: Protein tyrosine kinase, Syk: a key player in phagocytic cells. J Biochem 2009, 145:267–273.CrossRefPubMed
19.
20.
go back to reference Crowley MT, Costello PS, Fitzer-Attas CJ, Turner M, Meng F, Lowell C, Tybulewicz VL, Defranco AL: A critical role for Syk in signal transduction and phagocytosis mediated by Fcgamma receptors on macrophages. J Exp Med 1997, 186:1027–1039.CrossRefPubMedPubMedCentral Crowley MT, Costello PS, Fitzer-Attas CJ, Turner M, Meng F, Lowell C, Tybulewicz VL, Defranco AL: A critical role for Syk in signal transduction and phagocytosis mediated by Fcgamma receptors on macrophages. J Exp Med 1997, 186:1027–1039.CrossRefPubMedPubMedCentral
21.
go back to reference Kiefer F, Brumell J, Al-Alawi N, Latour S, Cheng A, Veillette A, Grinstein S, Pawson T: The Syk protein tyrosine kinase is essential for Fcgamma receptor signaling in macrophages and neutrophils. Mol Cell Biol 1998, 18:4209–4220.CrossRefPubMedPubMedCentral Kiefer F, Brumell J, Al-Alawi N, Latour S, Cheng A, Veillette A, Grinstein S, Pawson T: The Syk protein tyrosine kinase is essential for Fcgamma receptor signaling in macrophages and neutrophils. Mol Cell Biol 1998, 18:4209–4220.CrossRefPubMedPubMedCentral
22.
go back to reference Shi Y, Tohyama Y, Kadono T, He J, Shahjahan Miah SM, Hazama R, Tanaka C, Tohyama K, Yamamura H: Protein-tyrosine kinase Syk is required for pathogen engulfment in complement-mediated phagocytosis. Blood 2006, 107:4554–4562.CrossRefPubMed Shi Y, Tohyama Y, Kadono T, He J, Shahjahan Miah SM, Hazama R, Tanaka C, Tohyama K, Yamamura H: Protein-tyrosine kinase Syk is required for pathogen engulfment in complement-mediated phagocytosis. Blood 2006, 107:4554–4562.CrossRefPubMed
23.
go back to reference Underhill DM, Rossnagle E, Lowell CA, Simmons RM: Dectin-1 activates Syk tyrosine kinase in a dynamic subset of macrophages for reactive oxygen production. Blood 2005, 106:2543–2550.CrossRefPubMedPubMedCentral Underhill DM, Rossnagle E, Lowell CA, Simmons RM: Dectin-1 activates Syk tyrosine kinase in a dynamic subset of macrophages for reactive oxygen production. Blood 2005, 106:2543–2550.CrossRefPubMedPubMedCentral
24.
go back to reference Herre J, Marshall AS, Caron E, Edwards AD, Williams DL, Schweighoffer E, Tybulewicz V, Reis S, Gordon S, Brown GD: Dectin-1 uses novel mechanisms for yeast phagocytosis in macrophages. Blood 2004, 104:4038–4045.CrossRefPubMed Herre J, Marshall AS, Caron E, Edwards AD, Williams DL, Schweighoffer E, Tybulewicz V, Reis S, Gordon S, Brown GD: Dectin-1 uses novel mechanisms for yeast phagocytosis in macrophages. Blood 2004, 104:4038–4045.CrossRefPubMed
25.
go back to reference Vartiainen MK, Mustonen T, Mattila PK, Ojala PJ, Thesleff I, Partanen J, Lappalainen P: The three mouse actin-depolymerizing factor/cofilins evolved to fulfill cell-type-specific requirements for actin dynamics. Mol Biol Cell 2002, 13:183–194.CrossRefPubMedPubMedCentral Vartiainen MK, Mustonen T, Mattila PK, Ojala PJ, Thesleff I, Partanen J, Lappalainen P: The three mouse actin-depolymerizing factor/cofilins evolved to fulfill cell-type-specific requirements for actin dynamics. Mol Biol Cell 2002, 13:183–194.CrossRefPubMedPubMedCentral
27.
go back to reference Van RJ, Condeelis J, Glogauer M: A common cofilin activity cycle in invasive tumor cells and inflammatory cells. J Cell Sci 2009, 122:305–311.CrossRef Van RJ, Condeelis J, Glogauer M: A common cofilin activity cycle in invasive tumor cells and inflammatory cells. J Cell Sci 2009, 122:305–311.CrossRef
29.
go back to reference Vicente-Manzanares M, Ma X, Adelstein RS, Horwitz AR: Non-muscle myosin II takes centre stage in cell adhesion and migration. Nat Rev Mol Cell Biol 2009, 10:778–790.CrossRefPubMedPubMedCentral Vicente-Manzanares M, Ma X, Adelstein RS, Horwitz AR: Non-muscle myosin II takes centre stage in cell adhesion and migration. Nat Rev Mol Cell Biol 2009, 10:778–790.CrossRefPubMedPubMedCentral
30.
go back to reference Makranz C, Cohen G, Baron A, Levidor L, Kodama T, Reichert F, Rotshenker S: Phosphatidylinositol 3-kinase, phosphoinositide-specific phospholipase-Cgamma and protein kinase-C signal myelin phagocytosis mediated by complement receptor-3 alone and combined with scavenger receptor-AI/II in macrophages. Neurobiol Dis 2004, 15:279–286.CrossRefPubMed Makranz C, Cohen G, Baron A, Levidor L, Kodama T, Reichert F, Rotshenker S: Phosphatidylinositol 3-kinase, phosphoinositide-specific phospholipase-Cgamma and protein kinase-C signal myelin phagocytosis mediated by complement receptor-3 alone and combined with scavenger receptor-AI/II in macrophages. Neurobiol Dis 2004, 15:279–286.CrossRefPubMed
31.
go back to reference Cohen G, Makranz C, Spira M, Kodama T, Reichert F, Rotshenker S: Non-PKC DAG/Phorbol-Ester receptor(s) inhibit complement receptor-3 and nPKC inhibit scavenger receptor-AI/II-mediated myelin phagocytosis but cPKC, PI3k, and PLCgamma activate myelin phagocytosis by both. Glia 2006, 53:538–550.CrossRefPubMed Cohen G, Makranz C, Spira M, Kodama T, Reichert F, Rotshenker S: Non-PKC DAG/Phorbol-Ester receptor(s) inhibit complement receptor-3 and nPKC inhibit scavenger receptor-AI/II-mediated myelin phagocytosis but cPKC, PI3k, and PLCgamma activate myelin phagocytosis by both. Glia 2006, 53:538–550.CrossRefPubMed
32.
go back to reference Rotshenker S, Reichert F, Gitik M, Haklai R, Elad-Sfadia G, Kloog Y: Galectin-3/MAC-2, Ras and PI3K activate complement receptor-3 and scavenger receptor-AI/II mediated myelin phagocytosis in microglia. Glia 2008, 56:1607–1613.CrossRefPubMed Rotshenker S, Reichert F, Gitik M, Haklai R, Elad-Sfadia G, Kloog Y: Galectin-3/MAC-2, Ras and PI3K activate complement receptor-3 and scavenger receptor-AI/II mediated myelin phagocytosis in microglia. Glia 2008, 56:1607–1613.CrossRefPubMed
33.
go back to reference Rotshenker S: The role of Galectin-3/MAC-2 in the activation of the innate-immune function of phagocytosis in microglia in injury and disease. J Mol Neurosci 2009, 39:99–103.CrossRefPubMed Rotshenker S: The role of Galectin-3/MAC-2 in the activation of the innate-immune function of phagocytosis in microglia in injury and disease. J Mol Neurosci 2009, 39:99–103.CrossRefPubMed
34.
go back to reference Gitik M, Reichert F, Rotshenker S: Cytoskeleton plays a dual role of activation and inhibition in myelin and zymosan phagocytosis by microglia. FASEB J 2010, 24:2211–2221.CrossRefPubMed Gitik M, Reichert F, Rotshenker S: Cytoskeleton plays a dual role of activation and inhibition in myelin and zymosan phagocytosis by microglia. FASEB J 2010, 24:2211–2221.CrossRefPubMed
35.
go back to reference Slobodov U, Reichert F, Mirski R, Rotshenker S: Distinct Inflammatory Stimuli Induce Different Patterns of Myelin Phagocytosis and Degradation in Recruited Macrophages. Exp Neurol 2001, 167:401–409.CrossRefPubMed Slobodov U, Reichert F, Mirski R, Rotshenker S: Distinct Inflammatory Stimuli Induce Different Patterns of Myelin Phagocytosis and Degradation in Recruited Macrophages. Exp Neurol 2001, 167:401–409.CrossRefPubMed
36.
go back to reference Hadas S, Reichert F, Rotshenker S: Dissimilar and similar functional properties of complement receptor-3 in microglia and macrophages in combating yeast pathogens by phagocytosis. Glia 2010, 58:823–830.PubMed Hadas S, Reichert F, Rotshenker S: Dissimilar and similar functional properties of complement receptor-3 in microglia and macrophages in combating yeast pathogens by phagocytosis. Glia 2010, 58:823–830.PubMed
37.
go back to reference Lai JY, Cox PJ, Patel R, Sadiq S, Aldous DJ, Thurairatnam S, et al.: Potent small molecule inhibitors of spleen tyrosine kinase (Syk). Bioorg Med Chem Lett 2003, 13:3111–3114.CrossRefPubMed Lai JY, Cox PJ, Patel R, Sadiq S, Aldous DJ, Thurairatnam S, et al.: Potent small molecule inhibitors of spleen tyrosine kinase (Syk). Bioorg Med Chem Lett 2003, 13:3111–3114.CrossRefPubMed
38.
go back to reference Lavens-Phillips SE, Mockford EH, Warner JA: The effect of tyrosine kinase inhibitors on IgE-mediated histamine release from human lung mast cells and basophils. Inflamm Res 1998, 47:137–143.CrossRefPubMed Lavens-Phillips SE, Mockford EH, Warner JA: The effect of tyrosine kinase inhibitors on IgE-mediated histamine release from human lung mast cells and basophils. Inflamm Res 1998, 47:137–143.CrossRefPubMed
39.
go back to reference Wang BH, Lu ZX, Polya GM: Inhibition of eukaryote serine/threonine-specific protein kinases by piceatannol. Planta Med 1998, 64:195–199.CrossRefPubMed Wang BH, Lu ZX, Polya GM: Inhibition of eukaryote serine/threonine-specific protein kinases by piceatannol. Planta Med 1998, 64:195–199.CrossRefPubMed
40.
go back to reference Luskova P, Draber P: Modulation of the Fcepsilon receptor I signaling by tyrosine kinase inhibitors: search for therapeutic targets of inflammatory and allergy diseases. Curr Pharm Des 2004, 10:1727–1737.CrossRefPubMed Luskova P, Draber P: Modulation of the Fcepsilon receptor I signaling by tyrosine kinase inhibitors: search for therapeutic targets of inflammatory and allergy diseases. Curr Pharm Des 2004, 10:1727–1737.CrossRefPubMed
Metadata
Title
Complement receptor-3 negatively regulates the phagocytosis of degenerated myelin through tyrosine kinase Syk and cofilin
Authors
Smadar Hadas
Maya Spira
Uwe-Karsten Hanisch
Fanny Reichert
Shlomo Rotshenker
Publication date
01-12-2012
Publisher
BioMed Central
Published in
Journal of Neuroinflammation / Issue 1/2012
Electronic ISSN: 1742-2094
DOI
https://doi.org/10.1186/1742-2094-9-166

Other articles of this Issue 1/2012

Journal of Neuroinflammation 1/2012 Go to the issue