Skip to main content
Top
Published in: Annals of Nuclear Medicine 10/2022

20-07-2022 | Original Article

The feasibility of ultralow-activity 18F-FDG dynamic PET imaging in lung adenocarcinoma patients through total-body PET/CT scanner

Authors: Jing Lv, Hongyan Yin, Haojun Yu, Guobing Liu, Hongcheng Shi

Published in: Annals of Nuclear Medicine | Issue 10/2022

Login to get access

Abstract

Objective

To explore the feasibility of ultralow-activity 18F-FDG total-body dynamic PET imaging for clinical practice in patients with lung adenocarcinoma.

Methods

Eight of 18 patients were randomly injected with 18F-FDG with full activity (3.7 MBq/kg) for total-body dynamic PET imaging, while 10 received one-tenth activity (0.37 MBq/kg). The generated time-to-activity curves (TACs) according to the regions of interest (ROIs) were processed by PMOD through standard FDG two-tissue compartment model fitting. The kinetic constant rates (K1, K2, K3, and Ki), radiation dose, prompt counts, and data storage size were analysed between the full- and ultralow-activity groups. The SUVmax-Tumour/SUVmax-Liver and SUVmax-Tumour/SUVmax-Muscle on static PET images were also assessed.

Results

Each of the fitted models has a satisfactory goodness-of-fit with R2 greater than 0.9 except 3 (3/234) in ultralow-activity group, where one in pancreas (R2 = 0.851), another one in muscle (R2 = 0.868), and the third one in bone marrow (R2 = 0.895). All the fitted models in the full-activity group had a better goodness-of-fit than those in the ultralow-activity group. However, no significant differences were found in any of the kinetic metrics or image quality between the two groups except in the reduction of radiation dose and data storage size.

Conclusions

The 10 × reduction of injected 18F-FDG could achieve comparable kinetic metrics and T/N ratios by total-body dynamic PET imaging in lung adenocarcinoma patients. Ultralow-activity total-body PET imaging is feasible for clinical practice in oncological patients without obesity, especially in dynamic PET scanning.
Literature
1.
go back to reference Boellaard R, Delgado-Bolton R, Oyen WJ, et al. FDG PET/CT: EANM procedure guidelines for tumour imaging: version 2.0. Eur J Nucl Med Mol Imaging. 2015;42(2):328–54.PubMedCrossRef Boellaard R, Delgado-Bolton R, Oyen WJ, et al. FDG PET/CT: EANM procedure guidelines for tumour imaging: version 2.0. Eur J Nucl Med Mol Imaging. 2015;42(2):328–54.PubMedCrossRef
2.
go back to reference Fletcher JW, Djulbegovic B, Soares HP, et al. Recommendations on the use of 18F-FDG PET in oncology. J Nucl Med. 2008;49(3):480–508.PubMedCrossRef Fletcher JW, Djulbegovic B, Soares HP, et al. Recommendations on the use of 18F-FDG PET in oncology. J Nucl Med. 2008;49(3):480–508.PubMedCrossRef
3.
go back to reference Bosch KD, Chicklore S, Cook GJ, et al. Staging FDG PET-CT changes management in patients with gastric adenocarcinoma who are eligible for radical treatment. Eur J Nucl Med Mol Imaging. 2020;47(4):759–67.PubMedCrossRef Bosch KD, Chicklore S, Cook GJ, et al. Staging FDG PET-CT changes management in patients with gastric adenocarcinoma who are eligible for radical treatment. Eur J Nucl Med Mol Imaging. 2020;47(4):759–67.PubMedCrossRef
4.
go back to reference Broccoli A, Nanni C, Cappelli A, et al. Diagnostic accuracy of positron emission tomography/computed tomography-driven biopsy for the diagnosis of lymphoma. Eur J Nucl Med Mol Imaging. 2020;47(13):3058–65.PubMedPubMedCentralCrossRef Broccoli A, Nanni C, Cappelli A, et al. Diagnostic accuracy of positron emission tomography/computed tomography-driven biopsy for the diagnosis of lymphoma. Eur J Nucl Med Mol Imaging. 2020;47(13):3058–65.PubMedPubMedCentralCrossRef
5.
go back to reference Alberts I, Hunermund JN, Prenosil G, et al. Clinical performance of long axial field of view PET/CT: a head-to-head intra-individual comparison of the biograph vision quadra with the biograph vision PET/CT. Eur J Nucl Med Mol Imaging. 2021;48(8):2395–404.PubMedPubMedCentralCrossRef Alberts I, Hunermund JN, Prenosil G, et al. Clinical performance of long axial field of view PET/CT: a head-to-head intra-individual comparison of the biograph vision quadra with the biograph vision PET/CT. Eur J Nucl Med Mol Imaging. 2021;48(8):2395–404.PubMedPubMedCentralCrossRef
6.
go back to reference Viswanath V, Daube Witherspoon ME, Karp JS, et al. Numerical observer study of lesion detectability for a long axial field-of-view whole-body PET imager using the PennPET explorer. Phys Med Biol. 2020;65(3): 035002.PubMedPubMedCentralCrossRef Viswanath V, Daube Witherspoon ME, Karp JS, et al. Numerical observer study of lesion detectability for a long axial field-of-view whole-body PET imager using the PennPET explorer. Phys Med Biol. 2020;65(3): 035002.PubMedPubMedCentralCrossRef
7.
go back to reference Xiao J, Yu H, Sui X, et al. Can the BMI-based dose regimen be used to reduce injection activity and to obtain a constant image quality in oncological patients by (18)F-FDG total-body PET/CT imaging? Eur J Nucl Med Mol Imaging. 2021;49(1):269–78.PubMedCrossRef Xiao J, Yu H, Sui X, et al. Can the BMI-based dose regimen be used to reduce injection activity and to obtain a constant image quality in oncological patients by (18)F-FDG total-body PET/CT imaging? Eur J Nucl Med Mol Imaging. 2021;49(1):269–78.PubMedCrossRef
8.
go back to reference Hu P, Zhang Y, Yu H, et al. Total-body (18)F-FDG PET/CT scan in oncology patients: how fast could it be? Eur J Nucl Med Mol Imaging. 2021;48(8):2384–94.PubMedCrossRef Hu P, Zhang Y, Yu H, et al. Total-body (18)F-FDG PET/CT scan in oncology patients: how fast could it be? Eur J Nucl Med Mol Imaging. 2021;48(8):2384–94.PubMedCrossRef
9.
go back to reference Zhang Y, Hu P, Wu R, et al. The image quality, lesion detectability, and acquisition time of (18)F-FDG total-body PET/CT in oncological patients. Eur J Nucl Med Mol Imaging. 2020;47(11):2507–15.PubMedCrossRef Zhang Y, Hu P, Wu R, et al. The image quality, lesion detectability, and acquisition time of (18)F-FDG total-body PET/CT in oncological patients. Eur J Nucl Med Mol Imaging. 2020;47(11):2507–15.PubMedCrossRef
10.
go back to reference Cherry SR, Jones T, Karp JS, et al. Total-body PET: maximizing sensitivity to create new opportunities for clinical research and patient care. J Nucl Med. 2018;59(1):3–12.PubMedPubMedCentralCrossRef Cherry SR, Jones T, Karp JS, et al. Total-body PET: maximizing sensitivity to create new opportunities for clinical research and patient care. J Nucl Med. 2018;59(1):3–12.PubMedPubMedCentralCrossRef
11.
go back to reference Zhang X, Badawi RD, Cherry SR, et al. Theoretical study of the benefit of long axial field-of-view PET on region of interest quantification. Phys Med Biol. 2018;63(13):135010.PubMedPubMedCentralCrossRef Zhang X, Badawi RD, Cherry SR, et al. Theoretical study of the benefit of long axial field-of-view PET on region of interest quantification. Phys Med Biol. 2018;63(13):135010.PubMedPubMedCentralCrossRef
12.
13.
go back to reference Surti S, Karp JS. Impact of detector design on imaging performance of a long axial field-of-view, whole-body PET scanner. Phys Med Biol. 2015;60(13):5343–58.PubMedPubMedCentralCrossRef Surti S, Karp JS. Impact of detector design on imaging performance of a long axial field-of-view, whole-body PET scanner. Phys Med Biol. 2015;60(13):5343–58.PubMedPubMedCentralCrossRef
14.
go back to reference Tan H, Sui X, Yin H, et al. Total-body PET/CT using half-dose FDG and compared with conventional PET/CT using full-dose FDG in lung cancer. Eur J Nucl Med Mol Imaging. 2021;48(6):1966–75.PubMedCrossRef Tan H, Sui X, Yin H, et al. Total-body PET/CT using half-dose FDG and compared with conventional PET/CT using full-dose FDG in lung cancer. Eur J Nucl Med Mol Imaging. 2021;48(6):1966–75.PubMedCrossRef
15.
go back to reference Liu G, Hu P, Yu H, et al. Ultra-low-activity total-body dynamic PET imaging allows equal performance to full-activity PET imaging for investigating kinetic metrics of (18)F-FDG in healthy volunteers. Eur J Nucl Med Mol Imaging. 2021;48(8):2373–83.PubMedCrossRef Liu G, Hu P, Yu H, et al. Ultra-low-activity total-body dynamic PET imaging allows equal performance to full-activity PET imaging for investigating kinetic metrics of (18)F-FDG in healthy volunteers. Eur J Nucl Med Mol Imaging. 2021;48(8):2373–83.PubMedCrossRef
17.
go back to reference Gupta N, Gill H, Graeber G, et al. Dynamic positron emission tomography with F-18 fluorodeoxyglucose imaging in differentiation of benign from malignant lung/mediastinal lesions. Chest. 1998;114(4):1105–11.PubMedCrossRef Gupta N, Gill H, Graeber G, et al. Dynamic positron emission tomography with F-18 fluorodeoxyglucose imaging in differentiation of benign from malignant lung/mediastinal lesions. Chest. 1998;114(4):1105–11.PubMedCrossRef
18.
go back to reference Yang M, Lin Z, Xu Z, et al. Influx rate constant of (18)F-FDG increases in metastatic lymph nodes of non-small cell lung cancer patients. Eur J Nucl Med Mol Imaging. 2020;47(5):1198–208.PubMedCrossRef Yang M, Lin Z, Xu Z, et al. Influx rate constant of (18)F-FDG increases in metastatic lymph nodes of non-small cell lung cancer patients. Eur J Nucl Med Mol Imaging. 2020;47(5):1198–208.PubMedCrossRef
19.
go back to reference Romer W, Hanauske AR, Ziegler S, et al. Positron emission tomography in non-Hodgkin’s lymphoma: assessment of chemotherapy with fluorodeoxyglucose. Blood. 1998;91(12):4464–71.PubMed Romer W, Hanauske AR, Ziegler S, et al. Positron emission tomography in non-Hodgkin’s lymphoma: assessment of chemotherapy with fluorodeoxyglucose. Blood. 1998;91(12):4464–71.PubMed
20.
go back to reference Wahl RL, Zasadny K, Helvie M, et al. Metabolic monitoring of breast cancer chemohormonotherapy using positron emission tomography: initial evaluation. J Clin Oncol. 1993;11(11):2101–11.PubMedCrossRef Wahl RL, Zasadny K, Helvie M, et al. Metabolic monitoring of breast cancer chemohormonotherapy using positron emission tomography: initial evaluation. J Clin Oncol. 1993;11(11):2101–11.PubMedCrossRef
22.
go back to reference Zhang X, Zhou J, Cherry SR, et al. Quantitative image reconstruction for total-body PET imaging using the 2-meter long EXPLORER scanner. Phys Med Biol. 2017;62(6):2465–85.PubMedPubMedCentralCrossRef Zhang X, Zhou J, Cherry SR, et al. Quantitative image reconstruction for total-body PET imaging using the 2-meter long EXPLORER scanner. Phys Med Biol. 2017;62(6):2465–85.PubMedPubMedCentralCrossRef
23.
go back to reference Liu G, Xu H, Hu P, et al. Kinetic metrics of (18)F-FDG in normal human organs identified by systematic dynamic total-body positron emission tomography. Eur J Nucl Med Mol Imaging. 2021;48(8):2363–72.PubMedCrossRef Liu G, Xu H, Hu P, et al. Kinetic metrics of (18)F-FDG in normal human organs identified by systematic dynamic total-body positron emission tomography. Eur J Nucl Med Mol Imaging. 2021;48(8):2363–72.PubMedCrossRef
24.
go back to reference Wahl LM, Asselin MC, Nahmias C. Regions of interest in the venous sinuses as input functions for quantitative PET. J Nucl Med. 1999;40(10):1666–75.PubMed Wahl LM, Asselin MC, Nahmias C. Regions of interest in the venous sinuses as input functions for quantitative PET. J Nucl Med. 1999;40(10):1666–75.PubMed
25.
go back to reference Akaihe H. A new look at the statistical model identification. IEEE Trans Automat Contr. 1974;19:716–23.CrossRef Akaihe H. A new look at the statistical model identification. IEEE Trans Automat Contr. 1974;19:716–23.CrossRef
26.
go back to reference Akaihe H. An information criterion (AIC). Math Sci. 1976;14:5–9. Akaihe H. An information criterion (AIC). Math Sci. 1976;14:5–9.
27.
go back to reference Schwarz G. Estimating the dimension of a model. Ann Stat. 1978;6(2):461–4.CrossRef Schwarz G. Estimating the dimension of a model. Ann Stat. 1978;6(2):461–4.CrossRef
28.
go back to reference de Geus-Oei LF, van Krieken JH, Aliredjo RP, et al. Biological correlates of FDG uptake in non-small cell lung cancer. Lung Cancer. 2007;55(1):79–87.PubMedCrossRef de Geus-Oei LF, van Krieken JH, Aliredjo RP, et al. Biological correlates of FDG uptake in non-small cell lung cancer. Lung Cancer. 2007;55(1):79–87.PubMedCrossRef
29.
go back to reference Kimura Y, Naganawa M, Shidahara M, et al. PET kinetic analysis –pitfalls and a solution for the Logan plot. Ann Nucl Med. 2007;21(1):1–8.PubMedCrossRef Kimura Y, Naganawa M, Shidahara M, et al. PET kinetic analysis –pitfalls and a solution for the Logan plot. Ann Nucl Med. 2007;21(1):1–8.PubMedCrossRef
30.
go back to reference Schaefferkoetter JD, Yan J, Townsend DW, et al. Initial assessment of image quality for low-dose PET: evaluation of lesion detectability. Phys Med Biol. 2015;60(14):5543–56.PubMedCrossRef Schaefferkoetter JD, Yan J, Townsend DW, et al. Initial assessment of image quality for low-dose PET: evaluation of lesion detectability. Phys Med Biol. 2015;60(14):5543–56.PubMedCrossRef
31.
go back to reference Wu Y, Feng T, Shen Y, et al. Total-body parametric imaging using the Patlak model: feasibility of reduced scan time. Med Phys. 2022;49(7):4529–39.PubMedCrossRef Wu Y, Feng T, Shen Y, et al. Total-body parametric imaging using the Patlak model: feasibility of reduced scan time. Med Phys. 2022;49(7):4529–39.PubMedCrossRef
Metadata
Title
The feasibility of ultralow-activity 18F-FDG dynamic PET imaging in lung adenocarcinoma patients through total-body PET/CT scanner
Authors
Jing Lv
Hongyan Yin
Haojun Yu
Guobing Liu
Hongcheng Shi
Publication date
20-07-2022
Publisher
Springer Nature Singapore
Published in
Annals of Nuclear Medicine / Issue 10/2022
Print ISSN: 0914-7187
Electronic ISSN: 1864-6433
DOI
https://doi.org/10.1007/s12149-022-01772-2

Other articles of this Issue 10/2022

Annals of Nuclear Medicine 10/2022 Go to the issue