Skip to main content
Top
Published in: Journal of Cardiovascular Translational Research 4/2010

Open Access 01-08-2010

Revisited and Revised: Is RhoA Always a Villain in Cardiac Pathophysiology?

Authors: Shigeki Miyamoto, Dominic P. Del Re, Sunny Y. Xiang, Xia Zhao, Geir Florholmen, Joan Heller Brown

Published in: Journal of Cardiovascular Translational Research | Issue 4/2010

Login to get access

Abstract

The neonatal rat ventricular myocyte model of hypertrophy has provided tremendous insight with regard to signaling pathways regulating cardiac growth and gene expression. Many mediators thus discovered have been successfully extrapolated to the in vivo setting, as assessed using genetically engineered mice and physiological interventions. Studies in neonatal rat ventricular myocytes demonstrated a role for the small G-protein RhoA and its downstream effector kinase, Rho-associated coiled-coil containing protein kinase (ROCK), in agonist-mediated hypertrophy. Transgenic expression of RhoA in the heart does not phenocopy this response, however, nor does genetic deletion of ROCK prevent hypertrophy. Pharmacologic inhibition of ROCK has effects most consistent with roles for RhoA signaling in the development of heart failure or responses to ischemic damage. Whether signals elicited downstream of RhoA promote cell death or survival and are deleterious or salutary is, however, context and cell-type dependent. The concepts discussed above are reviewed, and the hypothesis that RhoA might protect cardiomyocytes from ischemia and other insults is presented. Novel RhoA targets including phospholipid regulated and regulating enzymes (Akt, PI kinases, phospholipase C, protein kinases C and D) and serum response element-mediated transcriptional responses are considered as possible pathways through which RhoA could affect cardiomyocyte survival.
Literature
1.
go back to reference Simpson, P. (1983). Norepinephrine-stimulated hypertrophy of cultured rat myocardial cells is an α1-adrenergic response. Journal of Clinical Investigation, 72, 732.PubMedCrossRef Simpson, P. (1983). Norepinephrine-stimulated hypertrophy of cultured rat myocardial cells is an α1-adrenergic response. Journal of Clinical Investigation, 72, 732.PubMedCrossRef
2.
go back to reference Shubeita, H. E., McDonough, P. M., Harris, A. N., Knowlton, K. U., Glembotski, C. C., Brown, J. H., et al. (1990). Endothelin induction of inositol phospholipid hydrolysis, sarcomere assembly, and cardiac gene expression in ventricular myocytes: a paracrine mechanism for myocardial cell hypertrophy. The Journal of Biological Chemistry, 265, 20555.PubMed Shubeita, H. E., McDonough, P. M., Harris, A. N., Knowlton, K. U., Glembotski, C. C., Brown, J. H., et al. (1990). Endothelin induction of inositol phospholipid hydrolysis, sarcomere assembly, and cardiac gene expression in ventricular myocytes: a paracrine mechanism for myocardial cell hypertrophy. The Journal of Biological Chemistry, 265, 20555.PubMed
3.
go back to reference Simpson, P., McGrath, A., & Savion, S. (1982). Myocyte hypertrophy in neonatal rat heart cultures and its regulation by serum and by catecholamines. Circulation Research, 51, 787.PubMed Simpson, P., McGrath, A., & Savion, S. (1982). Myocyte hypertrophy in neonatal rat heart cultures and its regulation by serum and by catecholamines. Circulation Research, 51, 787.PubMed
4.
go back to reference Knowlton, K. U., Michel, M. C., Itani, M., Shubeita, H. E., Ishihara, K., Brown, J. H., et al. (1993). The α1a-adrenergic receptor subtype mediates biochemical, molecular, and morphologic features of cultured myocardial cell hypertrophy. The Journal of Biological Chemistry, 268, 15374.PubMed Knowlton, K. U., Michel, M. C., Itani, M., Shubeita, H. E., Ishihara, K., Brown, J. H., et al. (1993). The α1a-adrenergic receptor subtype mediates biochemical, molecular, and morphologic features of cultured myocardial cell hypertrophy. The Journal of Biological Chemistry, 268, 15374.PubMed
5.
go back to reference Bogoyevitch, M. A., Glennon, P. E., Andersson, M. B., Clerk, A., Lazou, A., Marshall, C. J., et al. (1994). Endothelin-1 and fibroblast growth factors stimulate the mitogen-activated protein kinase signaling cascade in cardiac myocytes. The Journal of Biological Chemistry, 269, 1110.PubMed Bogoyevitch, M. A., Glennon, P. E., Andersson, M. B., Clerk, A., Lazou, A., Marshall, C. J., et al. (1994). Endothelin-1 and fibroblast growth factors stimulate the mitogen-activated protein kinase signaling cascade in cardiac myocytes. The Journal of Biological Chemistry, 269, 1110.PubMed
6.
go back to reference McDonough, P. M., Brown, J. H., & Glembotski, C. C. (1993). Phenylephrine and endothelin differentially stimulate cardiac PI hydrolysis and ANF expression. The American Journal of Physiology, 264, H625.PubMed McDonough, P. M., Brown, J. H., & Glembotski, C. C. (1993). Phenylephrine and endothelin differentially stimulate cardiac PI hydrolysis and ANF expression. The American Journal of Physiology, 264, H625.PubMed
7.
go back to reference Ito, H., Hirata, Y., Adachi, S., Tanaka, M., Tsujino, M., Koike, A., et al. (1993). Endothelin-1 is an autocrine/paracrine factor in the mechanism of angiotensin II-induced hypertrophy in cultured rat cardiomyocytes. Journal of Clinical Investigation, 92, 398.PubMedCrossRef Ito, H., Hirata, Y., Adachi, S., Tanaka, M., Tsujino, M., Koike, A., et al. (1993). Endothelin-1 is an autocrine/paracrine factor in the mechanism of angiotensin II-induced hypertrophy in cultured rat cardiomyocytes. Journal of Clinical Investigation, 92, 398.PubMedCrossRef
8.
go back to reference D'Angelo, D. D., Sakata, Y., Lorenz, J. N., Boivin, G. P., Walsh, R. A., Liggett, S. B., et al. (1997). Transgenic Gαq overexpression induces cardiac contractile failure in mice. Proceedings of the National Academy of Sciences of the United States of America, 94, 8121.PubMedCrossRef D'Angelo, D. D., Sakata, Y., Lorenz, J. N., Boivin, G. P., Walsh, R. A., Liggett, S. B., et al. (1997). Transgenic Gαq overexpression induces cardiac contractile failure in mice. Proceedings of the National Academy of Sciences of the United States of America, 94, 8121.PubMedCrossRef
9.
go back to reference Dorn, G. W., & Brown, J. H. (1999). Gq signaling in cardiac adaptation and maladaptation. Trends in Cardiovascular Medicine, 9, 26.PubMedCrossRef Dorn, G. W., & Brown, J. H. (1999). Gq signaling in cardiac adaptation and maladaptation. Trends in Cardiovascular Medicine, 9, 26.PubMedCrossRef
10.
go back to reference Adams, J. W., Sakata, Y., Davis, M. G., Sah, V. P., Wang, Y., Liggett, S. B., et al. (1998). Enhanced Gαq signaling: A common pathway mediates cardiac hypertrophy and apoptotic heart failure. Proceedings of the National Academy of Sciences of the United States of America, 95, 10140.PubMedCrossRef Adams, J. W., Sakata, Y., Davis, M. G., Sah, V. P., Wang, Y., Liggett, S. B., et al. (1998). Enhanced Gαq signaling: A common pathway mediates cardiac hypertrophy and apoptotic heart failure. Proceedings of the National Academy of Sciences of the United States of America, 95, 10140.PubMedCrossRef
11.
go back to reference Akhter, S. A., Luttrell, L. M., Rockman, H. A., Iaccarino, G., Lefkowitz, R. J., & Koch, W. J. (1998). Targeting the receptor-Gq interface to inhibit in vivo pressure overload myocardial hypertrophy. Science, 280, 574.PubMedCrossRef Akhter, S. A., Luttrell, L. M., Rockman, H. A., Iaccarino, G., Lefkowitz, R. J., & Koch, W. J. (1998). Targeting the receptor-Gq interface to inhibit in vivo pressure overload myocardial hypertrophy. Science, 280, 574.PubMedCrossRef
12.
go back to reference Wettschureck, N., Rutten, H., Zywietz, A., Gehring, D., Wilkie, T. M., Chen, J., et al. (2001). Absence of pressure overload induced myocardial hypertrophy after conditional inactivation of Gαq/Gα11 in cardiomyocytes. Natural Medicines, 7, 1236.CrossRef Wettschureck, N., Rutten, H., Zywietz, A., Gehring, D., Wilkie, T. M., Chen, J., et al. (2001). Absence of pressure overload induced myocardial hypertrophy after conditional inactivation of Gαq/Gα11 in cardiomyocytes. Natural Medicines, 7, 1236.CrossRef
13.
go back to reference Smrcka, A. V., Hepler, J. R., Brown, K. O., & Sternweis, P. C. (1991). Regulation of polyphosphoinositide-specific phospholipase C activity by purified Gq. Science, 251, 804.PubMedCrossRef Smrcka, A. V., Hepler, J. R., Brown, K. O., & Sternweis, P. C. (1991). Regulation of polyphosphoinositide-specific phospholipase C activity by purified Gq. Science, 251, 804.PubMedCrossRef
14.
go back to reference Taylor, S. J., Chae, H. Z., Rhee, S. G., & Exton, J. H. (1991). Activation of the β1 isozyme of phospholipase C by α subunits of the Gq class of G proteins. Nature, 350, 516.PubMedCrossRef Taylor, S. J., Chae, H. Z., Rhee, S. G., & Exton, J. H. (1991). Activation of the β1 isozyme of phospholipase C by α subunits of the Gq class of G proteins. Nature, 350, 516.PubMedCrossRef
15.
go back to reference Dorn, G. W., & Force, T. (2005). Protein kinase cascades in the regulation of cardiac hypertrophy. Journal of Clinical Investigation, 115, 527.PubMed Dorn, G. W., & Force, T. (2005). Protein kinase cascades in the regulation of cardiac hypertrophy. Journal of Clinical Investigation, 115, 527.PubMed
16.
go back to reference Heineke, J., & Molkentin, J. D. (2006). Regulation of cardiac hypertrophy by intracellular signalling pathways. Nature Reviews. Molecular Cell Biology, 7, 589.PubMedCrossRef Heineke, J., & Molkentin, J. D. (2006). Regulation of cardiac hypertrophy by intracellular signalling pathways. Nature Reviews. Molecular Cell Biology, 7, 589.PubMedCrossRef
17.
go back to reference Thorburn, J., Xu, S., & Thorburn, A. (1997). MAP kinase- and Rho-dependent signals interact to regulate gene expression but not actin morphology in cardiac muscle cells. The EMBO Journal, 16, 1888.PubMedCrossRef Thorburn, J., Xu, S., & Thorburn, A. (1997). MAP kinase- and Rho-dependent signals interact to regulate gene expression but not actin morphology in cardiac muscle cells. The EMBO Journal, 16, 1888.PubMedCrossRef
18.
go back to reference Maruyama, Y., Nishida, M., Sugimoto, Y., Tanabe, S., Turner, J. H., Kozasa, T., et al. (2002). Gα12/13 mediates α1-adrenergic receptor-induced cardiac hypertrophy. Circulation Research, 91, 961.PubMedCrossRef Maruyama, Y., Nishida, M., Sugimoto, Y., Tanabe, S., Turner, J. H., Kozasa, T., et al. (2002). Gα12/13 mediates α1-adrenergic receptor-induced cardiac hypertrophy. Circulation Research, 91, 961.PubMedCrossRef
19.
go back to reference Sah, V. P., Hoshijima, M., Chien, K. R., & Brown, J. H. (1996). Rho is required for Gαq and α1-adrenergic receptor signaling in cardiomyocytes. Dissociation of Ras and Rho pathways. Journal of Biological Chemistry, 271, 31185.PubMedCrossRef Sah, V. P., Hoshijima, M., Chien, K. R., & Brown, J. H. (1996). Rho is required for Gαq and α1-adrenergic receptor signaling in cardiomyocytes. Dissociation of Ras and Rho pathways. Journal of Biological Chemistry, 271, 31185.PubMedCrossRef
20.
go back to reference Amano, M., Fukata, Y., & Kaibuchi, K. (2000). Regulation and functions of Rho-associated kinase. Experimental Cell Research, 261, 44.PubMedCrossRef Amano, M., Fukata, Y., & Kaibuchi, K. (2000). Regulation and functions of Rho-associated kinase. Experimental Cell Research, 261, 44.PubMedCrossRef
21.
go back to reference Noma, K., Oyama, N., & Liao, J. K. (2006). Physiological role of ROCKs in the cardiovascular system. American Journal of Physiology. Cell Physiology, 290, C661.PubMedCrossRef Noma, K., Oyama, N., & Liao, J. K. (2006). Physiological role of ROCKs in the cardiovascular system. American Journal of Physiology. Cell Physiology, 290, C661.PubMedCrossRef
22.
go back to reference Chaulet, H., Desgranges, C., Renault, M. A., Dupuch, F., Ezan, G., Peiretti, F., et al. (2001). Extracellular nucleotides induce arterial smooth muscle cell migration via osteopontin. Circulation Research, 89, 772.PubMedCrossRef Chaulet, H., Desgranges, C., Renault, M. A., Dupuch, F., Ezan, G., Peiretti, F., et al. (2001). Extracellular nucleotides induce arterial smooth muscle cell migration via osteopontin. Circulation Research, 89, 772.PubMedCrossRef
23.
go back to reference Hoshijima, M., Sah, V. P., Wang, Y., Chien, K. R., & Brown, J. H. (1998). The low molecular weight GTPase Rho regulates myofibril formation and organization in neonatal rat ventricular myocytes: Involvement of Rho kinase. The Journal of Biological Chemistry, 273, 7725.PubMedCrossRef Hoshijima, M., Sah, V. P., Wang, Y., Chien, K. R., & Brown, J. H. (1998). The low molecular weight GTPase Rho regulates myofibril formation and organization in neonatal rat ventricular myocytes: Involvement of Rho kinase. The Journal of Biological Chemistry, 273, 7725.PubMedCrossRef
24.
go back to reference Yanazume, T., Hasegawa, K., Wada, H., Morimoto, T., Abe, M., Kawamura, T., et al. (2002). Rho/ROCK pathway contributes to the activation of extracellular signal-regulated kinase/GATA-4 during myocardial cell hypertrophy. The Journal of Biological Chemistry, 277, 8618.PubMedCrossRef Yanazume, T., Hasegawa, K., Wada, H., Morimoto, T., Abe, M., Kawamura, T., et al. (2002). Rho/ROCK pathway contributes to the activation of extracellular signal-regulated kinase/GATA-4 during myocardial cell hypertrophy. The Journal of Biological Chemistry, 277, 8618.PubMedCrossRef
25.
go back to reference Kawamura, S., Miyamoto, S., & Brown, J. H. (2003). Initiation and transduction of stretch-induced RhoA and Rac1 activation through caveolae: Cytoskeletal regulation of ERK translocation. The Journal of Biological Chemistry, 278, 31111.PubMedCrossRef Kawamura, S., Miyamoto, S., & Brown, J. H. (2003). Initiation and transduction of stretch-induced RhoA and Rac1 activation through caveolae: Cytoskeletal regulation of ERK translocation. The Journal of Biological Chemistry, 278, 31111.PubMedCrossRef
26.
go back to reference Torsoni, A. S., Marin, T. M., Velloso, L. A., & Franchini, K. G. (2005). RhoA/ROCK signaling is critical to FAK activation by cyclic stretch in cardiac myocytes. American Journal of Physiology. Heart and Circulatory Physiology, 289, H1488.PubMedCrossRef Torsoni, A. S., Marin, T. M., Velloso, L. A., & Franchini, K. G. (2005). RhoA/ROCK signaling is critical to FAK activation by cyclic stretch in cardiac myocytes. American Journal of Physiology. Heart and Circulatory Physiology, 289, H1488.PubMedCrossRef
27.
go back to reference Torsoni, A. S., Fonseca, P. M., Crosara-Alberto, D. P., & Franchini, K. G. (2003). Early activation of p160ROCK by pressure overload in rat heart. American Journal of Physiology. Cell Physiology, 284, C1411.PubMed Torsoni, A. S., Fonseca, P. M., Crosara-Alberto, D. P., & Franchini, K. G. (2003). Early activation of p160ROCK by pressure overload in rat heart. American Journal of Physiology. Cell Physiology, 284, C1411.PubMed
28.
go back to reference Phrommintikul, A., Tran, L., Kompa, A., Wang, B., Adrahtas, A., Cantwell, D., et al. (2008). Effects of a Rho kinase inhibitor on pressure overload induced cardiac hypertrophy and associated diastolic dysfunction. American Journal of Physiology. Heart and Circulatory Physiology, 294, H1804.PubMedCrossRef Phrommintikul, A., Tran, L., Kompa, A., Wang, B., Adrahtas, A., Cantwell, D., et al. (2008). Effects of a Rho kinase inhibitor on pressure overload induced cardiac hypertrophy and associated diastolic dysfunction. American Journal of Physiology. Heart and Circulatory Physiology, 294, H1804.PubMedCrossRef
29.
go back to reference Higashi, M., Shimokawa, H., Hattori, T., Hiroki, J., Mukai, Y., Morikawa, K., et al. (2003). Long-term inhibition of Rho-kinase suppresses angiotensin II-induced cardiovascular hypertrophy in rats in vivo: Effect on endothelial NAD(P)H oxidase system. Circulation Research, 93, 767.PubMedCrossRef Higashi, M., Shimokawa, H., Hattori, T., Hiroki, J., Mukai, Y., Morikawa, K., et al. (2003). Long-term inhibition of Rho-kinase suppresses angiotensin II-induced cardiovascular hypertrophy in rats in vivo: Effect on endothelial NAD(P)H oxidase system. Circulation Research, 93, 767.PubMedCrossRef
30.
go back to reference Rossman, K. L., Der, C. J., & Sondek, J. (2005). GEF means go: Turning on RHO GTPases with guanine nucleotide-exchange factors. Nature Reviews. Molecular Cell Biology, 6, 167.PubMedCrossRef Rossman, K. L., Der, C. J., & Sondek, J. (2005). GEF means go: Turning on RHO GTPases with guanine nucleotide-exchange factors. Nature Reviews. Molecular Cell Biology, 6, 167.PubMedCrossRef
31.
go back to reference Loirand, G., Guerin, P., & Pacaud, P. (2006). Rho kinases in cardiovascular physiology and pathophysiology. Circulation Research, 98, 322.PubMedCrossRef Loirand, G., Guerin, P., & Pacaud, P. (2006). Rho kinases in cardiovascular physiology and pathophysiology. Circulation Research, 98, 322.PubMedCrossRef
32.
go back to reference Brown, J. H., Del Re, D. P., & Sussman, M. A. (2006). The Rac and Rho hall of fame: A decade of hypertrophic signaling hits. Circulation Research, 98, 730.PubMedCrossRef Brown, J. H., Del Re, D. P., & Sussman, M. A. (2006). The Rac and Rho hall of fame: A decade of hypertrophic signaling hits. Circulation Research, 98, 730.PubMedCrossRef
33.
go back to reference Kodaki, T., & Yamashita, S. (1997). Cloning, expression, and characterization of a novel phospholipase D complementary DNA from rat brain. The Journal of Biological Chemistry, 272, 11408.PubMedCrossRef Kodaki, T., & Yamashita, S. (1997). Cloning, expression, and characterization of a novel phospholipase D complementary DNA from rat brain. The Journal of Biological Chemistry, 272, 11408.PubMedCrossRef
34.
go back to reference Rojas, R. J., Yohe, M. E., Gershburg, S., Kawano, T., Kozasa, T., & Sondek, J. (2007). Gαq directly activates p63RhoGEF and Trio via a conserved extension of the Dbl homology-associated pleckstrin homology domain. The Journal of Biological Chemistry, 282, 29201.PubMedCrossRef Rojas, R. J., Yohe, M. E., Gershburg, S., Kawano, T., Kozasa, T., & Sondek, J. (2007). Gαq directly activates p63RhoGEF and Trio via a conserved extension of the Dbl homology-associated pleckstrin homology domain. The Journal of Biological Chemistry, 282, 29201.PubMedCrossRef
35.
go back to reference Lutz, S., Freichel-Blomquist, A., Yang, Y., Ruemenapp, U., Jakobs, K. H., Schmidt, M., et al. (2005). The guanine nucleotide exchange factor p63Rho. Journal of Biological Chemistry Lutz, S., Freichel-Blomquist, A., Yang, Y., Ruemenapp, U., Jakobs, K. H., Schmidt, M., et al. (2005). The guanine nucleotide exchange factor p63Rho. Journal of Biological Chemistry
36.
go back to reference Riobo, N. A., & Manning, D. R. (2005). Receptors coupled to heterotrimeric G proteins of the G12 family. Trends in Pharmacological Sciences, 26, 146.PubMedCrossRef Riobo, N. A., & Manning, D. R. (2005). Receptors coupled to heterotrimeric G proteins of the G12 family. Trends in Pharmacological Sciences, 26, 146.PubMedCrossRef
37.
go back to reference Strathmann, M. P., & Simon, M. I. (1993). Gα12 and Gα13 subunits define a fourth class of G protein α subunits. Proceedings of the National Academy of Sciences of the United States of America, 88, 5582.CrossRef Strathmann, M. P., & Simon, M. I. (1993). Gα12 and Gα13 subunits define a fourth class of G protein α subunits. Proceedings of the National Academy of Sciences of the United States of America, 88, 5582.CrossRef
38.
go back to reference Kozasa, T., Jiang, X., Hart, M. J., Sternweis, P. M., Singer, W. D., Gilman, A. G., et al. (1998). p115 RhoGEF, a GTPase activating protein for Gα12 and Gα13. Science, 280, 2109.PubMedCrossRef Kozasa, T., Jiang, X., Hart, M. J., Sternweis, P. M., Singer, W. D., Gilman, A. G., et al. (1998). p115 RhoGEF, a GTPase activating protein for Gα12 and Gα13. Science, 280, 2109.PubMedCrossRef
39.
go back to reference Hart, M. J., Jiang, X., Kozasa, T., Roscoe, W., Singer, W. D., Gilman, A. G., et al. (1998). Direct stimulation of the guanine nucleotide exchange activity of p115 RhoGEF by Gα13. Science, 280, 2112.PubMedCrossRef Hart, M. J., Jiang, X., Kozasa, T., Roscoe, W., Singer, W. D., Gilman, A. G., et al. (1998). Direct stimulation of the guanine nucleotide exchange activity of p115 RhoGEF by Gα13. Science, 280, 2112.PubMedCrossRef
40.
go back to reference Lezoualc'h, F., Metrich, M., Hmitou, I., Duquesnes, N., & Morel, E. (2008). Small GTP-binding proteins and their regulators in cardiac hypertrophy. Journal of Molecular and Cellular Cardiology, 44, 623–632.PubMedCrossRef Lezoualc'h, F., Metrich, M., Hmitou, I., Duquesnes, N., & Morel, E. (2008). Small GTP-binding proteins and their regulators in cardiac hypertrophy. Journal of Molecular and Cellular Cardiology, 44, 623–632.PubMedCrossRef
41.
go back to reference Aittaleb, M., Boguth, C. A., & Tesmer, J. J. (2009). Structure and function of heterotrimeric g protein-regulated rho guanine nucleotide exchange factors. Molecular Pharmacology, 77, 111–125.PubMedCrossRef Aittaleb, M., Boguth, C. A., & Tesmer, J. J. (2009). Structure and function of heterotrimeric g protein-regulated rho guanine nucleotide exchange factors. Molecular Pharmacology, 77, 111–125.PubMedCrossRef
42.
go back to reference Diviani, D., Soderling, J., & Scott, J. D. (2001). AKAP-Lbc anchors protein kinase A and nucleates Gα12-selective Rho-mediated stress fiber formation. The Journal of Biological Chemistry, 276, 44247.PubMedCrossRef Diviani, D., Soderling, J., & Scott, J. D. (2001). AKAP-Lbc anchors protein kinase A and nucleates Gα12-selective Rho-mediated stress fiber formation. The Journal of Biological Chemistry, 276, 44247.PubMedCrossRef
43.
go back to reference Appert-Collin, A., Cotecchia, S., Nenniger-Tosato, M., Pedrazzini, T., & Diviani, D. (2007). The A-kinase anchoring protein (AKAP)-Lbc-signaling complex mediates α1 adrenergic receptor-induced cardiomyocyte hypertrophy. Proceedings of the National Academy of Sciences of the United States of America, 104, 10140.PubMedCrossRef Appert-Collin, A., Cotecchia, S., Nenniger-Tosato, M., Pedrazzini, T., & Diviani, D. (2007). The A-kinase anchoring protein (AKAP)-Lbc-signaling complex mediates α1 adrenergic receptor-induced cardiomyocyte hypertrophy. Proceedings of the National Academy of Sciences of the United States of America, 104, 10140.PubMedCrossRef
44.
go back to reference Finn, S. G., Plonk, S. G., & Fuller, S. J. (1999). Gα13 stimulates gene expression and increases cell size in cultured neonatal rat ventricular myocytes. Cardiovascular Research, 42, 140.PubMedCrossRef Finn, S. G., Plonk, S. G., & Fuller, S. J. (1999). Gα13 stimulates gene expression and increases cell size in cultured neonatal rat ventricular myocytes. Cardiovascular Research, 42, 140.PubMedCrossRef
45.
go back to reference Arai, K., Maruyama, Y., Nishida, M., Tanabe, S., Takagahara, S., Kozasa, T., et al. (2003). Differential requirement of Gα12, Gα13, Gαq, and G βγ for endothelin-1-induced c-Jun NH2-terminal kinase and extracellular signal-regulated kinase activation. Molecular Pharmacology, 63, 478.PubMedCrossRef Arai, K., Maruyama, Y., Nishida, M., Tanabe, S., Takagahara, S., Kozasa, T., et al. (2003). Differential requirement of Gα12, Gα13, Gαq, and G βγ for endothelin-1-induced c-Jun NH2-terminal kinase and extracellular signal-regulated kinase activation. Molecular Pharmacology, 63, 478.PubMedCrossRef
46.
go back to reference Nishida, M., Sato, Y., Uemura, A., Narita, Y., Tozaki-Saitoh, H., Nakaya, M., et al. (2008). P2Y6 receptor-Gα12/13 signalling in cardiomyocytes triggers pressure overload-induced cardiac fibrosis. The EMBO Journal, 27, 3104.PubMedCrossRef Nishida, M., Sato, Y., Uemura, A., Narita, Y., Tozaki-Saitoh, H., Nakaya, M., et al. (2008). P2Y6 receptor-Gα12/13 signalling in cardiomyocytes triggers pressure overload-induced cardiac fibrosis. The EMBO Journal, 27, 3104.PubMedCrossRef
47.
go back to reference Esposito, G., Prasad, S. V., Rapacciuolo, A., Mao, L., Koch, W. J., & Rockman, H. A. (2001). Cardiac overexpression of a G(q) inhibitor blocks induction of extracellular signal-regulated kinase and c-Jun NH(2)-terminal kinase activity in in vivo pressure overload. Circulation, 103, 1453.PubMed Esposito, G., Prasad, S. V., Rapacciuolo, A., Mao, L., Koch, W. J., & Rockman, H. A. (2001). Cardiac overexpression of a G(q) inhibitor blocks induction of extracellular signal-regulated kinase and c-Jun NH(2)-terminal kinase activity in in vivo pressure overload. Circulation, 103, 1453.PubMed
48.
go back to reference Zhang, Y. M., Bo, J., Taffet, G. E., Chang, J., Shi, J., Reddy, A. K., et al. (2006). Targeted deletion of ROCK1 protects the heart against pressure overload by inhibiting reactive fibrosis. The FASEB Journal, 20, 916.PubMedCrossRef Zhang, Y. M., Bo, J., Taffet, G. E., Chang, J., Shi, J., Reddy, A. K., et al. (2006). Targeted deletion of ROCK1 protects the heart against pressure overload by inhibiting reactive fibrosis. The FASEB Journal, 20, 916.PubMedCrossRef
49.
go back to reference Shi, J., Zhang, Y. W., Summers, L. J., Dorn, G. W., & Wei, L. (2008). Disruption of ROCK1 gene attenuates cardiac dilation and improves contractile function in pathological cardiac hypertrophy. Journal of Molecular and Cellular Cardiology, 44, 551.PubMedCrossRef Shi, J., Zhang, Y. W., Summers, L. J., Dorn, G. W., & Wei, L. (2008). Disruption of ROCK1 gene attenuates cardiac dilation and improves contractile function in pathological cardiac hypertrophy. Journal of Molecular and Cellular Cardiology, 44, 551.PubMedCrossRef
50.
go back to reference Del Re, D. P., Miyamoto, S., & Brown, J. H. (2007). RhoA/Rho kinase upregulate Bax to activate a mitochondrial death pathway and induce cardiomyocyte apoptosis. The Journal of Biological Chemistry, 282, 8069.PubMedCrossRef Del Re, D. P., Miyamoto, S., & Brown, J. H. (2007). RhoA/Rho kinase upregulate Bax to activate a mitochondrial death pathway and induce cardiomyocyte apoptosis. The Journal of Biological Chemistry, 282, 8069.PubMedCrossRef
51.
go back to reference Del Re, D. P., Miyamoto, S., & Brown, J. H. (2008). Focal adhesion kinase as a RhoA-activable signaling scaffold mediating Akt activation and cardiomyocyte protection. The Journal of Biological Chemistry, 283, 35622.PubMedCrossRef Del Re, D. P., Miyamoto, S., & Brown, J. H. (2008). Focal adhesion kinase as a RhoA-activable signaling scaffold mediating Akt activation and cardiomyocyte protection. The Journal of Biological Chemistry, 283, 35622.PubMedCrossRef
52.
go back to reference Ishii, I., Ye, X., Friedman, B., Kawamura, S., Contos, J. J. A., Kingsbury, M. A., et al. (2002). Marked perinatal lethality and cellular signaling deficits in mice null for the two sphingosine 1-phosphate receptors, S1P2/LPB2/EDG-5 and S1P3/LPB3/EDG-3. The Journal of Biological Chemistry, 277, 25152.PubMedCrossRef Ishii, I., Ye, X., Friedman, B., Kawamura, S., Contos, J. J. A., Kingsbury, M. A., et al. (2002). Marked perinatal lethality and cellular signaling deficits in mice null for the two sphingosine 1-phosphate receptors, S1P2/LPB2/EDG-5 and S1P3/LPB3/EDG-3. The Journal of Biological Chemistry, 277, 25152.PubMedCrossRef
53.
go back to reference Sah, V. P., Minamisawa, S., Tam, S. P., Wu, T. H., Dorn, G. W., Ross, J., Jr., et al. (1999). Cardiac-specific overexpression of RhoA results in sinus and atrioventricular nodal dysfunction and contractile failure. Journal of Clinical Investigation, 103, 1627.PubMedCrossRef Sah, V. P., Minamisawa, S., Tam, S. P., Wu, T. H., Dorn, G. W., Ross, J., Jr., et al. (1999). Cardiac-specific overexpression of RhoA results in sinus and atrioventricular nodal dysfunction and contractile failure. Journal of Clinical Investigation, 103, 1627.PubMedCrossRef
54.
go back to reference Kontaridis, M. I., Yang, W., Bence, K. K., Cullen, D., Wang, B., Bodyak, N., et al. (2008). Deletion of Ptpn11 (Shp2) in cardiomyocytes causes dilated cardiomyopathy via effects on the extracellular signal-regulated kinase/mitogen-activated protein kinase and RhoA signaling pathways. Circulation, 117, 1423.PubMedCrossRef Kontaridis, M. I., Yang, W., Bence, K. K., Cullen, D., Wang, B., Bodyak, N., et al. (2008). Deletion of Ptpn11 (Shp2) in cardiomyocytes causes dilated cardiomyopathy via effects on the extracellular signal-regulated kinase/mitogen-activated protein kinase and RhoA signaling pathways. Circulation, 117, 1423.PubMedCrossRef
55.
go back to reference Rikitake, Y., Oyama, N., Wang, C. Y., Noma, K., Satoh, M., Kim, H. H., et al. (2005). Decreased perivascular fibrosis but not cardiac hypertrophy in ROCK1+/- haploinsufficient mice. Circulation, 112, 2959.PubMed Rikitake, Y., Oyama, N., Wang, C. Y., Noma, K., Satoh, M., Kim, H. H., et al. (2005). Decreased perivascular fibrosis but not cardiac hypertrophy in ROCK1+/- haploinsufficient mice. Circulation, 112, 2959.PubMed
56.
go back to reference Kobayashi, N., Horinaka, S., Mita, S., Nakano, S., Honda, T., Yoshida, K., et al. (2002). Critical role of Rho-kinase pathway for cardiac performance and remodeling in failing rat hearts. Cardiovascular Research, 55, 757.PubMedCrossRef Kobayashi, N., Horinaka, S., Mita, S., Nakano, S., Honda, T., Yoshida, K., et al. (2002). Critical role of Rho-kinase pathway for cardiac performance and remodeling in failing rat hearts. Cardiovascular Research, 55, 757.PubMedCrossRef
57.
go back to reference Satoh, S., Ueda, Y., Koyanagi, M., Kadokami, T., Sugano, M., Yoshikawa, Y., et al. (2003). Chronic inhibition of Rho kinase blunts the process of left ventricular hypertrophy leading to cardiac contractile dysfunction in hypertension-induced heart failure. Journal of Molecular and Cellular Cardiology, 35, 59.PubMedCrossRef Satoh, S., Ueda, Y., Koyanagi, M., Kadokami, T., Sugano, M., Yoshikawa, Y., et al. (2003). Chronic inhibition of Rho kinase blunts the process of left ventricular hypertrophy leading to cardiac contractile dysfunction in hypertension-induced heart failure. Journal of Molecular and Cellular Cardiology, 35, 59.PubMedCrossRef
58.
go back to reference Hattori, T., Shimokawa, H., Higashi, M., Hiroki, J., Mukai, Y., Tsutsui, H., et al. (2004). Long-term inhibition of Rho-kinase suppresses left ventricular remodeling after myocardial infarction in mice. Circulation, 109, 2234.PubMedCrossRef Hattori, T., Shimokawa, H., Higashi, M., Hiroki, J., Mukai, Y., Tsutsui, H., et al. (2004). Long-term inhibition of Rho-kinase suppresses left ventricular remodeling after myocardial infarction in mice. Circulation, 109, 2234.PubMedCrossRef
59.
go back to reference Chang, J., Xie, M., Shah, V. R., Schneider, M. D., Entman, M. L., Wei, L., et al. (2006). Activation of Rho-associated coiled-coil protein kinase 1 (ROCK-1) by caspase-3 cleavage plays an essential role in cardiac myocyte apoptosis. Proceedings of the National Academy of Sciences of the United States of America, 103, 14495.PubMedCrossRef Chang, J., Xie, M., Shah, V. R., Schneider, M. D., Entman, M. L., Wei, L., et al. (2006). Activation of Rho-associated coiled-coil protein kinase 1 (ROCK-1) by caspase-3 cleavage plays an essential role in cardiac myocyte apoptosis. Proceedings of the National Academy of Sciences of the United States of America, 103, 14495.PubMedCrossRef
60.
go back to reference Bao, W., Hu, E., Tao, L., Boyce, R., Mirabile, R., Thudium, D. T., et al. (2004). Inhibition of Rho-kinase protects the heart against ischemia/reperfusion injury. Cardiovascular Research, 61, 548.PubMedCrossRef Bao, W., Hu, E., Tao, L., Boyce, R., Mirabile, R., Thudium, D. T., et al. (2004). Inhibition of Rho-kinase protects the heart against ischemia/reperfusion injury. Cardiovascular Research, 61, 548.PubMedCrossRef
61.
go back to reference Hamid, S. A., Bower, H. S., & Baxter, G. F. (2007). Rho kinase activation plays a major role as a mediator of irreversible injury in reperfused myocardium. American Journal of Physiology. Heart and Circulatory Physiology, 292, H2598.PubMedCrossRef Hamid, S. A., Bower, H. S., & Baxter, G. F. (2007). Rho kinase activation plays a major role as a mediator of irreversible injury in reperfused myocardium. American Journal of Physiology. Heart and Circulatory Physiology, 292, H2598.PubMedCrossRef
62.
go back to reference Sahai, E., Alberts, A. S., & Treisman, R. (1998). RhoA effector mutants reveal distinct effector pathways for cytoskeletal reorganization. SRF activation and transformation. EMBO Journal, 17, 1350.PubMedCrossRef Sahai, E., Alberts, A. S., & Treisman, R. (1998). RhoA effector mutants reveal distinct effector pathways for cytoskeletal reorganization. SRF activation and transformation. EMBO Journal, 17, 1350.PubMedCrossRef
63.
go back to reference Nelson, C. M., Pirone, D. M., Tan, J. L., & Chen, C. S. (2004). Vascular endothelial-cadherin regulates cytoskeletal tension, cell spreading, and focal adhesions by stimulating RhoA. Molecular Biology of the Cell, 15, 2943.PubMedCrossRef Nelson, C. M., Pirone, D. M., Tan, J. L., & Chen, C. S. (2004). Vascular endothelial-cadherin regulates cytoskeletal tension, cell spreading, and focal adhesions by stimulating RhoA. Molecular Biology of the Cell, 15, 2943.PubMedCrossRef
64.
go back to reference Zhao, Z., & Rivkees, S. A. (2004). Rho-associated kinases play a role in endocardial cell differentiation and migration. Developmental Biology, 275, 183.PubMedCrossRef Zhao, Z., & Rivkees, S. A. (2004). Rho-associated kinases play a role in endocardial cell differentiation and migration. Developmental Biology, 275, 183.PubMedCrossRef
65.
go back to reference Rikitake, Y., & Liao, J. K. (2005). Rho-kinase mediates hyperglycemia-induced plasminogen activator inhibitor-1 expression in vascular endothelial cells. Circulation, 111, 3261.PubMedCrossRef Rikitake, Y., & Liao, J. K. (2005). Rho-kinase mediates hyperglycemia-induced plasminogen activator inhibitor-1 expression in vascular endothelial cells. Circulation, 111, 3261.PubMedCrossRef
66.
go back to reference Alblas, J., Ulfman, L., Hordijk, P., & Koenderman, L. (2001). Activation of Rhoa and ROCK are essential for detachment of migrating leukocytes. Molecular Biology of the Cell, 12, 2137.PubMed Alblas, J., Ulfman, L., Hordijk, P., & Koenderman, L. (2001). Activation of Rhoa and ROCK are essential for detachment of migrating leukocytes. Molecular Biology of the Cell, 12, 2137.PubMed
67.
go back to reference Murphy, E., & Steenbergen, C. (2008). Mechanisms underlying acute protection from cardiac ischemia-reperfusion injury. Physiological Reviews, 88, 581.PubMedCrossRef Murphy, E., & Steenbergen, C. (2008). Mechanisms underlying acute protection from cardiac ischemia-reperfusion injury. Physiological Reviews, 88, 581.PubMedCrossRef
68.
go back to reference Aghajanian, A., Wittchen, E. S., Campbell, S. L., & Burridge, K. (2009). Direct activation of RhoA by reactive oxygen species requires a redox-sensitive motif. PLoS ONE, 4, 38045.CrossRef Aghajanian, A., Wittchen, E. S., Campbell, S. L., & Burridge, K. (2009). Direct activation of RhoA by reactive oxygen species requires a redox-sensitive motif. PLoS ONE, 4, 38045.CrossRef
69.
go back to reference Wolfrum, S., Dendorfer, A., Rikitake, Y., Stalker, T. J., Gong, Y., Scalia, R., et al. (2004). Inhibition of Rho-kinase leads to rapid activation of phosphatidylinositol 3-kinase/protein kinase Akt and cardiovascular protection. Arteriosclerosis, Thrombosis, and Vascular Biology, 24, 1842.PubMedCrossRef Wolfrum, S., Dendorfer, A., Rikitake, Y., Stalker, T. J., Gong, Y., Scalia, R., et al. (2004). Inhibition of Rho-kinase leads to rapid activation of phosphatidylinositol 3-kinase/protein kinase Akt and cardiovascular protection. Arteriosclerosis, Thrombosis, and Vascular Biology, 24, 1842.PubMedCrossRef
70.
go back to reference Adams, J. W., & Brown, J. H. (2001). G-proteins in growth and apoptosis: Lessons from the heart. Oncogene, 20, 1626.PubMedCrossRef Adams, J. W., & Brown, J. H. (2001). G-proteins in growth and apoptosis: Lessons from the heart. Oncogene, 20, 1626.PubMedCrossRef
71.
go back to reference Foo, R. S., Mani, K., & Kitsis, R. N. (2005). Death begets failure in the heart. Journal of Clinical Investigation, 115, 565.PubMed Foo, R. S., Mani, K., & Kitsis, R. N. (2005). Death begets failure in the heart. Journal of Clinical Investigation, 115, 565.PubMed
72.
go back to reference Dorn, G. W. (2009). Apoptotic and non-apoptotic programmed cardiomyocyte death in ventricular remodelling. Cardiovascular Research, 81, 465.PubMedCrossRef Dorn, G. W. (2009). Apoptotic and non-apoptotic programmed cardiomyocyte death in ventricular remodelling. Cardiovascular Research, 81, 465.PubMedCrossRef
73.
go back to reference Parsons, J. T. (2003). Focal adhesion kinase: The first ten years. Journal of Cell Science, 116, 1409.PubMedCrossRef Parsons, J. T. (2003). Focal adhesion kinase: The first ten years. Journal of Cell Science, 116, 1409.PubMedCrossRef
74.
go back to reference Mitra, S. K., & Schlaepfer, D. D. (2006). Integrin-regulated FAK-Src signaling in normal and cancer cells. Current Opinion in Cell Biology, 18, 516.PubMedCrossRef Mitra, S. K., & Schlaepfer, D. D. (2006). Integrin-regulated FAK-Src signaling in normal and cancer cells. Current Opinion in Cell Biology, 18, 516.PubMedCrossRef
75.
go back to reference Hakim, Z. S., DiMichele, L. A., Rojas, M., Meredith, D., Mack, C. P., & Taylor, J. M. (2009). FAK regulates cardiomyocyte survival following ischemia/reperfusion. Journal of Molecular and Cellular Cardiology, 46, 241.PubMedCrossRef Hakim, Z. S., DiMichele, L. A., Rojas, M., Meredith, D., Mack, C. P., & Taylor, J. M. (2009). FAK regulates cardiomyocyte survival following ischemia/reperfusion. Journal of Molecular and Cellular Cardiology, 46, 241.PubMedCrossRef
76.
go back to reference Chong, L. D., Traynor-Kaplan, A., Bokoch, G. M., & Schwartz, M. A. (1994). The small GTP-binding protein Rho regulates a phosphatidylinositol 4-phosphate 5-kinase in mammalian cells. Cell, 79, 507.PubMedCrossRef Chong, L. D., Traynor-Kaplan, A., Bokoch, G. M., & Schwartz, M. A. (1994). The small GTP-binding protein Rho regulates a phosphatidylinositol 4-phosphate 5-kinase in mammalian cells. Cell, 79, 507.PubMedCrossRef
77.
go back to reference Ren, X.-D., Bokoch, G. M., Traynor-Kaplan, A., Jenkins, G. H., Anderson, R. A., & Schwartz, M. A. (1996). Physical association of the small GTPase Rho with a 68-kDa phosphatidylinositol 4-phosphate 5-kinase in Swiss 3T3 cells. Molecular Biology of the Cell, 7, 435.PubMed Ren, X.-D., Bokoch, G. M., Traynor-Kaplan, A., Jenkins, G. H., Anderson, R. A., & Schwartz, M. A. (1996). Physical association of the small GTPase Rho with a 68-kDa phosphatidylinositol 4-phosphate 5-kinase in Swiss 3T3 cells. Molecular Biology of the Cell, 7, 435.PubMed
78.
go back to reference Schmidt, M., Bienek, C., Rumenapp, U., Zhang, C., Lummen, G., Jakobs, K. H., et al. (1996). A role for Rho in receptor- and G protein-stimulated phospholipase C. Reduction in phosphatidylinositol 4, 5-bisphosphate by Clostridium difficile toxin b. Naunyn-Schmiedeberg's Archives of Pharmacology, 354, 87.PubMedCrossRef Schmidt, M., Bienek, C., Rumenapp, U., Zhang, C., Lummen, G., Jakobs, K. H., et al. (1996). A role for Rho in receptor- and G protein-stimulated phospholipase C. Reduction in phosphatidylinositol 4, 5-bisphosphate by Clostridium difficile toxin b. Naunyn-Schmiedeberg's Archives of Pharmacology, 354, 87.PubMedCrossRef
79.
go back to reference Mejillano, M., Yamamoto, M., Rozelle, A. L., Sun, H.-Q., Wang, X., & Yin, H. L. (2000). Regulation of apoptosis by phosphatidylinositol 4,5 bisphosphate, inhibition of caspases, and caspase inactivation of phosphatidylinositol phosphate 5 kinases. Journal of Biological Chemistry, In Press. Mejillano, M., Yamamoto, M., Rozelle, A. L., Sun, H.-Q., Wang, X., & Yin, H. L. (2000). Regulation of apoptosis by phosphatidylinositol 4,5 bisphosphate, inhibition of caspases, and caspase inactivation of phosphatidylinositol phosphate 5 kinases. Journal of Biological Chemistry, In Press.
80.
go back to reference Howes, A. L., Arthur, J. F., Zhang, T., Miyamoto, S., Adams, J. W., Dorn, G. W., II, et al. (2003). Akt-mediated cardiomyocyte survival pathways are compromised by G α q-induced phosphoinositide 4, 5-bisphosphate depletion. The Journal of Biological Chemistry, 278, 40343.PubMedCrossRef Howes, A. L., Arthur, J. F., Zhang, T., Miyamoto, S., Adams, J. W., Dorn, G. W., II, et al. (2003). Akt-mediated cardiomyocyte survival pathways are compromised by G α q-induced phosphoinositide 4, 5-bisphosphate depletion. The Journal of Biological Chemistry, 278, 40343.PubMedCrossRef
81.
go back to reference Wing, M. R., Bourdon, D. M., & Harden, T. K. (2003). PLC-ε: A shared effector protein in Ras-, Rho-, and G αβγ-mediated signaling. Molecular Interventions, 3, 273.PubMedCrossRef Wing, M. R., Bourdon, D. M., & Harden, T. K. (2003). PLC-ε: A shared effector protein in Ras-, Rho-, and G αβγ-mediated signaling. Molecular Interventions, 3, 273.PubMedCrossRef
82.
go back to reference Bunney, T. D., & Katan, M. (2006). Phospholipase Cε: Linking second messengers and small GTPases. Trends in Cell Biology, 16, 640.PubMedCrossRef Bunney, T. D., & Katan, M. (2006). Phospholipase Cε: Linking second messengers and small GTPases. Trends in Cell Biology, 16, 640.PubMedCrossRef
83.
go back to reference Citro, S., Malik, S., Oestreich, E. A., Radeff-Huang, J., Kelley, G. G., Smrcka, A. V., et al. (2007). Phospholipase Cε is a nexus for Rho and Rap-mediated G protein-coupled receptor-induced astrocyte proliferation. Proceedings of the National Academy of Sciences of the United States of America, 104, 15543.PubMedCrossRef Citro, S., Malik, S., Oestreich, E. A., Radeff-Huang, J., Kelley, G. G., Smrcka, A. V., et al. (2007). Phospholipase Cε is a nexus for Rho and Rap-mediated G protein-coupled receptor-induced astrocyte proliferation. Proceedings of the National Academy of Sciences of the United States of America, 104, 15543.PubMedCrossRef
84.
go back to reference Wing, M. R., Snyder, J. T., Sondek, J., & Harden, T. K. (2003). Direct activation of phospholipase C-ε by Rho. The Journal of Biological Chemistry, 278, 41253.PubMedCrossRef Wing, M. R., Snyder, J. T., Sondek, J., & Harden, T. K. (2003). Direct activation of phospholipase C-ε by Rho. The Journal of Biological Chemistry, 278, 41253.PubMedCrossRef
85.
go back to reference Kelley, G. G., Reks, S. E., & Smrcka, A. V. (2004). Hormonal regulation of phospholipase Cε through distinct and overlapping pathways involving G12 and Ras family G-proteins. The Biochemical Journal, 378, 129.PubMedCrossRef Kelley, G. G., Reks, S. E., & Smrcka, A. V. (2004). Hormonal regulation of phospholipase Cε through distinct and overlapping pathways involving G12 and Ras family G-proteins. The Biochemical Journal, 378, 129.PubMedCrossRef
86.
go back to reference Song, C., Hu, C. D., Masago, M., Kariyai, K., Yamawaki-Kataoka, Y., Shibatohge, M., et al. (2001). Regulation of a novel human phospholipase C, PLCε, through membrane targeting by Ras. The Journal of Biological Chemistry, 276, 2752.PubMedCrossRef Song, C., Hu, C. D., Masago, M., Kariyai, K., Yamawaki-Kataoka, Y., Shibatohge, M., et al. (2001). Regulation of a novel human phospholipase C, PLCε, through membrane targeting by Ras. The Journal of Biological Chemistry, 276, 2752.PubMedCrossRef
87.
go back to reference Jin, T. G., Satoh, T., Liao, Y., Song, C., Gao, X., Kariya, K., et al. (2001). Role of the CDC25 homology domain of phospholipase Cε in amplification of Rap1-dependent signaling. The Journal of Biological Chemistry, 276, 30301.PubMedCrossRef Jin, T. G., Satoh, T., Liao, Y., Song, C., Gao, X., Kariya, K., et al. (2001). Role of the CDC25 homology domain of phospholipase Cε in amplification of Rap1-dependent signaling. The Journal of Biological Chemistry, 276, 30301.PubMedCrossRef
88.
go back to reference Schmidt, M., Evellin, S., Weernink, P. A., von Dorp, F., Rehmann, H., Lomasney, J. W., et al. (2001). A new phospholipase-C-calcium signalling pathway mediated by cyclic AMP and a Rap GTPase. Nature Cell Biology, 3, 1020.PubMedCrossRef Schmidt, M., Evellin, S., Weernink, P. A., von Dorp, F., Rehmann, H., Lomasney, J. W., et al. (2001). A new phospholipase-C-calcium signalling pathway mediated by cyclic AMP and a Rap GTPase. Nature Cell Biology, 3, 1020.PubMedCrossRef
89.
go back to reference Kelley, G. G., Reks, S. E., Ondrako, J. M., & Smrcka, A. V. (2001). Phospholipase Cε: A novel Ras effector. The EMBO Journal, 20, 743.PubMedCrossRef Kelley, G. G., Reks, S. E., Ondrako, J. M., & Smrcka, A. V. (2001). Phospholipase Cε: A novel Ras effector. The EMBO Journal, 20, 743.PubMedCrossRef
90.
go back to reference Lopez, I., Mak, E. C., Ding, J., Hamm, H. E., & Lomasney, J. W. (2001). A novel bifunctional phospholipase C that is regulated by Gα 12 and stimulates the Ras/mitogen-activated protein kinase pathway. The Journal of Biological Chemistry, 276, 2758.PubMedCrossRef Lopez, I., Mak, E. C., Ding, J., Hamm, H. E., & Lomasney, J. W. (2001). A novel bifunctional phospholipase C that is regulated by Gα 12 and stimulates the Ras/mitogen-activated protein kinase pathway. The Journal of Biological Chemistry, 276, 2758.PubMedCrossRef
91.
go back to reference Hains, M. D., Wing, M. R., Maddileti, S., Siderovski, D. P., & Harden, T. K. (2006). Gα12/13- and Rho-dependent activation of phospholipase C-ε by lysophosphatidic acid and thrombin receptors. Molecular Pharmacology, 69, 2068. Hains, M. D., Wing, M. R., Maddileti, S., Siderovski, D. P., & Harden, T. K. (2006). Gα12/13- and Rho-dependent activation of phospholipase C-ε by lysophosphatidic acid and thrombin receptors. Molecular Pharmacology, 69, 2068.
92.
go back to reference Satoh, T., Edamatsu, H., & Kataoka, T. (2007). Phospholipase Ce guanine nucleotide exchange factor activity and activation of Rap1. Methods in Enzymology, 407, 281. Satoh, T., Edamatsu, H., & Kataoka, T. (2007). Phospholipase Ce guanine nucleotide exchange factor activity and activation of Rap1. Methods in Enzymology, 407, 281.
93.
go back to reference Kelley, G. G., Kaproth-Joslin, K. A., Reks, S. E., Smrcka, A. V., & Wojcikiewicz, R. J. (2006). G-protein-coupled receptor agonists activate endogenous phospholipase Cε and phospholipase Cβ3 in a temporally distinct manner. The Journal of Biological Chemistry, 281, 2639.PubMedCrossRef Kelley, G. G., Kaproth-Joslin, K. A., Reks, S. E., Smrcka, A. V., & Wojcikiewicz, R. J. (2006). G-protein-coupled receptor agonists activate endogenous phospholipase Cε and phospholipase Cβ3 in a temporally distinct manner. The Journal of Biological Chemistry, 281, 2639.PubMedCrossRef
94.
go back to reference Oestreich, E. A., Malik, S., Goonasekera, S. A., Blaxall, B. C., Kelley, G. G., Dirksen, R. T., et al. (2009). Epac and phospholipase Cε regulate Ca2+ release in the heart by activation of protein kinase cε and calcium–calmodulin kinase II. The Journal of Biological Chemistry, 284, 1514.PubMedCrossRef Oestreich, E. A., Malik, S., Goonasekera, S. A., Blaxall, B. C., Kelley, G. G., Dirksen, R. T., et al. (2009). Epac and phospholipase Cε regulate Ca2+ release in the heart by activation of protein kinase cε and calcium–calmodulin kinase II. The Journal of Biological Chemistry, 284, 1514.PubMedCrossRef
95.
go back to reference Yujiri, T., Sather, S., Fanger, G. R., & Johnson, G. L. (1998). Role of MEKK1 in cell survival and activation of JNK and ERK pathways defined by targeted gene disruption. Science, 282, 1911.PubMedCrossRef Yujiri, T., Sather, S., Fanger, G. R., & Johnson, G. L. (1998). Role of MEKK1 in cell survival and activation of JNK and ERK pathways defined by targeted gene disruption. Science, 282, 1911.PubMedCrossRef
96.
go back to reference Lips, D. J., Bueno, O. F., Wilkins, B. J., Purcell, N. H., Kaiser, R. A., Lorenz, J. N., et al. (2004). MEK1-ERK2 signaling pathway protects myocardium from ischemic injury in vivo. Circulation, 109, 1938.PubMedCrossRef Lips, D. J., Bueno, O. F., Wilkins, B. J., Purcell, N. H., Kaiser, R. A., Lorenz, J. N., et al. (2004). MEK1-ERK2 signaling pathway protects myocardium from ischemic injury in vivo. Circulation, 109, 1938.PubMedCrossRef
97.
go back to reference Purcell, N. H., Wilkins, B. J., York, A., Saba-El-Leil, M. K., Meloche, S., Robbins, J., et al. (2007). Genetic inhibition of cardiac ERK1/2 promotes stress-induced apoptosis and heart failure but has no effect on hypertrophy in vivo. Proceedings of the National Academy of Sciences of the United States of America, 104, 14074.PubMedCrossRef Purcell, N. H., Wilkins, B. J., York, A., Saba-El-Leil, M. K., Meloche, S., Robbins, J., et al. (2007). Genetic inhibition of cardiac ERK1/2 promotes stress-induced apoptosis and heart failure but has no effect on hypertrophy in vivo. Proceedings of the National Academy of Sciences of the United States of America, 104, 14074.PubMedCrossRef
98.
go back to reference Inagaki, K., Churchill, E., & Mochly-Rosen, D. (2006). Epsilon protein kinase C as a potential therapeutic target for the ischemic heart. Cardiovascular Research, 70, 222.PubMedCrossRef Inagaki, K., Churchill, E., & Mochly-Rosen, D. (2006). Epsilon protein kinase C as a potential therapeutic target for the ischemic heart. Cardiovascular Research, 70, 222.PubMedCrossRef
99.
go back to reference Liu, G. S., Cohen, M. V., Mochly-Rosen, D., & Downey, J. M. (1999). Protein kinase C-ε is responsible for the protection of preconditioning in rabbit cardiomyocytes. Journal of Molecular and Cellular Cardiology, 31, 1937.PubMedCrossRef Liu, G. S., Cohen, M. V., Mochly-Rosen, D., & Downey, J. M. (1999). Protein kinase C-ε is responsible for the protection of preconditioning in rabbit cardiomyocytes. Journal of Molecular and Cellular Cardiology, 31, 1937.PubMedCrossRef
100.
go back to reference Xuan, Y. T., Guo, Y., Zhu, Y., Wang, O. L., Rokosh, G., Messing, R. O., et al. (2005). Role of the protein kinase C-ε-Raf-1-MEK-1/2-p44/42 MAPK signaling cascade in the activation of signal transducers and activators of transcription 1 and 3 and induction of cyclooxygenase-2 after ischemic preconditioning. Circulation, 112, 1971.PubMedCrossRef Xuan, Y. T., Guo, Y., Zhu, Y., Wang, O. L., Rokosh, G., Messing, R. O., et al. (2005). Role of the protein kinase C-ε-Raf-1-MEK-1/2-p44/42 MAPK signaling cascade in the activation of signal transducers and activators of transcription 1 and 3 and induction of cyclooxygenase-2 after ischemic preconditioning. Circulation, 112, 1971.PubMedCrossRef
101.
go back to reference Zhang, W. H., Lu, F. H., Zhao, Y. J., Wang, L. N., Tian, Y., Pan, Z. W., et al. (2007). Post-conditioning protects rat cardiomyocytes via PKCε-mediated calcium-sensing receptors. Biochemical and Biophysical Research Communications, 361, 659.PubMedCrossRef Zhang, W. H., Lu, F. H., Zhao, Y. J., Wang, L. N., Tian, Y., Pan, Z. W., et al. (2007). Post-conditioning protects rat cardiomyocytes via PKCε-mediated calcium-sensing receptors. Biochemical and Biophysical Research Communications, 361, 659.PubMedCrossRef
102.
go back to reference Sivaraman, V., Hausenloy, D. J., Kolvekar, S., Hayward, M., Yap, J., Lawrence, D., et al. (2009). The divergent roles of protein kinase Cε and δ in simulated ischaemia-reperfusion injury in human myocardium. Journal of Molecular and Cellular Cardiology, 46, 758.PubMedCrossRef Sivaraman, V., Hausenloy, D. J., Kolvekar, S., Hayward, M., Yap, J., Lawrence, D., et al. (2009). The divergent roles of protein kinase Cε and δ in simulated ischaemia-reperfusion injury in human myocardium. Journal of Molecular and Cellular Cardiology, 46, 758.PubMedCrossRef
103.
go back to reference Wang, H., Oestreich, E. A., Maekawa, N., Bullard, T. A., Vikstrom, K. L., Dirksen, R. T., et al. (2005). Phospholipase Cε modulates β-adrenergic receptor-dependent cardiac contraction and inhibits cardiac hypertrophy. Circulation Research, 97, 1305.PubMedCrossRef Wang, H., Oestreich, E. A., Maekawa, N., Bullard, T. A., Vikstrom, K. L., Dirksen, R. T., et al. (2005). Phospholipase Cε modulates β-adrenergic receptor-dependent cardiac contraction and inhibits cardiac hypertrophy. Circulation Research, 97, 1305.PubMedCrossRef
104.
go back to reference Yoshimura, S., Nakashima, S., Ohguchi, K., Sakai, H., Shinoda, J., Sakai, N., et al. (1996). Differential mRNA expression of phospholipase D (PLD) isozymes during cAMP-induced differentiation in C6 glioma cells. Biochemical and Biophysical Research Communications, 225, 494.PubMedCrossRef Yoshimura, S., Nakashima, S., Ohguchi, K., Sakai, H., Shinoda, J., Sakai, N., et al. (1996). Differential mRNA expression of phospholipase D (PLD) isozymes during cAMP-induced differentiation in C6 glioma cells. Biochemical and Biophysical Research Communications, 225, 494.PubMedCrossRef
105.
go back to reference Hammond, S. M., Jenco, J. M., Nakashima, S., Cadwallader, K., Gu, Q., Cook, S., et al. (1997). Characterization of two alternately spliced forms of phospholipase D1. Activation of the purified enzymes by phosphatidylinositol 4, 5-bisphosphate, ADP-ribosylation factor, and Rho family monomeric GTP-binding proteins and protein kinase C-α. The Journal of Biological Chemistry, 272, 3860.PubMedCrossRef Hammond, S. M., Jenco, J. M., Nakashima, S., Cadwallader, K., Gu, Q., Cook, S., et al. (1997). Characterization of two alternately spliced forms of phospholipase D1. Activation of the purified enzymes by phosphatidylinositol 4, 5-bisphosphate, ADP-ribosylation factor, and Rho family monomeric GTP-binding proteins and protein kinase C-α. The Journal of Biological Chemistry, 272, 3860.PubMedCrossRef
106.
go back to reference Redina, O. E., & Frohman, M. A. (1998). Organization and alternative splicing of the murine phospholipase D2 gene. The Biochemical Journal, 331(Pt 3), 845.PubMed Redina, O. E., & Frohman, M. A. (1998). Organization and alternative splicing of the murine phospholipase D2 gene. The Biochemical Journal, 331(Pt 3), 845.PubMed
107.
go back to reference Colley, W. C., Sung, T. C., Roll, R., Jenco, J., Hammond, S. M., Altshuller, Y., et al. (1997). Phospholipase D2, a distinct phospholipase D isoform with novel regulatory properties that provokes cytoskeletal reorganization. Current Biology, 7, 191.PubMedCrossRef Colley, W. C., Sung, T. C., Roll, R., Jenco, J., Hammond, S. M., Altshuller, Y., et al. (1997). Phospholipase D2, a distinct phospholipase D isoform with novel regulatory properties that provokes cytoskeletal reorganization. Current Biology, 7, 191.PubMedCrossRef
108.
go back to reference Bae, C. D., Min, D. S., Fleming, I. N., & Exton, J. H. (1998). Determination of interaction sites on the small G protein RhoA for phospholipase D. The Journal of Biological Chemistry, 273, 11596.PubMedCrossRef Bae, C. D., Min, D. S., Fleming, I. N., & Exton, J. H. (1998). Determination of interaction sites on the small G protein RhoA for phospholipase D. The Journal of Biological Chemistry, 273, 11596.PubMedCrossRef
109.
go back to reference Sung, T. C., Zhang, Y., Morris, A. J., & Frohman, M. A. (1999). Structural analysis of human phospholipase D1. The Journal of Biological Chemistry, 274, 3659.PubMedCrossRef Sung, T. C., Zhang, Y., Morris, A. J., & Frohman, M. A. (1999). Structural analysis of human phospholipase D1. The Journal of Biological Chemistry, 274, 3659.PubMedCrossRef
110.
go back to reference Xie, Z., Ho, W. T., Spellman, R., Cai, S., & Exton, J. H. (2002). Mechanisms of regulation of phospholipase D1 and D2 by the heterotrimeric G proteins G13 and Gq. The Journal of Biological Chemistry, 277, 11979.PubMedCrossRef Xie, Z., Ho, W. T., Spellman, R., Cai, S., & Exton, J. H. (2002). Mechanisms of regulation of phospholipase D1 and D2 by the heterotrimeric G proteins G13 and Gq. The Journal of Biological Chemistry, 277, 11979.PubMedCrossRef
111.
go back to reference Du, G., Altshuller, Y. M., Kim, Y., Han, J. M., Ryu, S. H., Morris, A. J., et al. (2000). Dual requirement for rho and protein kinase C in direct activation of phospholipase D1 through G protein-coupled receptor signaling. Molecular Biology of the Cell, 11, 4359.PubMed Du, G., Altshuller, Y. M., Kim, Y., Han, J. M., Ryu, S. H., Morris, A. J., et al. (2000). Dual requirement for rho and protein kinase C in direct activation of phospholipase D1 through G protein-coupled receptor signaling. Molecular Biology of the Cell, 11, 4359.PubMed
112.
go back to reference Schmidt, M., Rumenapp, U., Bienek, C., Keller, J., von Eichel-Streiber, C., & Jakobs, K. H. (1996). Inhibition of receptor signaling to phospholipase D by Clostridium difficile toxin B. Role of Rho proteins. The Journal of Biological Chemistry, 271, 2422.PubMedCrossRef Schmidt, M., Rumenapp, U., Bienek, C., Keller, J., von Eichel-Streiber, C., & Jakobs, K. H. (1996). Inhibition of receptor signaling to phospholipase D by Clostridium difficile toxin B. Role of Rho proteins. The Journal of Biological Chemistry, 271, 2422.PubMedCrossRef
113.
go back to reference Schmidt, M., Voss, M., Oude Weernink, P. A., Wetzel, J., Amano, M., Kaibuchi, K., et al. (1999). A role for Rho-kinase in Rho-controlled phospholipase D stimulation by the m3 muscarinic acetylcholine receptor. The Journal of Biological Chemistry, 274, 14648.PubMedCrossRef Schmidt, M., Voss, M., Oude Weernink, P. A., Wetzel, J., Amano, M., Kaibuchi, K., et al. (1999). A role for Rho-kinase in Rho-controlled phospholipase D stimulation by the m3 muscarinic acetylcholine receptor. The Journal of Biological Chemistry, 274, 14648.PubMedCrossRef
114.
go back to reference Yamazaki, M., Zhang, Y., Watanabe, H., Yokozeki, T., Ohno, S., Kaibuchi, K., et al. (1999). Interaction of the small G protein RhoA with the C terminus of human phospholipase D1. The Journal of Biological Chemistry, 274, 6035.PubMedCrossRef Yamazaki, M., Zhang, Y., Watanabe, H., Yokozeki, T., Ohno, S., Kaibuchi, K., et al. (1999). Interaction of the small G protein RhoA with the C terminus of human phospholipase D1. The Journal of Biological Chemistry, 274, 6035.PubMedCrossRef
115.
go back to reference Schmidt, M., Nehls, C., Rumenapp, U., & Jakobs, K. H. (1996). m3 Muscarinic receptor-induced and Gi-mediated heterologous potentiation of phospholipase C stimulation: Role of phosphoinositide synthesis. Molecular Pharmacology, 50, 1038.PubMed Schmidt, M., Nehls, C., Rumenapp, U., & Jakobs, K. H. (1996). m3 Muscarinic receptor-induced and Gi-mediated heterologous potentiation of phospholipase C stimulation: Role of phosphoinositide synthesis. Molecular Pharmacology, 50, 1038.PubMed
116.
go back to reference Miyamoto, S., Murphy, A. N., & Brown, J. H. (2008). Akt mediates mitochondrial protection in cardiomyocytes through phosphorylation of mitochondrial hexokinase-II. Cell Death and Differentiation, 15, 521.PubMedCrossRef Miyamoto, S., Murphy, A. N., & Brown, J. H. (2008). Akt mediates mitochondrial protection in cardiomyocytes through phosphorylation of mitochondrial hexokinase-II. Cell Death and Differentiation, 15, 521.PubMedCrossRef
117.
go back to reference Miyamoto, S., Murphy, A. N., & Brown, J. H. (2009). Akt mediated mitochondrial protection in the heart: metabolic and survival pathways to the rescue. Journal of Bioenergetics and Biomembranes, 41, 169.PubMedCrossRef Miyamoto, S., Murphy, A. N., & Brown, J. H. (2009). Akt mediated mitochondrial protection in the heart: metabolic and survival pathways to the rescue. Journal of Bioenergetics and Biomembranes, 41, 169.PubMedCrossRef
118.
go back to reference Lecour, S. (2009). Activation of the protective survivor activating factor enhancement (SAFE) pathway against reperfusion injury: Does it go beyond the RISK pathway? Journal of Molecular and Cellular Cardiology, 47, 32.PubMedCrossRef Lecour, S. (2009). Activation of the protective survivor activating factor enhancement (SAFE) pathway against reperfusion injury: Does it go beyond the RISK pathway? Journal of Molecular and Cellular Cardiology, 47, 32.PubMedCrossRef
119.
go back to reference Lecour, S. (2009). Multiple protective pathways against reperfusion injury: A SAFE path without Aktion? Journal of Molecular and Cellular Cardiology, 46, 607.PubMedCrossRef Lecour, S. (2009). Multiple protective pathways against reperfusion injury: A SAFE path without Aktion? Journal of Molecular and Cellular Cardiology, 46, 607.PubMedCrossRef
120.
go back to reference Taher, M. M., Mahgoub, M. A., & Abd-Elfattah, A. S. (1998). Redox regulation of signal transduction in vascular smooth muscle cells: thiol oxidizing agents induced phospholipase D. Biochemistry and Molecular Biology International, 46, 619.PubMed Taher, M. M., Mahgoub, M. A., & Abd-Elfattah, A. S. (1998). Redox regulation of signal transduction in vascular smooth muscle cells: thiol oxidizing agents induced phospholipase D. Biochemistry and Molecular Biology International, 46, 619.PubMed
121.
go back to reference Natarajan, V., Vepa, S., Verma, R. S., & Scribner, W. M. (1996). Role of protein tyrosine phosphorylation in H2O2-induced activation of endothelial cell phospholipase D. The American Journal of Physiology, 271, L400.PubMed Natarajan, V., Vepa, S., Verma, R. S., & Scribner, W. M. (1996). Role of protein tyrosine phosphorylation in H2O2-induced activation of endothelial cell phospholipase D. The American Journal of Physiology, 271, L400.PubMed
122.
go back to reference Parinandi, N. L., Scribner, W. M., Vepa, S., Shi, S., & Natarajan, V. (1999). Phospholipase D activation in endothelial cells is redox sensitive. Antioxidants Redox Signaling, 1, 193.PubMedCrossRef Parinandi, N. L., Scribner, W. M., Vepa, S., Shi, S., & Natarajan, V. (1999). Phospholipase D activation in endothelial cells is redox sensitive. Antioxidants Redox Signaling, 1, 193.PubMedCrossRef
123.
go back to reference Banno, Y., Wang, S., Ito, Y., Izumi, T., Nakashima, S., Shimizu, T., et al. (2001). Involvement of ERK and p38 MAP kinase in oxidative stress-induced phospholipase D activation in PC12 cells. NeuroReport, 12, 2271.PubMedCrossRef Banno, Y., Wang, S., Ito, Y., Izumi, T., Nakashima, S., Shimizu, T., et al. (2001). Involvement of ERK and p38 MAP kinase in oxidative stress-induced phospholipase D activation in PC12 cells. NeuroReport, 12, 2271.PubMedCrossRef
124.
go back to reference Kim, J. H., Lee, S., Park, J. B., Lee, S. D., Kim, J. H., Ha, S. H., et al. (2003). Hydrogen peroxide induces association between glyceraldehyde 3-phosphate dehydrogenase and phospholipase D2 to facilitate phospholipase D2 activation in PC12 cells. Journal of Neurochemistry, 85, 1228.PubMedCrossRef Kim, J. H., Lee, S., Park, J. B., Lee, S. D., Kim, J. H., Ha, S. H., et al. (2003). Hydrogen peroxide induces association between glyceraldehyde 3-phosphate dehydrogenase and phospholipase D2 to facilitate phospholipase D2 activation in PC12 cells. Journal of Neurochemistry, 85, 1228.PubMedCrossRef
125.
go back to reference Dai, J., Meij, J. T., Padua, R., & Panagia, V. (1992). Depression of cardiac sarcolemmal phospholipase D activity by oxidant-induced thiol modification. Circulation Research, 71, 970.PubMed Dai, J., Meij, J. T., Padua, R., & Panagia, V. (1992). Depression of cardiac sarcolemmal phospholipase D activity by oxidant-induced thiol modification. Circulation Research, 71, 970.PubMed
126.
go back to reference Dai, J., Meij, J. T., Dhalla, V., & Panagia, V. (1995). Involvement of thiol groups in the impairment of cardiac sarcoplasmic reticular phospholipase D activity by oxidants. Journal of Lipid Mediators and Cell Signalling, 11, 107.PubMedCrossRef Dai, J., Meij, J. T., Dhalla, V., & Panagia, V. (1995). Involvement of thiol groups in the impairment of cardiac sarcoplasmic reticular phospholipase D activity by oxidants. Journal of Lipid Mediators and Cell Signalling, 11, 107.PubMedCrossRef
127.
go back to reference Asemu, G., Dent, M. R., Singal, T., Dhalla, N. S., & Tappia, P. S. (2005). Differential changes in phospholipase D and phosphatidate phosphohydrolase activities in ischemia-reperfusion of rat heart. Archives of Biochemistry and Biophysics, 436, 136.PubMedCrossRef Asemu, G., Dent, M. R., Singal, T., Dhalla, N. S., & Tappia, P. S. (2005). Differential changes in phospholipase D and phosphatidate phosphohydrolase activities in ischemia-reperfusion of rat heart. Archives of Biochemistry and Biophysics, 436, 136.PubMedCrossRef
128.
go back to reference Bruhl, A., Faldum, A., & Loffelholz, K. (2003). Degradation of phosphatidylethanol counteracts the apparent phospholipase D-mediated formation in heart and other organs. Biochimica et Biophysica Acta, 1633, 84.PubMed Bruhl, A., Faldum, A., & Loffelholz, K. (2003). Degradation of phosphatidylethanol counteracts the apparent phospholipase D-mediated formation in heart and other organs. Biochimica et Biophysica Acta, 1633, 84.PubMed
129.
go back to reference Kurz, T., Kemken, D., Mier, K., Weber, I., & Richardt, G. (2004). Human cardiac phospholipase D activity is tightly controlled by phosphatidylinositol 4, 5-bisphosphate. Journal of Molecular and Cellular Cardiology, 36, 225.PubMedCrossRef Kurz, T., Kemken, D., Mier, K., Weber, I., & Richardt, G. (2004). Human cardiac phospholipase D activity is tightly controlled by phosphatidylinositol 4, 5-bisphosphate. Journal of Molecular and Cellular Cardiology, 36, 225.PubMedCrossRef
130.
go back to reference Cohen, M. V., Liu, Y., Liu, G. S., Wang, P., Weinbrenner, C., Cordis, G. A., et al. (1996). Phospholipase D plays a role in ischemic preconditioning in rabbit heart. Circulation, 94, 1713.PubMed Cohen, M. V., Liu, Y., Liu, G. S., Wang, P., Weinbrenner, C., Cordis, G. A., et al. (1996). Phospholipase D plays a role in ischemic preconditioning in rabbit heart. Circulation, 94, 1713.PubMed
131.
go back to reference Tosaki, A., Maulik, N., Cordis, G., Trifan, O. C., Popescu, L. M., & Das, D. K. (1997). Ischemic preconditioning triggers phospholipase D signaling in rat heart. The American Journal of Physiology, 273, H1860.PubMed Tosaki, A., Maulik, N., Cordis, G., Trifan, O. C., Popescu, L. M., & Das, D. K. (1997). Ischemic preconditioning triggers phospholipase D signaling in rat heart. The American Journal of Physiology, 273, H1860.PubMed
132.
go back to reference Mozzicato, S., Joshi, B. V., Jacobson, K. A., & Liang, B. T. (2004). Role of direct RhoA-phospholipase D1 interaction in mediating adenosine-induced protection from cardiac ischemia. The FASEB Journal, 18, 406.PubMed Mozzicato, S., Joshi, B. V., Jacobson, K. A., & Liang, B. T. (2004). Role of direct RhoA-phospholipase D1 interaction in mediating adenosine-induced protection from cardiac ischemia. The FASEB Journal, 18, 406.PubMed
133.
go back to reference Braz, J. C., Gregory, K., Pathak, A., Zhao, W., Sahin, B., Klevitsky, R., et al. (2004). PKC-α regulates cardiac contractility and propensity toward heart failure. Natural Medicines, 10, 248.CrossRef Braz, J. C., Gregory, K., Pathak, A., Zhao, W., Sahin, B., Klevitsky, R., et al. (2004). PKC-α regulates cardiac contractility and propensity toward heart failure. Natural Medicines, 10, 248.CrossRef
134.
go back to reference Liu, Q., Chen, X., MacDonnell, S. M., Kranias, E. G., Lorenz, J. N., Leitges, M., et al. (2009). Protein kinase Cα, but not PKCβ or PKCγ, regulates contractility and heart failure susceptibility: Implications for ruboxistaurin as a novel therapeutic approach. Circulation Research, 105, 194.PubMedCrossRef Liu, Q., Chen, X., MacDonnell, S. M., Kranias, E. G., Lorenz, J. N., Leitges, M., et al. (2009). Protein kinase Cα, but not PKCβ or PKCγ, regulates contractility and heart failure susceptibility: Implications for ruboxistaurin as a novel therapeutic approach. Circulation Research, 105, 194.PubMedCrossRef
135.
go back to reference Saurin, A. T., Pennington, D. J., Raat, N. J., Latchman, D. S., Owen, M. J., & Marber, M. S. (2002). Targeted disruption of the protein kinase Cε gene abolishes the infarct size reduction that follows ischaemic preconditioning of isolated buffer-perfused mouse hearts. Cardiovascular Research, 55, 672.PubMedCrossRef Saurin, A. T., Pennington, D. J., Raat, N. J., Latchman, D. S., Owen, M. J., & Marber, M. S. (2002). Targeted disruption of the protein kinase Cε gene abolishes the infarct size reduction that follows ischaemic preconditioning of isolated buffer-perfused mouse hearts. Cardiovascular Research, 55, 672.PubMedCrossRef
136.
go back to reference Zatta, A. J., Kin, H., Lee, G., Wang, N., Jiang, R., Lust, R., et al. (2006). Infarct-sparing effect of myocardial postconditioning is dependent on protein kinase C signalling. Cardiovascular Research, 70, 315.PubMedCrossRef Zatta, A. J., Kin, H., Lee, G., Wang, N., Jiang, R., Lust, R., et al. (2006). Infarct-sparing effect of myocardial postconditioning is dependent on protein kinase C signalling. Cardiovascular Research, 70, 315.PubMedCrossRef
137.
go back to reference Mayr, M., Metzler, B., Chung, Y. L., McGregor, E., Mayr, U., Troy, H., et al. (2004). Ischemic preconditioning exaggerates cardiac damage in PKC-δ null mice. American Journal of Physiology. Heart and Circulatory Physiology, 287, H946.PubMedCrossRef Mayr, M., Metzler, B., Chung, Y. L., McGregor, E., Mayr, U., Troy, H., et al. (2004). Ischemic preconditioning exaggerates cardiac damage in PKC-δ null mice. American Journal of Physiology. Heart and Circulatory Physiology, 287, H946.PubMedCrossRef
138.
go back to reference Churchill, E. N., & Szweda, L. I. (2005). Translocation of δPKC to mitochondria during cardiac reperfusion enhances superoxide anion production and induces loss in mitochondrial function. Archives of Biochemistry and Biophysics, 439, 194.PubMedCrossRef Churchill, E. N., & Szweda, L. I. (2005). Translocation of δPKC to mitochondria during cardiac reperfusion enhances superoxide anion production and induces loss in mitochondrial function. Archives of Biochemistry and Biophysics, 439, 194.PubMedCrossRef
139.
go back to reference Churchill, E. N., Murriel, C. L., Chen, C. H., Mochly-Rosen, D., & Szweda, L. I. (2005). Reperfusion-induced translocation of δPKC to cardiac mitochondria prevents pyruvate dehydrogenase reactivation. Circulation Research, 97, 78.PubMedCrossRef Churchill, E. N., Murriel, C. L., Chen, C. H., Mochly-Rosen, D., & Szweda, L. I. (2005). Reperfusion-induced translocation of δPKC to cardiac mitochondria prevents pyruvate dehydrogenase reactivation. Circulation Research, 97, 78.PubMedCrossRef
140.
go back to reference Inagaki, K., Chen, L., Ikeno, F., Lee, F. H., Imahashi, K., Bouley, D. M., et al. (2003). Inhibition of δ-protein kinase C protects against reperfusion injury of the ischemic heart in vivo. Circulation, 108, 2304.PubMedCrossRef Inagaki, K., Chen, L., Ikeno, F., Lee, F. H., Imahashi, K., Bouley, D. M., et al. (2003). Inhibition of δ-protein kinase C protects against reperfusion injury of the ischemic heart in vivo. Circulation, 108, 2304.PubMedCrossRef
141.
go back to reference Murriel, C. L., Churchill, E., Inagaki, K., Szweda, L. I., & Mochly-Rosen, D. (2004). Protein kinase Cδ activation induces apoptosis in response to cardiac ischemia and reperfusion damage: A mechanism involving BAD and the mitochondria. The Journal of Biological Chemistry, 279, 47985.PubMedCrossRef Murriel, C. L., Churchill, E., Inagaki, K., Szweda, L. I., & Mochly-Rosen, D. (2004). Protein kinase Cδ activation induces apoptosis in response to cardiac ischemia and reperfusion damage: A mechanism involving BAD and the mitochondria. The Journal of Biological Chemistry, 279, 47985.PubMedCrossRef
142.
go back to reference Murriel, C. L., & Mochly-Rosen, D. (2003). Opposing roles of δ and εPKC in cardiac ischemia and reperfusion: targeting the apoptotic machinery. Archives of Biochemistry and Biophysics, 420, 246.PubMedCrossRef Murriel, C. L., & Mochly-Rosen, D. (2003). Opposing roles of δ and εPKC in cardiac ischemia and reperfusion: targeting the apoptotic machinery. Archives of Biochemistry and Biophysics, 420, 246.PubMedCrossRef
143.
go back to reference Chen, L., Hahn, H., Wu, G., Chen, C. H., Liron, T., Schechtman, D., et al. (2001). Opposing cardioprotective actions and parallel hypertrophic effects of δPKC and εPKC. Proceedings of the National Academy of Sciences of the United States of America, 98, 11114.PubMedCrossRef Chen, L., Hahn, H., Wu, G., Chen, C. H., Liron, T., Schechtman, D., et al. (2001). Opposing cardioprotective actions and parallel hypertrophic effects of δPKC and εPKC. Proceedings of the National Academy of Sciences of the United States of America, 98, 11114.PubMedCrossRef
144.
go back to reference Inagaki, K., Hahn, H. S., Dorn, G. W., & Mochly-Rosen, D. (2003). Additive protection of the ischemic heart ex vivo by combined treatment with δ-protein kinase C inhibitor and ε-protein kinase C activator. Circulation, 108, 869.PubMedCrossRef Inagaki, K., Hahn, H. S., Dorn, G. W., & Mochly-Rosen, D. (2003). Additive protection of the ischemic heart ex vivo by combined treatment with δ-protein kinase C inhibitor and ε-protein kinase C activator. Circulation, 108, 869.PubMedCrossRef
145.
go back to reference Haworth, R. S., Roberts, N. A., Cuello, F., & Avkiran, M. (2007). Regulation of protein kinase D activity in adult myocardium: novel counter-regulatory roles for protein kinase Cε and protein kinase A. Journal of Molecular and Cellular Cardiology, 43, 686.PubMedCrossRef Haworth, R. S., Roberts, N. A., Cuello, F., & Avkiran, M. (2007). Regulation of protein kinase D activity in adult myocardium: novel counter-regulatory roles for protein kinase Cε and protein kinase A. Journal of Molecular and Cellular Cardiology, 43, 686.PubMedCrossRef
146.
go back to reference Rey, O., Reeve, J. R., Jr., Zhukova, E., Sinnett-Smith, J., & Rozengurt, E. (2004). G protein-coupled receptor-mediated phosphorylation of the activation loop of protein kinase D: Dependence on plasma membrane translocation and protein kinase Cε. The Journal of Biological Chemistry, 279, 34361.PubMedCrossRef Rey, O., Reeve, J. R., Jr., Zhukova, E., Sinnett-Smith, J., & Rozengurt, E. (2004). G protein-coupled receptor-mediated phosphorylation of the activation loop of protein kinase D: Dependence on plasma membrane translocation and protein kinase Cε. The Journal of Biological Chemistry, 279, 34361.PubMedCrossRef
147.
go back to reference Brandlin, I., Eiseler, T., Salowsky, R., & Johannes, F. J. (2002). Protein kinase Cμ regulation of the JNK pathway is triggered via phosphoinositide-dependent kinase 1 and protein kinase Cε. The Journal of Biological Chemistry, 277, 45451.PubMedCrossRef Brandlin, I., Eiseler, T., Salowsky, R., & Johannes, F. J. (2002). Protein kinase Cμ regulation of the JNK pathway is triggered via phosphoinositide-dependent kinase 1 and protein kinase Cε. The Journal of Biological Chemistry, 277, 45451.PubMedCrossRef
148.
go back to reference Tan, M., Xu, X., Ohba, M., Ogawa, W., & Cui, M. Z. (2003). Thrombin rapidly induces protein kinase D phosphorylation, and protein kinase C δ mediates the activation. The Journal of Biological Chemistry, 278, 2824.PubMedCrossRef Tan, M., Xu, X., Ohba, M., Ogawa, W., & Cui, M. Z. (2003). Thrombin rapidly induces protein kinase D phosphorylation, and protein kinase C δ mediates the activation. The Journal of Biological Chemistry, 278, 2824.PubMedCrossRef
149.
go back to reference Haworth, R. S., Cuello, F., Herron, T. J., Franzen, G., Kentish, J. C., Gautel, M., et al. (2004). Protein kinase D is a novel mediator of cardiac troponin I phosphorylation and regulates myofilament function. Circulation Research, 95, 1091.PubMedCrossRef Haworth, R. S., Cuello, F., Herron, T. J., Franzen, G., Kentish, J. C., Gautel, M., et al. (2004). Protein kinase D is a novel mediator of cardiac troponin I phosphorylation and regulates myofilament function. Circulation Research, 95, 1091.PubMedCrossRef
150.
go back to reference Cuello, F., Bardswell, S. C., Haworth, R. S., Yin, X., Lutz, S., Wieland, T., et al. (2007). Protein kinase D selectively targets cardiac troponin I and regulates myofilament Ca2+ sensitivity in ventricular myocytes. Circulation Research, 100, 864.PubMedCrossRef Cuello, F., Bardswell, S. C., Haworth, R. S., Yin, X., Lutz, S., Wieland, T., et al. (2007). Protein kinase D selectively targets cardiac troponin I and regulates myofilament Ca2+ sensitivity in ventricular myocytes. Circulation Research, 100, 864.PubMedCrossRef
151.
go back to reference Huynh, Q. K., & McKinsey, T. A. (2006). Protein kinase D directly phosphorylates histone deacetylase 5 via a random sequential kinetic mechanism. Archives of Biochemistry and Biophysics, 450, 141.PubMedCrossRef Huynh, Q. K., & McKinsey, T. A. (2006). Protein kinase D directly phosphorylates histone deacetylase 5 via a random sequential kinetic mechanism. Archives of Biochemistry and Biophysics, 450, 141.PubMedCrossRef
152.
go back to reference Vega, R. B., Harrison, B. C., Meadows, E., Roberts, C. R., Papst, P. J., Olson, E. N., et al. (2004). Protein kinases C and D mediate agonist-dependent cardiac hypertrophy through nuclear export of histone deacetylase 5. Molecular and Cellular Biology, 24, 8374.PubMedCrossRef Vega, R. B., Harrison, B. C., Meadows, E., Roberts, C. R., Papst, P. J., Olson, E. N., et al. (2004). Protein kinases C and D mediate agonist-dependent cardiac hypertrophy through nuclear export of histone deacetylase 5. Molecular and Cellular Biology, 24, 8374.PubMedCrossRef
153.
go back to reference Dequiedt, F., Van, L. J., Lecomte, E., Van, D., Seufferlein, V. T., Vandenheede, J. R., et al. (2005). Phosphorylation of histone deacetylase 7 by protein kinase D mediates T cell receptor-induced Nur77 expression and apoptosis. The Journal of Experimental Medicine, 201, 793.PubMedCrossRef Dequiedt, F., Van, L. J., Lecomte, E., Van, D., Seufferlein, V. T., Vandenheede, J. R., et al. (2005). Phosphorylation of histone deacetylase 7 by protein kinase D mediates T cell receptor-induced Nur77 expression and apoptosis. The Journal of Experimental Medicine, 201, 793.PubMedCrossRef
154.
go back to reference Storz, P., & Toker, A. (2003). Protein kinase D mediates a stress-induced NF-kappaB activation and survival pathway. The EMBO Journal, 22, 109.PubMedCrossRef Storz, P., & Toker, A. (2003). Protein kinase D mediates a stress-induced NF-kappaB activation and survival pathway. The EMBO Journal, 22, 109.PubMedCrossRef
155.
go back to reference Storz, P., Doppler, H., & Toker, A. (2005). Protein kinase D mediates mitochondrion-to-nucleus signaling and detoxification from mitochondrial reactive oxygen species. Molecular and Cellular Biology, 25, 8520.PubMedCrossRef Storz, P., Doppler, H., & Toker, A. (2005). Protein kinase D mediates mitochondrion-to-nucleus signaling and detoxification from mitochondrial reactive oxygen species. Molecular and Cellular Biology, 25, 8520.PubMedCrossRef
156.
go back to reference Avkiran, M., Rowland, A. J., Cuello, F., & Haworth, R. S. (2008). Protein kinase d in the cardiovascular system: Emerging roles in health and disease. Circulation Research, 102, 157.PubMedCrossRef Avkiran, M., Rowland, A. J., Cuello, F., & Haworth, R. S. (2008). Protein kinase d in the cardiovascular system: Emerging roles in health and disease. Circulation Research, 102, 157.PubMedCrossRef
157.
go back to reference Yuan, J., Slice, L. W., & Rozengurt, E. (2001). Activation of protein kinase D by signaling through Rho and the α subunit of the heterotrimeric G protein G13. The Journal of Biological Chemistry, 276, 38619.PubMedCrossRef Yuan, J., Slice, L. W., & Rozengurt, E. (2001). Activation of protein kinase D by signaling through Rho and the α subunit of the heterotrimeric G protein G13. The Journal of Biological Chemistry, 276, 38619.PubMedCrossRef
158.
go back to reference Cowell, C. F., Yan, I. K., Eiseler, T., Leightner, A. C., Doppler, H., & Storz, P. (2009). Loss of cell-cell contacts induces NF-kappaB via RhoA-mediated activation of protein kinase D1. Journal of Cellular Biochemistry, 106, 714.PubMedCrossRef Cowell, C. F., Yan, I. K., Eiseler, T., Leightner, A. C., Doppler, H., & Storz, P. (2009). Loss of cell-cell contacts induces NF-kappaB via RhoA-mediated activation of protein kinase D1. Journal of Cellular Biochemistry, 106, 714.PubMedCrossRef
159.
go back to reference Song, J., Li, J., Lulla, A., Evers, B. M., & Chung, D. H. (2006). Protein kinase D protects against oxidative stress-induced intestinal epithelial cell injury via Rho/ROK/PKC-δ pathway activation. American Journal of Physiology. Cell Physiology, 290, C1469.PubMedCrossRef Song, J., Li, J., Lulla, A., Evers, B. M., & Chung, D. H. (2006). Protein kinase D protects against oxidative stress-induced intestinal epithelial cell injury via Rho/ROK/PKC-δ pathway activation. American Journal of Physiology. Cell Physiology, 290, C1469.PubMedCrossRef
160.
go back to reference Laudanna, C., Campbell, J. J., & Butcher, E. C. (1996). Role of Rho in chemoattractant-activated leukocyte adhesion through integrins. Science, 271, 981.PubMedCrossRef Laudanna, C., Campbell, J. J., & Butcher, E. C. (1996). Role of Rho in chemoattractant-activated leukocyte adhesion through integrins. Science, 271, 981.PubMedCrossRef
161.
go back to reference Kaibuchi, K., Kuroda, S., & Amano, M. (1999). Regulation of the cytoskeleton and cell adhesion by the Rho family GTPases in mammalian cells. Annual Review of Biochemistry, 68, 459.PubMedCrossRef Kaibuchi, K., Kuroda, S., & Amano, M. (1999). Regulation of the cytoskeleton and cell adhesion by the Rho family GTPases in mammalian cells. Annual Review of Biochemistry, 68, 459.PubMedCrossRef
162.
go back to reference Seasholtz, T. M., Majumdar, M., Kaplan, D. D., & Brown, J. H. (1999). Rho and Rho kinase mediate thrombin-stimulated vascular smooth muscle cell DNA synthesis and migration. Circulation Research, 84, 1186.PubMed Seasholtz, T. M., Majumdar, M., Kaplan, D. D., & Brown, J. H. (1999). Rho and Rho kinase mediate thrombin-stimulated vascular smooth muscle cell DNA synthesis and migration. Circulation Research, 84, 1186.PubMed
163.
go back to reference Schmitz, A. A., Govek, E. E., Bottner, B., & Van Aelst, L. (2000). Rho GTPases: Signaling, migration, and invasion. Experimental Cell Research, 261, 1.PubMedCrossRef Schmitz, A. A., Govek, E. E., Bottner, B., & Van Aelst, L. (2000). Rho GTPases: Signaling, migration, and invasion. Experimental Cell Research, 261, 1.PubMedCrossRef
164.
go back to reference Ridley, A. J. (2001). Rho GTPases and cell migration. Journal of Cell Science, 114, 2713.PubMed Ridley, A. J. (2001). Rho GTPases and cell migration. Journal of Cell Science, 114, 2713.PubMed
165.
167.
go back to reference Raftopoulou, M., & Hall, A. (2004). Cell migration: Rho GTPases lead the way. Developmental Biology, 265, 23.PubMedCrossRef Raftopoulou, M., & Hall, A. (2004). Cell migration: Rho GTPases lead the way. Developmental Biology, 265, 23.PubMedCrossRef
168.
go back to reference Jaffe, A. B., & Hall, A. (2005). Rho GTPases: Biochemistry and biology. Annual Review of Cell and Developmental Biology, 21, 247.PubMedCrossRef Jaffe, A. B., & Hall, A. (2005). Rho GTPases: Biochemistry and biology. Annual Review of Cell and Developmental Biology, 21, 247.PubMedCrossRef
169.
go back to reference Yamaguchi, H., & Condeelis, J. (2007). Regulation of the actin cytoskeleton in cancer cell migration and invasion. Biochimica et Biophysica Acta, 1773, 642.PubMed Yamaguchi, H., & Condeelis, J. (2007). Regulation of the actin cytoskeleton in cancer cell migration and invasion. Biochimica et Biophysica Acta, 1773, 642.PubMed
170.
go back to reference Hill, C. S., Wynne, J., & Treisman, R. (1995). The Rho family GTPases RhoA, Rac1, and CDC42Hs regulate transcriptional activation by SRF. Cell, 81, 1159.PubMedCrossRef Hill, C. S., Wynne, J., & Treisman, R. (1995). The Rho family GTPases RhoA, Rac1, and CDC42Hs regulate transcriptional activation by SRF. Cell, 81, 1159.PubMedCrossRef
171.
go back to reference Gauthier-Rouviere, C., Cavadore, J. C., Blanchard, J. M., Lamb, N. J., & Fernandez, A. (1991). p67SRF is a constitutive nuclear protein implicated in the modulation of genes required throughout the G1 period. Cell Regulation, 2, 575.PubMed Gauthier-Rouviere, C., Cavadore, J. C., Blanchard, J. M., Lamb, N. J., & Fernandez, A. (1991). p67SRF is a constitutive nuclear protein implicated in the modulation of genes required throughout the G1 period. Cell Regulation, 2, 575.PubMed
172.
go back to reference Hill, C. S., & Treisman, R. (1995). Transcriptional regulation by extracellular signals: mechanisms and specificity. Cell, 80, 199.PubMedCrossRef Hill, C. S., & Treisman, R. (1995). Transcriptional regulation by extracellular signals: mechanisms and specificity. Cell, 80, 199.PubMedCrossRef
173.
go back to reference Bence, K., Ma, W., Kozasa, T., & Huang, X.-Y. (1997). Direct stimulation of Bruton's tyrosine kinase by Gq-protein α-subunit. Nature, 389, 296.PubMedCrossRef Bence, K., Ma, W., Kozasa, T., & Huang, X.-Y. (1997). Direct stimulation of Bruton's tyrosine kinase by Gq-protein α-subunit. Nature, 389, 296.PubMedCrossRef
174.
go back to reference Fromm, C., Coso, O. A., Montaner, S., Xu, N., & Gutkind, J. S. (1997). The small GTP-binding protein Rho links G protein-coupled receptors and Gα12 to the serum response element and to cellular transformation. Proceedings of the National Academy of Sciences of the United States of America, 91, 10098.CrossRef Fromm, C., Coso, O. A., Montaner, S., Xu, N., & Gutkind, J. S. (1997). The small GTP-binding protein Rho links G protein-coupled receptors and Gα12 to the serum response element and to cellular transformation. Proceedings of the National Academy of Sciences of the United States of America, 91, 10098.CrossRef
175.
go back to reference Shore, P., & Sharrocks, A. D. (1995). The MADS-box family of transcription factors. European Journal of Biochemistry, 229, 1.PubMedCrossRef Shore, P., & Sharrocks, A. D. (1995). The MADS-box family of transcription factors. European Journal of Biochemistry, 229, 1.PubMedCrossRef
176.
go back to reference Treisman, R. (1994). Ternary complex factors: Growth factor regulated transcriptional activators. Current Opinion in Genetics & Development, 4, 96.CrossRef Treisman, R. (1994). Ternary complex factors: Growth factor regulated transcriptional activators. Current Opinion in Genetics & Development, 4, 96.CrossRef
177.
go back to reference Cen, B., Selvaraj, A., Burgess, R. C., Hitzler, J. K., Ma, Z., Morris, S. W., et al. (2003). Megakaryoblastic leukemia 1, a potent transcriptional coactivator for serum response factor (SRF), is required for serum induction of SRF target genes. Molecular and Cellular Biology, 23, 6597.PubMedCrossRef Cen, B., Selvaraj, A., Burgess, R. C., Hitzler, J. K., Ma, Z., Morris, S. W., et al. (2003). Megakaryoblastic leukemia 1, a potent transcriptional coactivator for serum response factor (SRF), is required for serum induction of SRF target genes. Molecular and Cellular Biology, 23, 6597.PubMedCrossRef
178.
go back to reference Cen, B., Selvaraj, A., & Prywes, R. (2004). Myocardin/MKL family of SRF coactivators: Key regulators of immediate early and muscle specific gene expression. Journal of Cellular Biochemistry, 93, 74.PubMedCrossRef Cen, B., Selvaraj, A., & Prywes, R. (2004). Myocardin/MKL family of SRF coactivators: Key regulators of immediate early and muscle specific gene expression. Journal of Cellular Biochemistry, 93, 74.PubMedCrossRef
179.
go back to reference Posern, G., & Treisman, R. (2006). Actin' together: Serum response factor, its cofactors and the link to signal transduction. Trends in Cell Biology, 16, 588.PubMedCrossRef Posern, G., & Treisman, R. (2006). Actin' together: Serum response factor, its cofactors and the link to signal transduction. Trends in Cell Biology, 16, 588.PubMedCrossRef
180.
go back to reference Johansen, F. E., & Prywes, R. (1995). Serum response factor: Transcriptional regulation of genes induced by growth factors and differentiation. Biochimica et Biophysica Acta, 1242, 1.PubMed Johansen, F. E., & Prywes, R. (1995). Serum response factor: Transcriptional regulation of genes induced by growth factors and differentiation. Biochimica et Biophysica Acta, 1242, 1.PubMed
181.
go back to reference Ueyama, T., Sakoda, T., Kawashima, S., Hiraoka, E., Hirata, K., Akita, H., et al. (1997). Activated RhoA stimulates c-fos gene expression in myocardial cells. Circulation Research, 81, 672.PubMed Ueyama, T., Sakoda, T., Kawashima, S., Hiraoka, E., Hirata, K., Akita, H., et al. (1997). Activated RhoA stimulates c-fos gene expression in myocardial cells. Circulation Research, 81, 672.PubMed
182.
go back to reference Morissette, M. R., Sah, V. P., Glembotski, C. C., & Brown, J. H. (2000). The Rho effector, PKN, regulates ANF gene transcription in cardiomyocutes through a serum response element. The American Journal of Physiology, 278, H1769. Morissette, M. R., Sah, V. P., Glembotski, C. C., & Brown, J. H. (2000). The Rho effector, PKN, regulates ANF gene transcription in cardiomyocutes through a serum response element. The American Journal of Physiology, 278, H1769.
183.
go back to reference Wang, D. Z., Li, S., Hockemeyer, D., Sutherland, L., Wang, Z., Schratt, G., et al. (2002). Potentiation of serum response factor activity by a family of myocardin-related transcription factors. Proceedings of the National Academy of Sciences of the United States of America, 99, 14855.PubMedCrossRef Wang, D. Z., Li, S., Hockemeyer, D., Sutherland, L., Wang, Z., Schratt, G., et al. (2002). Potentiation of serum response factor activity by a family of myocardin-related transcription factors. Proceedings of the National Academy of Sciences of the United States of America, 99, 14855.PubMedCrossRef
184.
go back to reference Parmacek, M. S. (2007). Myocardin-related transcription factors: Critical coactivators regulating cardiovascular development and adaptation. Circulation Research, 100, 633.PubMedCrossRef Parmacek, M. S. (2007). Myocardin-related transcription factors: Critical coactivators regulating cardiovascular development and adaptation. Circulation Research, 100, 633.PubMedCrossRef
185.
go back to reference Sotiropoulos, A., Gineitis, D., Copeland, J., & Treisman, R. (1999). Signal-regulated activation of serum response factor is mediated by changes in actin dynamics. Cell, 98, 159.PubMedCrossRef Sotiropoulos, A., Gineitis, D., Copeland, J., & Treisman, R. (1999). Signal-regulated activation of serum response factor is mediated by changes in actin dynamics. Cell, 98, 159.PubMedCrossRef
186.
go back to reference Wang, D., Chang, P. S., Wang, Z., Sutherland, L., Richardson, J. A., Small, E., et al. (2001). Activation of cardiac gene expression by myocardin, a transcriptional cofactor for serum response factor. Cell, 105, 851.PubMedCrossRef Wang, D., Chang, P. S., Wang, Z., Sutherland, L., Richardson, J. A., Small, E., et al. (2001). Activation of cardiac gene expression by myocardin, a transcriptional cofactor for serum response factor. Cell, 105, 851.PubMedCrossRef
187.
go back to reference Wang, Z., Wang, D. Z., Pipes, G. C., & Olson, E. N. (2003). Myocardin is a master regulator of smooth muscle gene expression. Proceedings of the National Academy of Sciences of the United States of America, 100, 7129.PubMedCrossRef Wang, Z., Wang, D. Z., Pipes, G. C., & Olson, E. N. (2003). Myocardin is a master regulator of smooth muscle gene expression. Proceedings of the National Academy of Sciences of the United States of America, 100, 7129.PubMedCrossRef
188.
go back to reference Miralles, F., Posern, G., Zaromytidou, A. I., & Treisman, R. (2003). Actin dynamics control SRF activity by regulation of its coactivator MAL. Cell, 113, 329.PubMedCrossRef Miralles, F., Posern, G., Zaromytidou, A. I., & Treisman, R. (2003). Actin dynamics control SRF activity by regulation of its coactivator MAL. Cell, 113, 329.PubMedCrossRef
189.
go back to reference Lockman, K., Hinson, J. S., Medlin, M. D., Morris, D., Taylor, J. M., & Mack, C. P. (2004). Sphingosine 1-phosphate stimulates smooth muscle cell differentiation and proliferation by activating separate serum response factor co-factors. The Journal of Biological Chemistry, 279, 42422.PubMedCrossRef Lockman, K., Hinson, J. S., Medlin, M. D., Morris, D., Taylor, J. M., & Mack, C. P. (2004). Sphingosine 1-phosphate stimulates smooth muscle cell differentiation and proliferation by activating separate serum response factor co-factors. The Journal of Biological Chemistry, 279, 42422.PubMedCrossRef
190.
go back to reference Geneste, O., Copeland, J. W., & Treisman, R. (2002). LIM kinase and Diaphanous cooperate to regulate serum response factor and actin dynamics. The Journal of Cell Biology, 157, 831.PubMedCrossRef Geneste, O., Copeland, J. W., & Treisman, R. (2002). LIM kinase and Diaphanous cooperate to regulate serum response factor and actin dynamics. The Journal of Cell Biology, 157, 831.PubMedCrossRef
191.
go back to reference Muehlich, S., Wang, R., Lee, S. M., Lewis, T. C., Dai, C., & Prywes, R. (2008). Serum-induced phosphorylation of the serum response factor coactivator MKL1 by the extracellular signal-regulated kinase 1/2 pathway inhibits its nuclear localization. Molecular and Cellular Biology, 28, 6302.PubMedCrossRef Muehlich, S., Wang, R., Lee, S. M., Lewis, T. C., Dai, C., & Prywes, R. (2008). Serum-induced phosphorylation of the serum response factor coactivator MKL1 by the extracellular signal-regulated kinase 1/2 pathway inhibits its nuclear localization. Molecular and Cellular Biology, 28, 6302.PubMedCrossRef
192.
go back to reference Vartiainen, M. K., Guettler, S., Larijani, B., & Treisman, R. (2007). Nuclear actin regulates dynamic subcellular localization and activity of the SRF cofactor MAL. Science, 316, 1749.PubMedCrossRef Vartiainen, M. K., Guettler, S., Larijani, B., & Treisman, R. (2007). Nuclear actin regulates dynamic subcellular localization and activity of the SRF cofactor MAL. Science, 316, 1749.PubMedCrossRef
193.
go back to reference Arsenian, S., Weinhold, B., Oelgeschlager, M., Ruther, U., & Nordheim, A. (1998). Serum response factor is essential for mesoderm formation during mouse embryogenesis. The EMBO Journal, 17, 6289.PubMedCrossRef Arsenian, S., Weinhold, B., Oelgeschlager, M., Ruther, U., & Nordheim, A. (1998). Serum response factor is essential for mesoderm formation during mouse embryogenesis. The EMBO Journal, 17, 6289.PubMedCrossRef
194.
go back to reference Du, K. L., Chen, M., Li, J., Lepore, J. J., Mericko, P., & Parmacek, M. S. (2004). Megakaryoblastic leukemia factor-1 transduces cytoskeletal signals and induces smooth muscle cell differentiation from undifferentiated embryonic stem cells. The Journal of Biological Chemistry, 279, 17578.PubMedCrossRef Du, K. L., Chen, M., Li, J., Lepore, J. J., Mericko, P., & Parmacek, M. S. (2004). Megakaryoblastic leukemia factor-1 transduces cytoskeletal signals and induces smooth muscle cell differentiation from undifferentiated embryonic stem cells. The Journal of Biological Chemistry, 279, 17578.PubMedCrossRef
195.
go back to reference Selvaraj, A., & Prywes, R. (2004). Expression profiling of serum inducible genes identifies a subset of SRF target genes that are MKL dependent. BMC Molecular Biology, 5, 13.PubMedCrossRef Selvaraj, A., & Prywes, R. (2004). Expression profiling of serum inducible genes identifies a subset of SRF target genes that are MKL dependent. BMC Molecular Biology, 5, 13.PubMedCrossRef
196.
197.
go back to reference Leask, A., & Abraham, D. J. (2006). All in the CCN family: essential matricellular signaling modulators emerge from the bunker. Journal of Cell Science, 119, 4803.PubMedCrossRef Leask, A., & Abraham, D. J. (2006). All in the CCN family: essential matricellular signaling modulators emerge from the bunker. Journal of Cell Science, 119, 4803.PubMedCrossRef
198.
go back to reference Chen, C. C., & Lau, L. F. (2008). Functions and mechanisms of action of CCN matricellular proteins. International Journal of Biochemistry & Cell Biology. Chen, C. C., & Lau, L. F. (2008). Functions and mechanisms of action of CCN matricellular proteins. International Journal of Biochemistry & Cell Biology.
199.
go back to reference Brigstock, D. R. (1999). The connective tissue growth factor/cysteine-rich 61/nephroblastoma overexpressed (CCN) family. Endocrine Reviews, 20, 189.PubMedCrossRef Brigstock, D. R. (1999). The connective tissue growth factor/cysteine-rich 61/nephroblastoma overexpressed (CCN) family. Endocrine Reviews, 20, 189.PubMedCrossRef
200.
go back to reference Yang, G. P., & Lau, L. F. (1991). Cyr61, product of a growth factor-inducible immediate early gene, is associated with the extracellular matrix and the cell surface. Cell Growth & Differentiation, 2, 351. Yang, G. P., & Lau, L. F. (1991). Cyr61, product of a growth factor-inducible immediate early gene, is associated with the extracellular matrix and the cell surface. Cell Growth & Differentiation, 2, 351.
201.
go back to reference O'Brien, T. P., Yang, G. P., Sanders, L., & Lau, L. F. (1990). Expression of cyr61, a growth factor-inducible immediate-early gene. Molecular and Cellular Biology, 10, 3569.PubMed O'Brien, T. P., Yang, G. P., Sanders, L., & Lau, L. F. (1990). Expression of cyr61, a growth factor-inducible immediate-early gene. Molecular and Cellular Biology, 10, 3569.PubMed
202.
go back to reference Kireeva, M. L., Mo, F. E., Yang, G. P., & Lau, L. F. (1996). Cyr61, a product of a growth factor-inducible immediate-early gene, promotes cell proliferation, migration, and adhesion. Molecular and Cellular Biology, 16, 1326.PubMed Kireeva, M. L., Mo, F. E., Yang, G. P., & Lau, L. F. (1996). Cyr61, a product of a growth factor-inducible immediate-early gene, promotes cell proliferation, migration, and adhesion. Molecular and Cellular Biology, 16, 1326.PubMed
203.
go back to reference Chen, Y., & Du, X. Y. (2007). Functional properties and intracellular signaling of CCN1/Cyr61. Journal of Cellular Biochemistry, 100, 1337.PubMedCrossRef Chen, Y., & Du, X. Y. (2007). Functional properties and intracellular signaling of CCN1/Cyr61. Journal of Cellular Biochemistry, 100, 1337.PubMedCrossRef
204.
go back to reference Walsh, C. T., Stupack, D., & Brown, J. H. (2008). G protein-coupled receptors go extracellular: RhoA integrates the integrins. Molecular Interventions, 8, 165.PubMedCrossRef Walsh, C. T., Stupack, D., & Brown, J. H. (2008). G protein-coupled receptors go extracellular: RhoA integrates the integrins. Molecular Interventions, 8, 165.PubMedCrossRef
205.
go back to reference Tamura, I., Rosenbloom, J., Macarak, E., & Chaqour, B. (2001). Regulation of Cyr61 gene expression by mechanical stretch through multiple signaling pathways. American Journal of Physiology. Cell Physiology, 281, C1524.PubMed Tamura, I., Rosenbloom, J., Macarak, E., & Chaqour, B. (2001). Regulation of Cyr61 gene expression by mechanical stretch through multiple signaling pathways. American Journal of Physiology. Cell Physiology, 281, C1524.PubMed
206.
go back to reference Chaqour, B., & Goppelt-Struebe, M. (2006). Mechanical regulation of the Cyr61/CCN1 and CTGF/CCN2 proteins. The FEBS Journal, 273, 3639.PubMedCrossRef Chaqour, B., & Goppelt-Struebe, M. (2006). Mechanical regulation of the Cyr61/CCN1 and CTGF/CCN2 proteins. The FEBS Journal, 273, 3639.PubMedCrossRef
207.
go back to reference Yang, R., Amir, J., Liu, H., & Chaqour, B. (2008). Mechanical strain activates a program of genes functionally involved in paracrine signaling of angiogenesis. Physiological Genomics, 36, 1.PubMedCrossRef Yang, R., Amir, J., Liu, H., & Chaqour, B. (2008). Mechanical strain activates a program of genes functionally involved in paracrine signaling of angiogenesis. Physiological Genomics, 36, 1.PubMedCrossRef
208.
go back to reference Hanna, M., Liu, H., Amir, J., Sun, Y., Morris, S. W., Siddiqui, M., et al. (2009). Mechanical regulation of the proangiogenic factor CCN1/CYR61 gene requires the combined activities of the myocardin-related transcription factor (MRTF)-A and CREB binding protein (CBP) histone acetyl transferase. The Journal of Biological Chemistry, 284, 23125.PubMedCrossRef Hanna, M., Liu, H., Amir, J., Sun, Y., Morris, S. W., Siddiqui, M., et al. (2009). Mechanical regulation of the proangiogenic factor CCN1/CYR61 gene requires the combined activities of the myocardin-related transcription factor (MRTF)-A and CREB binding protein (CBP) histone acetyl transferase. The Journal of Biological Chemistry, 284, 23125.PubMedCrossRef
209.
go back to reference Gabrielsen, A., Lawler, P. R., Yongzhong, W., Steinbruchel, D., Blagoja, D., Paulsson-Berne, G., et al. (2007). Gene expression signals involved in ischemic injury, extracellular matrix composition and fibrosis defined by global mRNA profiling of the human left ventricular myocardium. Journal of Molecular and Cellular Cardiology, 42, 870.PubMedCrossRef Gabrielsen, A., Lawler, P. R., Yongzhong, W., Steinbruchel, D., Blagoja, D., Paulsson-Berne, G., et al. (2007). Gene expression signals involved in ischemic injury, extracellular matrix composition and fibrosis defined by global mRNA profiling of the human left ventricular myocardium. Journal of Molecular and Cellular Cardiology, 42, 870.PubMedCrossRef
210.
go back to reference Wittchen, F., Suckau, L., Witt, H., Skurk, C., Lassner, D., Fechner, H., et al. (2007). Genomic expression profiling of human inflammatory cardiomyopathy (DCMi) suggests novel therapeutic targets. Journal of Molecular Medicine, 85, 257.PubMedCrossRef Wittchen, F., Suckau, L., Witt, H., Skurk, C., Lassner, D., Fechner, H., et al. (2007). Genomic expression profiling of human inflammatory cardiomyopathy (DCMi) suggests novel therapeutic targets. Journal of Molecular Medicine, 85, 257.PubMedCrossRef
211.
go back to reference Hilfiker-Kleiner, D., Kaminski, K., Kaminska, A., Fuchs, M., Klein, G., Podewski, E., et al. (2004). Regulation of proangiogenic factor CCN1 in cardiac muscle: impact of ischemia, pressure overload, and neurohumoral activation. Circulation, 109, 2227.PubMedCrossRef Hilfiker-Kleiner, D., Kaminski, K., Kaminska, A., Fuchs, M., Klein, G., Podewski, E., et al. (2004). Regulation of proangiogenic factor CCN1 in cardiac muscle: impact of ischemia, pressure overload, and neurohumoral activation. Circulation, 109, 2227.PubMedCrossRef
212.
go back to reference Han, J. S., Macarak, E., Rosenbloom, J., Chung, K. C., & Chaqour, B. (2003). Regulation of Cyr61/CCN1 gene expression through RhoA GTPase and p38MAPK signaling pathways. European Journal of Biochemistry, 270, 3408.PubMedCrossRef Han, J. S., Macarak, E., Rosenbloom, J., Chung, K. C., & Chaqour, B. (2003). Regulation of Cyr61/CCN1 gene expression through RhoA GTPase and p38MAPK signaling pathways. European Journal of Biochemistry, 270, 3408.PubMedCrossRef
213.
go back to reference Young, N., & Van, B., Jr. (2007). Roles of sphingosine-1-phosphate (S1P) receptors in malignant behavior of glioma cells. Differential effects of S1P2 on cell migration and invasiveness. Experimental Cell Research, 313, 1615.PubMedCrossRef Young, N., & Van, B., Jr. (2007). Roles of sphingosine-1-phosphate (S1P) receptors in malignant behavior of glioma cells. Differential effects of S1P2 on cell migration and invasiveness. Experimental Cell Research, 313, 1615.PubMedCrossRef
214.
go back to reference Yoshida, Y., Togi, K., Matsumae, H., Nakashima, Y., Kojima, Y., Yamamoto, H., et al. (2007). CCN1 protects cardiac myocytes from oxidative stress via β1 integrin-Akt pathway. Biochemical and Biophysical Research Communications, 355, 611.PubMedCrossRef Yoshida, Y., Togi, K., Matsumae, H., Nakashima, Y., Kojima, Y., Yamamoto, H., et al. (2007). CCN1 protects cardiac myocytes from oxidative stress via β1 integrin-Akt pathway. Biochemical and Biophysical Research Communications, 355, 611.PubMedCrossRef
Metadata
Title
Revisited and Revised: Is RhoA Always a Villain in Cardiac Pathophysiology?
Authors
Shigeki Miyamoto
Dominic P. Del Re
Sunny Y. Xiang
Xia Zhao
Geir Florholmen
Joan Heller Brown
Publication date
01-08-2010
Publisher
Springer US
Published in
Journal of Cardiovascular Translational Research / Issue 4/2010
Print ISSN: 1937-5387
Electronic ISSN: 1937-5395
DOI
https://doi.org/10.1007/s12265-010-9192-8

Other articles of this Issue 4/2010

Journal of Cardiovascular Translational Research 4/2010 Go to the issue