Skip to main content
Top
Published in: Annals of Nuclear Medicine 2/2022

01-02-2022 | Molecular Imaging | Invited Review Article

Application of artificial intelligence in brain molecular imaging

Authors: Satoshi Minoshima, Donna Cross

Published in: Annals of Nuclear Medicine | Issue 2/2022

Login to get access

Abstract

Initial development of artificial Intelligence (AI) and machine learning (ML) dates back to the mid-twentieth century. A growing awareness of the potential for AI, as well as increases in computational resources, research, and investment are rapidly advancing AI applications to medical imaging and, specifically, brain molecular imaging. AI/ML can improve imaging operations and decision making, and potentially perform tasks that are not readily possible by physicians, such as predicting disease prognosis, and identifying latent relationships from multi-modal clinical information. The number of applications of image-based AI algorithms, such as convolutional neural network (CNN), is increasing rapidly. The applications for brain molecular imaging (MI) include image denoising, PET and PET/MRI attenuation correction, image segmentation and lesion detection, parametric image formation, and the detection/diagnosis of Alzheimer’s disease and other brain disorders. When effectively used, AI will likely improve the quality of patient care, instead of replacing radiologists. A regulatory framework is being developed to facilitate AI adaptation for medical imaging.
Literature
1.
go back to reference Rumelhart DE, Hinton GE, Williams RJ. Learning representations by back-propagating errors. Nature. 1986;323:533–6.CrossRef Rumelhart DE, Hinton GE, Williams RJ. Learning representations by back-propagating errors. Nature. 1986;323:533–6.CrossRef
2.
go back to reference Fukushima K. Neural network model for a mechanism of pattern recognition unaffected by shift in position—Neocognitron. Trans IEICE. 1979;J62:658–65. Fukushima K. Neural network model for a mechanism of pattern recognition unaffected by shift in position—Neocognitron. Trans IEICE. 1979;J62:658–65.
3.
go back to reference Kippenhan JS, Barker WW, Pascal S, Nagel J, Duara R. Evaluation of a neural-network classifier for PET scans of normal and Alzheimer’s disease subjects. J Nucl Med. 1992;33:1459–67.PubMed Kippenhan JS, Barker WW, Pascal S, Nagel J, Duara R. Evaluation of a neural-network classifier for PET scans of normal and Alzheimer’s disease subjects. J Nucl Med. 1992;33:1459–67.PubMed
4.
go back to reference Kippenhan JS, Barker WW, Nagel J, Grady C, Duara R. Neural-network classification of normal and Alzheimer’s disease subjects using high-resolution and low-resolution PET cameras [see comments]. J Nucl Med. 1994;35:7–15.PubMed Kippenhan JS, Barker WW, Nagel J, Grady C, Duara R. Neural-network classification of normal and Alzheimer’s disease subjects using high-resolution and low-resolution PET cameras [see comments]. J Nucl Med. 1994;35:7–15.PubMed
5.
go back to reference Lee JS, Lee DS, Kim SK, et al. Localization of epileptogenic zones in F-18 FDG brain PET of patients with temporal lobe epilepsy using artificial neural network. IEEE Trans Med Imaging. 2000;19:347–55.PubMedCrossRef Lee JS, Lee DS, Kim SK, et al. Localization of epileptogenic zones in F-18 FDG brain PET of patients with temporal lobe epilepsy using artificial neural network. IEEE Trans Med Imaging. 2000;19:347–55.PubMedCrossRef
7.
go back to reference LeCun Y, Boser B, Denker JS, et al. Backpropagation applied to handwritten zip code recognition. Neural Comput. 1989;1:541–51.CrossRef LeCun Y, Boser B, Denker JS, et al. Backpropagation applied to handwritten zip code recognition. Neural Comput. 1989;1:541–51.CrossRef
8.
go back to reference Kravitz DJ, Saleem KS, Baker CI, Ungerleider LG, Mishkin M. The ventral visual pathway: an expanded neural framework for the processing of object quality. Trends Cogn Sci. 2013;17:26–49.PubMedCrossRef Kravitz DJ, Saleem KS, Baker CI, Ungerleider LG, Mishkin M. The ventral visual pathway: an expanded neural framework for the processing of object quality. Trends Cogn Sci. 2013;17:26–49.PubMedCrossRef
9.
go back to reference Wang X, Zhou L, Wang Y, Jiang H, Ye H. Improved low-dose positron emission tomography image reconstruction using deep learned prior. Phys Med Biol. 2021;66:115001.CrossRef Wang X, Zhou L, Wang Y, Jiang H, Ye H. Improved low-dose positron emission tomography image reconstruction using deep learned prior. Phys Med Biol. 2021;66:115001.CrossRef
10.
go back to reference Spuhler K, Serrano-Sosa M, Cattell R, DeLorenzo C, Huang C. Full-count PET recovery from low-count image using a dilated convolutional neural network. Med Phys. 2020;47:4928–38.PubMedCrossRef Spuhler K, Serrano-Sosa M, Cattell R, DeLorenzo C, Huang C. Full-count PET recovery from low-count image using a dilated convolutional neural network. Med Phys. 2020;47:4928–38.PubMedCrossRef
11.
go back to reference Xiang L, Qiao Y, Nie D, An L, Wang Q, Shen D. Deep auto-context convolutional neural networks for standard-dose PET image estimation from low-dose PET/MRI. Neurocomputing. 2017;267:406–16.PubMedPubMedCentralCrossRef Xiang L, Qiao Y, Nie D, An L, Wang Q, Shen D. Deep auto-context convolutional neural networks for standard-dose PET image estimation from low-dose PET/MRI. Neurocomputing. 2017;267:406–16.PubMedPubMedCentralCrossRef
12.
go back to reference Hashimoto F, Ohba H, Ote K, Kakimoto A, Tsukada H, Ouchi Y. 4D deep image prior: dynamic PET image denoising using an unsupervised four-dimensional branch convolutional neural network. Phys Med Biol. 2021;66:015006.PubMedCrossRef Hashimoto F, Ohba H, Ote K, Kakimoto A, Tsukada H, Ouchi Y. 4D deep image prior: dynamic PET image denoising using an unsupervised four-dimensional branch convolutional neural network. Phys Med Biol. 2021;66:015006.PubMedCrossRef
13.
go back to reference Gong K, Guan J, Liu CC, Qi J. PET image denoising using a deep neural network through fine tuning. IEEE Trans Radiat Plasma Med Sci. 2019;3:153–61.PubMedCrossRef Gong K, Guan J, Liu CC, Qi J. PET image denoising using a deep neural network through fine tuning. IEEE Trans Radiat Plasma Med Sci. 2019;3:153–61.PubMedCrossRef
14.
go back to reference Kim K, Wu D, Gong K, et al. Penalized PET reconstruction using deep learning prior and local linear fitting. IEEE Trans Med Imaging. 2018;37:1478–87.PubMedPubMedCentralCrossRef Kim K, Wu D, Gong K, et al. Penalized PET reconstruction using deep learning prior and local linear fitting. IEEE Trans Med Imaging. 2018;37:1478–87.PubMedPubMedCentralCrossRef
15.
go back to reference Mehranian A, Reader AJ. Model-based deep learning PET image reconstruction using forward-backward splitting expectation-maximization. IEEE Trans Radiat Plasma Med Sci. 2020;5:54–64.PubMedPubMedCentralCrossRef Mehranian A, Reader AJ. Model-based deep learning PET image reconstruction using forward-backward splitting expectation-maximization. IEEE Trans Radiat Plasma Med Sci. 2020;5:54–64.PubMedPubMedCentralCrossRef
16.
go back to reference Liu CC, Huang HM. Partial-ring PET image restoration using a deep learning based method. Phys Med Biol. 2019;64:225014.PubMedCrossRef Liu CC, Huang HM. Partial-ring PET image restoration using a deep learning based method. Phys Med Biol. 2019;64:225014.PubMedCrossRef
17.
go back to reference Schramm G, Rigie D, Vahle T, et al. Approximating anatomically-guided PET reconstruction in image space using a convolutional neural network. Neuroimage. 2021;224:117399.PubMedCrossRef Schramm G, Rigie D, Vahle T, et al. Approximating anatomically-guided PET reconstruction in image space using a convolutional neural network. Neuroimage. 2021;224:117399.PubMedCrossRef
18.
go back to reference Xu J, Liu H. Three-dimensional convolutional neural networks for simultaneous dual-tracer PET imaging. Phys Med Biol. 2019;64:185016.PubMedCrossRef Xu J, Liu H. Three-dimensional convolutional neural networks for simultaneous dual-tracer PET imaging. Phys Med Biol. 2019;64:185016.PubMedCrossRef
19.
20.
go back to reference Hashimoto F, Ito M, Ote K, Isobe T, Okada H, Ouchi Y. Deep learning-based attenuation correction for brain PET with various radiotracers. Ann Nucl Med. 2021;35:691–701.PubMedCrossRef Hashimoto F, Ito M, Ote K, Isobe T, Okada H, Ouchi Y. Deep learning-based attenuation correction for brain PET with various radiotracers. Ann Nucl Med. 2021;35:691–701.PubMedCrossRef
21.
go back to reference Wang T, Lei Y, Fu Y, et al. Machine learning in quantitative PET: a review of attenuation correction and low-count image reconstruction methods. Phys Med. 2020;76:294–306.PubMedPubMedCentralCrossRef Wang T, Lei Y, Fu Y, et al. Machine learning in quantitative PET: a review of attenuation correction and low-count image reconstruction methods. Phys Med. 2020;76:294–306.PubMedPubMedCentralCrossRef
22.
go back to reference Arabi H, Bortolin K, Ginovart N, Garibotto V, Zaidi H. Deep learning-guided joint attenuation and scatter correction in multitracer neuroimaging studies. Hum Brain Mapp. 2020;41:3667–79.PubMedPubMedCentralCrossRef Arabi H, Bortolin K, Ginovart N, Garibotto V, Zaidi H. Deep learning-guided joint attenuation and scatter correction in multitracer neuroimaging studies. Hum Brain Mapp. 2020;41:3667–79.PubMedPubMedCentralCrossRef
23.
go back to reference Hwang D, Kang SK, Kim KY, et al. Generation of PET attenuation map for whole-body time-of-flight (18)F-FDG PET/MRI using a deep neural network trained with simultaneously reconstructed activity and attenuation maps. J Nucl Med. 2019;60:1183–9.PubMedPubMedCentralCrossRef Hwang D, Kang SK, Kim KY, et al. Generation of PET attenuation map for whole-body time-of-flight (18)F-FDG PET/MRI using a deep neural network trained with simultaneously reconstructed activity and attenuation maps. J Nucl Med. 2019;60:1183–9.PubMedPubMedCentralCrossRef
24.
go back to reference Hwang D, Kim KY, Kang SK, et al. Improving the accuracy of simultaneously reconstructed activity and attenuation maps using deep learning. J Nucl Med. 2018;59:1624–9.PubMedCrossRef Hwang D, Kim KY, Kang SK, et al. Improving the accuracy of simultaneously reconstructed activity and attenuation maps using deep learning. J Nucl Med. 2018;59:1624–9.PubMedCrossRef
25.
26.
go back to reference Gong K, Yang J, Larson PEZ, et al. MR-based attenuation correction for brain PET using 3D cycle-consistent adversarial network. IEEE Trans Radiat Plasma Med Sci. 2021;5:185–92.PubMedCrossRef Gong K, Yang J, Larson PEZ, et al. MR-based attenuation correction for brain PET using 3D cycle-consistent adversarial network. IEEE Trans Radiat Plasma Med Sci. 2021;5:185–92.PubMedCrossRef
27.
go back to reference Gong K, Han PK, Johnson KA, El Fakhri G, Ma C, Li Q. Attenuation correction using deep Learning and integrated UTE/multi-echo Dixon sequence: evaluation in amyloid and tau PET imaging. Eur J Nucl Med Mol Imaging. 2021;48:1351–61.PubMedCrossRef Gong K, Han PK, Johnson KA, El Fakhri G, Ma C, Li Q. Attenuation correction using deep Learning and integrated UTE/multi-echo Dixon sequence: evaluation in amyloid and tau PET imaging. Eur J Nucl Med Mol Imaging. 2021;48:1351–61.PubMedCrossRef
28.
29.
go back to reference Ladefoged CN, Hansen AE, Henriksen OM, et al. AI-driven attenuation correction for brain PET/MRI: clinical evaluation of a dementia cohort and importance of the training group size. Neuroimage. 2020;222:117221.PubMedCrossRef Ladefoged CN, Hansen AE, Henriksen OM, et al. AI-driven attenuation correction for brain PET/MRI: clinical evaluation of a dementia cohort and importance of the training group size. Neuroimage. 2020;222:117221.PubMedCrossRef
30.
go back to reference Blanc-Durand P, Khalife M, Sgard B, et al. Attenuation correction using 3D deep convolutional neural network for brain 18F-FDG PET/MR: comparison with Atlas, ZTE and CT based attenuation correction. PLoS One. 2019;14:e0223141.PubMedPubMedCentralCrossRef Blanc-Durand P, Khalife M, Sgard B, et al. Attenuation correction using 3D deep convolutional neural network for brain 18F-FDG PET/MR: comparison with Atlas, ZTE and CT based attenuation correction. PLoS One. 2019;14:e0223141.PubMedPubMedCentralCrossRef
31.
go back to reference Jang H, Liu F, Zhao G, Bradshaw T, McMillan AB. Technical Note: Deep learning based MRAC using rapid ultrashort echo time imaging [published online ahead of print, 2018 May 15]. Med Phys. 2018;10.1002/mp.12964. https://doi.org/10.1002/mp.12964 Jang H, Liu F, Zhao G, Bradshaw T, McMillan AB. Technical Note: Deep learning based MRAC using rapid ultrashort echo time imaging [published online ahead of print, 2018 May 15]. Med Phys. 2018;10.1002/mp.12964. https://​doi.​org/​10.​1002/​mp.​12964
32.
go back to reference Han X. MR-based synthetic CT generation using a deep convolutional neural network method. Med Phys. 2017;44:1408–19.PubMedCrossRef Han X. MR-based synthetic CT generation using a deep convolutional neural network method. Med Phys. 2017;44:1408–19.PubMedCrossRef
33.
go back to reference Lee S, Jung JH, Kim D, et al. PET/CT for brain amyloid: a feasibility study for scan time reduction by deep learning. Clin Nucl Med. 2021;46:e133–40.PubMedCrossRef Lee S, Jung JH, Kim D, et al. PET/CT for brain amyloid: a feasibility study for scan time reduction by deep learning. Clin Nucl Med. 2021;46:e133–40.PubMedCrossRef
34.
go back to reference Xie N, Gong K, Guo N, et al. Rapid high-quality PET Patlak parametric image generation based on direct reconstruction and temporal nonlocal neural network. Neuroimage. 2021;240:118380.PubMedCrossRef Xie N, Gong K, Guo N, et al. Rapid high-quality PET Patlak parametric image generation based on direct reconstruction and temporal nonlocal neural network. Neuroimage. 2021;240:118380.PubMedCrossRef
35.
go back to reference Matsubara K, Ibaraki M, Shinohara Y, Takahashi N, Toyoshima H, Kinoshita T. Prediction of an oxygen extraction fraction map by convolutional neural network: validation of input data among MR and PET images. International Journal of Computer Assisted Radiology and Surgery 2021;16:1865–1874 Matsubara K, Ibaraki M, Shinohara Y, Takahashi N, Toyoshima H, Kinoshita T. Prediction of an oxygen extraction fraction map by convolutional neural network: validation of input data among MR and PET images. International Journal of Computer Assisted Radiology and Surgery 2021;16:1865–1874
36.
go back to reference Liu H, Nai YH, Saridin F, et al. Improved amyloid burden quantification with nonspecific estimates using deep learning. Eur J Nucl Med Mol Imaging. 2021;48:1842–53.PubMedPubMedCentralCrossRef Liu H, Nai YH, Saridin F, et al. Improved amyloid burden quantification with nonspecific estimates using deep learning. Eur J Nucl Med Mol Imaging. 2021;48:1842–53.PubMedPubMedCentralCrossRef
37.
go back to reference Gao Y, Li Z, Song C, et al. Automatic rat brain image segmentation using triple cascaded convolutional neural networks in a clinical PET/MR. Phys Med Biol. 2021;66:04NT01.PubMedCrossRef Gao Y, Li Z, Song C, et al. Automatic rat brain image segmentation using triple cascaded convolutional neural networks in a clinical PET/MR. Phys Med Biol. 2021;66:04NT01.PubMedCrossRef
38.
39.
go back to reference Hatt M, Laurent B, Ouahabi A, et al. The first MICCAI challenge on PET tumor segmentation. Med Image Anal. 2018;44:177–95.PubMedCrossRef Hatt M, Laurent B, Ouahabi A, et al. The first MICCAI challenge on PET tumor segmentation. Med Image Anal. 2018;44:177–95.PubMedCrossRef
40.
go back to reference Blanc-Durand P, Van Der Gucht A, Schaefer N, Itti E, Prior JO. Automatic lesion detection and segmentation of 18F-FET PET in gliomas: a full 3D U-Net convolutional neural network study. PLoS One. 2018;13:0195798. Blanc-Durand P, Van Der Gucht A, Schaefer N, Itti E, Prior JO. Automatic lesion detection and segmentation of 18F-FET PET in gliomas: a full 3D U-Net convolutional neural network study. PLoS One. 2018;13:0195798.
41.
go back to reference Xiong X, Linhardt TJ, Liu W, et al. A 3D deep convolutional neural network approach for the automated measurement of cerebellum tracer uptake in FDG PET-CT scans. Med Phys. 2020;47:1058–66.PubMedCrossRef Xiong X, Linhardt TJ, Liu W, et al. A 3D deep convolutional neural network approach for the automated measurement of cerebellum tracer uptake in FDG PET-CT scans. Med Phys. 2020;47:1058–66.PubMedCrossRef
42.
go back to reference Reith F, Koran ME, Davidzon G, Zaharchuk G. Application of deep learning to predict standardized uptake value ratio and amyloid status on (18)F-Florbetapir PET using ADNI data. AJNR Am J Neuroradiol. 2020;41:980–6.PubMedPubMedCentralCrossRef Reith F, Koran ME, Davidzon G, Zaharchuk G. Application of deep learning to predict standardized uptake value ratio and amyloid status on (18)F-Florbetapir PET using ADNI data. AJNR Am J Neuroradiol. 2020;41:980–6.PubMedPubMedCentralCrossRef
43.
go back to reference Guo J, Gong E, Fan AP, Goubran M, Khalighi MM, Zaharchuk G. Predicting (15)O-Water PET cerebral blood flow maps from multi-contrast MRI using a deep convolutional neural network with evaluation of training cohort bias. J Cereb Blood Flow Metab. 2020;40:2240–53.PubMedCrossRef Guo J, Gong E, Fan AP, Goubran M, Khalighi MM, Zaharchuk G. Predicting (15)O-Water PET cerebral blood flow maps from multi-contrast MRI using a deep convolutional neural network with evaluation of training cohort bias. J Cereb Blood Flow Metab. 2020;40:2240–53.PubMedCrossRef
44.
go back to reference Nobashi T, Zacharias C, Ellis JK, et al. Performance comparison of individual and ensemble CNN models for the classification of brain 18F-FDG-PET scans. J Digit Imaging. 2020;33:447–55.PubMedCrossRef Nobashi T, Zacharias C, Ellis JK, et al. Performance comparison of individual and ensemble CNN models for the classification of brain 18F-FDG-PET scans. J Digit Imaging. 2020;33:447–55.PubMedCrossRef
45.
go back to reference Ma D, Yee E, Stocks JK, et al. Blinded clinical evaluation for dementia of alzheimer’s type classification using FDG-PET: a comparison between feature-engineered and non-feature-engineered machine learning methods. J Alzheimers Dis. 2021;80:715–26.PubMedPubMedCentralCrossRef Ma D, Yee E, Stocks JK, et al. Blinded clinical evaluation for dementia of alzheimer’s type classification using FDG-PET: a comparison between feature-engineered and non-feature-engineered machine learning methods. J Alzheimers Dis. 2021;80:715–26.PubMedPubMedCentralCrossRef
46.
go back to reference Lee SY, Kang H, Jeong JH, Kang DY. Performance evaluation in [18F]Florbetaben brain PET images classification using 3D Convolutional Neural Network. PLoS One. 2021;16:e0258214.PubMedPubMedCentralCrossRef Lee SY, Kang H, Jeong JH, Kang DY. Performance evaluation in [18F]Florbetaben brain PET images classification using 3D Convolutional Neural Network. PLoS One. 2021;16:e0258214.PubMedPubMedCentralCrossRef
47.
go back to reference Etminani K, Soliman A, Davidsson A, et al. A 3D deep learning model to predict the diagnosis of dementia with Lewy bodies, Alzheimer's disease, and mild cognitive impairment using brain 18F-FDG PET. Eur J Nucl Med Mol Imaging. 2021 Jul 30. https://doi.org/10.1007/s00259-021-05483-0. Online ahead of print. Etminani K, Soliman A, Davidsson A, et al. A 3D deep learning model to predict the diagnosis of dementia with Lewy bodies, Alzheimer's disease, and mild cognitive impairment using brain 18F-FDG PET. Eur J Nucl Med Mol Imaging. 2021 Jul 30. https://​doi.​org/​10.​1007/​s00259-021-05483-0. Online ahead of print.
48.
go back to reference de Vries BM, Golla SSV, Ebenau J, et al. Classification of negative and positive (18)F-florbetapir brain PET studies in subjective cognitive decline patients using a convolutional neural network. Eur J Nucl Med Mol Imaging. 2021;48:721–8.PubMedCrossRef de Vries BM, Golla SSV, Ebenau J, et al. Classification of negative and positive (18)F-florbetapir brain PET studies in subjective cognitive decline patients using a convolutional neural network. Eur J Nucl Med Mol Imaging. 2021;48:721–8.PubMedCrossRef
49.
go back to reference Yee E, Popuri K, Beg MF. Quantifying brain metabolism from FDG-PET images into a probability of Alzheimer’s dementia score. Hum Brain Mapp. 2020;41:5–16.PubMedCrossRef Yee E, Popuri K, Beg MF. Quantifying brain metabolism from FDG-PET images into a probability of Alzheimer’s dementia score. Hum Brain Mapp. 2020;41:5–16.PubMedCrossRef
50.
go back to reference Kim HW, Lee HE, Oh K, Lee S, Yun M, Yoo SK. Multi-slice representational learning of convolutional neural network for Alzheimer’s disease classification using positron emission tomography. Biomed Eng Online. 2020;19:70.PubMedPubMedCentralCrossRef Kim HW, Lee HE, Oh K, Lee S, Yun M, Yoo SK. Multi-slice representational learning of convolutional neural network for Alzheimer’s disease classification using positron emission tomography. Biomed Eng Online. 2020;19:70.PubMedPubMedCentralCrossRef
51.
go back to reference Jo T, Nho K, Risacher SL, Saykin AJ, Alzheimer’s NI. Deep learning detection of informative features in tau PET for Alzheimer’s disease classification. BMC Bioinformatics. 2020;21:496.PubMedPubMedCentralCrossRef Jo T, Nho K, Risacher SL, Saykin AJ, Alzheimer’s NI. Deep learning detection of informative features in tau PET for Alzheimer’s disease classification. BMC Bioinformatics. 2020;21:496.PubMedPubMedCentralCrossRef
52.
go back to reference Liu M, Cheng D, Yan W. Classification of Alzheimer’s disease by combination of convolutional and recurrent neural networks using FDG-PET images. Front Neuroinform. 2018;12:35.PubMedPubMedCentralCrossRef Liu M, Cheng D, Yan W. Classification of Alzheimer’s disease by combination of convolutional and recurrent neural networks using FDG-PET images. Front Neuroinform. 2018;12:35.PubMedPubMedCentralCrossRef
53.
go back to reference Song J, Zheng J, Li P, Lu X, Zhu G, Shen P. An effective multimodal image fusion method using MRI and PET for Alzheimer’s disease diagnosis. Front Digit Health. 2021;3:637386.PubMedPubMedCentralCrossRef Song J, Zheng J, Li P, Lu X, Zhu G, Shen P. An effective multimodal image fusion method using MRI and PET for Alzheimer’s disease diagnosis. Front Digit Health. 2021;3:637386.PubMedPubMedCentralCrossRef
54.
go back to reference Lin W, Lin W, Chen G, et al. Bidirectional mapping of brain MRI and PET with 3D reversible GAN for the diagnosis of Alzheimer’s disease. Front Neurosci. 2021;15:646013.PubMedPubMedCentralCrossRef Lin W, Lin W, Chen G, et al. Bidirectional mapping of brain MRI and PET with 3D reversible GAN for the diagnosis of Alzheimer’s disease. Front Neurosci. 2021;15:646013.PubMedPubMedCentralCrossRef
55.
go back to reference He Y, Wu J, Zhou L, Chen Y, Li F, Qian H. Quantification of cognitive function in Alzheimer’s disease based on deep learning. Front Neurosci. 2021;15:651920.PubMedPubMedCentralCrossRef He Y, Wu J, Zhou L, Chen Y, Li F, Qian H. Quantification of cognitive function in Alzheimer’s disease based on deep learning. Front Neurosci. 2021;15:651920.PubMedPubMedCentralCrossRef
56.
go back to reference Abdelaziz M, Wang T, Elazab A. Alzheimer’s disease diagnosis framework from incomplete multimodal data using convolutional neural networks. J Biomed Inform. 2021;121:103863.PubMedCrossRef Abdelaziz M, Wang T, Elazab A. Alzheimer’s disease diagnosis framework from incomplete multimodal data using convolutional neural networks. J Biomed Inform. 2021;121:103863.PubMedCrossRef
57.
go back to reference Li R, Zhang W, Suk HI, et al. Deep learning based imaging data completion for improved brain disease diagnosis. Med Image Comput Comput Assist Interv. 2014;17:305–12.PubMedPubMedCentral Li R, Zhang W, Suk HI, et al. Deep learning based imaging data completion for improved brain disease diagnosis. Med Image Comput Comput Assist Interv. 2014;17:305–12.PubMedPubMedCentral
58.
go back to reference Tufail AB, Ma YK, Zhang QN, et al. 3D convolutional neural networks-based multiclass classification of Alzheimer’s and Parkinson’s diseases using PET and SPECT neuroimaging modalities. Brain Inform. 2021;8:23.PubMedPubMedCentralCrossRef Tufail AB, Ma YK, Zhang QN, et al. 3D convolutional neural networks-based multiclass classification of Alzheimer’s and Parkinson’s diseases using PET and SPECT neuroimaging modalities. Brain Inform. 2021;8:23.PubMedPubMedCentralCrossRef
59.
go back to reference Piccardo A, Cappuccio R, Bottoni G, et al. The role of the deep convolutional neural network as an aid to interpreting brain [(18)F]DOPA PET/CT in the diagnosis of Parkinson’s disease. Eur Radiol. 2021;31:7003–11.PubMedCrossRef Piccardo A, Cappuccio R, Bottoni G, et al. The role of the deep convolutional neural network as an aid to interpreting brain [(18)F]DOPA PET/CT in the diagnosis of Parkinson’s disease. Eur Radiol. 2021;31:7003–11.PubMedCrossRef
60.
go back to reference Reith FH, Mormino EC, Zaharchuk G. Predicting future amyloid biomarkers in dementia patients with machine learning to improve clinical trial patient selection. Alzheimers Dement (N Y). 2021;7:e12212. Reith FH, Mormino EC, Zaharchuk G. Predicting future amyloid biomarkers in dementia patients with machine learning to improve clinical trial patient selection. Alzheimers Dement (N Y). 2021;7:e12212.
61.
go back to reference Choi H, Jin KH. Predicting cognitive decline with deep learning of brain metabolism and amyloid imaging. Behav Brain Res. 2018;344:103–9.PubMedCrossRef Choi H, Jin KH. Predicting cognitive decline with deep learning of brain metabolism and amyloid imaging. Behav Brain Res. 2018;344:103–9.PubMedCrossRef
62.
go back to reference Papp L, Potsch N, Grahovac M, et al. Glioma survival prediction with combined analysis of in vivo (11)C-MET PET features, ex vivo features, and patient features by supervised machine learning. J Nucl Med. 2018;59:892–9.PubMedCrossRef Papp L, Potsch N, Grahovac M, et al. Glioma survival prediction with combined analysis of in vivo (11)C-MET PET features, ex vivo features, and patient features by supervised machine learning. J Nucl Med. 2018;59:892–9.PubMedCrossRef
Metadata
Title
Application of artificial intelligence in brain molecular imaging
Authors
Satoshi Minoshima
Donna Cross
Publication date
01-02-2022
Publisher
Springer Singapore
Published in
Annals of Nuclear Medicine / Issue 2/2022
Print ISSN: 0914-7187
Electronic ISSN: 1864-6433
DOI
https://doi.org/10.1007/s12149-021-01697-2

Other articles of this Issue 2/2022

Annals of Nuclear Medicine 2/2022 Go to the issue

Invited Review Article

A review on AI in PET imaging