Skip to main content
Top
Published in: European Journal of Nuclear Medicine and Molecular Imaging 3/2021

Open Access 01-03-2021 | Artificial Intelligence | Original Article

Classification of negative and positive 18F-florbetapir brain PET studies in subjective cognitive decline patients using a convolutional neural network

Authors: Bart Marius de Vries, Sandeep S. V. Golla, Jarith Ebenau, Sander C. J. Verfaillie, Tessa Timmers, Fiona Heeman, Matthijs C. F. Cysouw, Bart N. M. van Berckel, Wiesje M. van der Flier, Maqsood Yaqub, Ronald Boellaard, Alzheimer’s Disease Neuroimaging Initiative

Published in: European Journal of Nuclear Medicine and Molecular Imaging | Issue 3/2021

Login to get access

Abstract

Purpose

Visual reading of 18F-florbetapir positron emission tomography (PET) scans is used in the diagnostic process of patients with cognitive disorders for assessment of amyloid-ß (Aß) depositions. However, this can be time-consuming, and difficult in case of borderline amyloid pathology. Computer-aided pattern recognition can be helpful in this process but needs to be validated. The aim of this work was to develop, train, validate and test a convolutional neural network (CNN) for discriminating between Aß negative and positive 18F-florbetapir PET scans in patients with subjective cognitive decline (SCD).

Methods

18F-florbetapir PET images were acquired and visually assessed. The SCD cohort consisted of 133 patients from the SCIENCe cohort and 22 patients from the ADNI database. From the SCIENCe cohort, standardized uptake value ratio (SUVR) images were computed. From the ADNI database, SUVR images were extracted. 2D CNNs (axial, coronal and sagittal) were built to capture features of the scans. The SCIENCe scans were randomly divided into training and validation set (5-fold cross-validation), and the ADNI scans were used as test set. Performance was evaluated based on average accuracy, sensitivity and specificity from the cross-validation. Next, the best performing CNN was evaluated on the test set.

Results

The sagittal 2D-CNN classified the SCIENCe scans with the highest average accuracy of 99% ± 2 (SD), sensitivity of 97% ± 7 and specificity of 100%. The ADNI scans were classified with a 95% accuracy, 100% sensitivity and 92.3% specificity.

Conclusion

The 2D-CNN algorithm can classify Aß negative and positive 18F-florbetapir PET scans with high performance in SCD patients.
Literature
1.
go back to reference Slot RER, Sikkes SAM, Berkhof J, Brodaty H, Buckley R, Cavedo E, et al. Subjective cognitive decline and rates of incident Alzheimer's disease and non-Alzheimer's disease dementia. Alzheimers Dement. 2019;15(3):465–76.PubMedCrossRef Slot RER, Sikkes SAM, Berkhof J, Brodaty H, Buckley R, Cavedo E, et al. Subjective cognitive decline and rates of incident Alzheimer's disease and non-Alzheimer's disease dementia. Alzheimers Dement. 2019;15(3):465–76.PubMedCrossRef
2.
go back to reference Slot RER, Verfaillie SCJ, Overbeek JM, Timmers T, Wesselman LMP, Teunissen CE, et al. Subjective cognitive impairment cohort (SCIENCe): study design and first results. Alzheimers Res Ther. 2018;10(1):76.PubMedPubMedCentralCrossRef Slot RER, Verfaillie SCJ, Overbeek JM, Timmers T, Wesselman LMP, Teunissen CE, et al. Subjective cognitive impairment cohort (SCIENCe): study design and first results. Alzheimers Res Ther. 2018;10(1):76.PubMedPubMedCentralCrossRef
3.
go back to reference Okamura N, Yanai K. Florbetapir (18F), a PET imaging agent that binds to amyloid plaques for the potential detection of Alzheimer’s disease. IDrugs. 2010;13(12):890–9.PubMed Okamura N, Yanai K. Florbetapir (18F), a PET imaging agent that binds to amyloid plaques for the potential detection of Alzheimer’s disease. IDrugs. 2010;13(12):890–9.PubMed
4.
go back to reference Johnson KA, Sperling RA, Gidicsin CM, Carmasin JS, Maye JE, Coleman RE, et al. Florbetapir (F18-AV-45) PET to assess amyloid burden in Alzheimer’s disease dementia, mild cognitive impairment, and normal aging. Alzheimers Dement. 2013;9(5 Suppl):S72–83.PubMedPubMedCentral Johnson KA, Sperling RA, Gidicsin CM, Carmasin JS, Maye JE, Coleman RE, et al. Florbetapir (F18-AV-45) PET to assess amyloid burden in Alzheimer’s disease dementia, mild cognitive impairment, and normal aging. Alzheimers Dement. 2013;9(5 Suppl):S72–83.PubMedPubMedCentral
5.
go back to reference van Harten AC, Visser PJ, Pijnenburg YA, Teunissen CE, Blankenstein MA, Scheltens P, et al. Cerebrospinal fluid Abeta42 is the best predictor of clinical progression in patients with subjective complaints. Alzheimers Dement. 2013;9(5):481–7.PubMedCrossRef van Harten AC, Visser PJ, Pijnenburg YA, Teunissen CE, Blankenstein MA, Scheltens P, et al. Cerebrospinal fluid Abeta42 is the best predictor of clinical progression in patients with subjective complaints. Alzheimers Dement. 2013;9(5):481–7.PubMedCrossRef
6.
go back to reference Clark CM, Schneider JA, Bedell BJ, Beach TG, Bilker WB, Mintun MA, et al. Use of florbetapir-PET for imaging beta-amyloid pathology. JAMA. 2011;305(3):275–83.PubMedPubMedCentralCrossRef Clark CM, Schneider JA, Bedell BJ, Beach TG, Bilker WB, Mintun MA, et al. Use of florbetapir-PET for imaging beta-amyloid pathology. JAMA. 2011;305(3):275–83.PubMedPubMedCentralCrossRef
7.
go back to reference Liu S, Liu S, Cai W, Che H, Pujol S, Kikinis R, et al. Multimodal neuroimaging feature learning for multiclass diagnosis of Alzheimer's disease. IEEE Trans Biomed Eng. 2015;62(4):1132–40.PubMedCrossRef Liu S, Liu S, Cai W, Che H, Pujol S, Kikinis R, et al. Multimodal neuroimaging feature learning for multiclass diagnosis of Alzheimer's disease. IEEE Trans Biomed Eng. 2015;62(4):1132–40.PubMedCrossRef
8.
go back to reference Suk HI, Lee SW, Shen D. Latent feature representation with stacked auto-encoder for AD/MCI diagnosis. Brain Struct Funct. 2015;220(2):841–59.PubMedCrossRef Suk HI, Lee SW, Shen D. Latent feature representation with stacked auto-encoder for AD/MCI diagnosis. Brain Struct Funct. 2015;220(2):841–59.PubMedCrossRef
9.
go back to reference Liu M, Cheng D, Yan W. Classification of Alzheimer's disease by combination of convolutional and recurrent neural networks using FDG-PET images. Front Neuroinform. 2018;12:35.PubMedPubMedCentralCrossRef Liu M, Cheng D, Yan W. Classification of Alzheimer's disease by combination of convolutional and recurrent neural networks using FDG-PET images. Front Neuroinform. 2018;12:35.PubMedPubMedCentralCrossRef
10.
go back to reference van der Flier WM, Pijnenburg YA, Prins N, Lemstra AW, Bouwman FH, Teunissen CE, et al. Optimizing patient care and research: the Amsterdam dementia cohort. J Alzheimers Dis. 2014;41(1):313–27.PubMedCrossRef van der Flier WM, Pijnenburg YA, Prins N, Lemstra AW, Bouwman FH, Teunissen CE, et al. Optimizing patient care and research: the Amsterdam dementia cohort. J Alzheimers Dis. 2014;41(1):313–27.PubMedCrossRef
12.
go back to reference Golla SS, Boellaard R, Oikonen V, Hoffmann A, van Berckel BN, Windhorst AD, et al. Parametric binding images of the TSPO ligand 18F-DPA-714. J Nucl Med. 2016;57(10):1543–7.PubMedCrossRef Golla SS, Boellaard R, Oikonen V, Hoffmann A, van Berckel BN, Windhorst AD, et al. Parametric binding images of the TSPO ligand 18F-DPA-714. J Nucl Med. 2016;57(10):1543–7.PubMedCrossRef
13.
go back to reference Golla SS, Boellaard R, Oikonen V, Hoffmann A, van Berckel BN, Windhorst AD, et al. Quantification of [18F]DPA-714 binding in the human brain: initial studies in healthy controls and Alzheimer's disease patients. J Cereb Blood Flow Metab. 2015;35(5):766–72.PubMedPubMedCentralCrossRef Golla SS, Boellaard R, Oikonen V, Hoffmann A, van Berckel BN, Windhorst AD, et al. Quantification of [18F]DPA-714 binding in the human brain: initial studies in healthy controls and Alzheimer's disease patients. J Cereb Blood Flow Metab. 2015;35(5):766–72.PubMedPubMedCentralCrossRef
14.
go back to reference Vollmar S, Michel C, Treffert JT, Newport DF, Casey M, Knöss C, et al. HeinzelCluster: accelerated reconstruction for FORE and OSEM3D. Phys Med Biol. 2002;47(15):2651–8.PubMedCrossRef Vollmar S, Michel C, Treffert JT, Newport DF, Casey M, Knöss C, et al. HeinzelCluster: accelerated reconstruction for FORE and OSEM3D. Phys Med Biol. 2002;47(15):2651–8.PubMedCrossRef
15.
go back to reference Svarer C, Madsen K, Hasselbalch SG, Pinborg LH, Haugbol S, Frokjaer VG, et al. MR-based automatic delineation of volumes of interest in human brain PET images using probability maps. NeuroImage. 2005;24(4):969–79.PubMedCrossRef Svarer C, Madsen K, Hasselbalch SG, Pinborg LH, Haugbol S, Frokjaer VG, et al. MR-based automatic delineation of volumes of interest in human brain PET images using probability maps. NeuroImage. 2005;24(4):969–79.PubMedCrossRef
16.
go back to reference Hammers A, Allom R, Koepp MJ, Free SL, Myers R, Lemieux L, et al. Three-dimensional maximum probability atlas of the human brain, with particular reference to the temporal lobe. Hum Brain Mapp. 2003;19(4):224–47.PubMedPubMedCentralCrossRef Hammers A, Allom R, Koepp MJ, Free SL, Myers R, Lemieux L, et al. Three-dimensional maximum probability atlas of the human brain, with particular reference to the temporal lobe. Hum Brain Mapp. 2003;19(4):224–47.PubMedPubMedCentralCrossRef
17.
go back to reference Golla S, Verfaillie S, Boellaard R, Adriaanse S, Zwan M, Schuit R, et al. Test-retest repeatability of quantitative [18F]florbetapir studies in humans. 2017. Golla S, Verfaillie S, Boellaard R, Adriaanse S, Zwan M, Schuit R, et al. Test-retest repeatability of quantitative [18F]florbetapir studies in humans. 2017.
18.
go back to reference Golla SS, Verfaillie SC, Boellaard R, Adriaanse SM, Zwan MD, Schuit RC, et al. Quantification of [(18)F]florbetapir: a test-retest tracer kinetic modelling study. J Cereb Blood Flow Metab. 2018:271678x18783628. Golla SS, Verfaillie SC, Boellaard R, Adriaanse SM, Zwan MD, Schuit RC, et al. Quantification of [(18)F]florbetapir: a test-retest tracer kinetic modelling study. J Cereb Blood Flow Metab. 2018:271678x18783628.
19.
go back to reference Friston KJ. Statistical parametric mapping : the analysis of functional brain images. 1st ed. Amsterdam: Elsevier / Academic Press; 2007. Friston KJ. Statistical parametric mapping : the analysis of functional brain images. 1st ed. Amsterdam: Elsevier / Academic Press; 2007.
20.
go back to reference Hernandez J, Carrasco-Ochoa JA, Martínez-Trinidad JF, et al. An empirical study of oversampling and undersampling for instance selection methods on imbalance datasets. Proceedings, Part I, of the 18th Iberoamerican Congress on Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications - Volume 8258; Havana, Cuba. 2958995: Springer-Verlag; 2013. p. 262–9. Hernandez J, Carrasco-Ochoa JA, Martínez-Trinidad JF, et al. An empirical study of oversampling and undersampling for instance selection methods on imbalance datasets. Proceedings, Part I, of the 18th Iberoamerican Congress on Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications - Volume 8258; Havana, Cuba. 2958995: Springer-Verlag; 2013. p. 262–9.
21.
go back to reference Perez L, Wang J. The effectiveness of data augmentation in image classification using deep learning. 2017. Perez L, Wang J. The effectiveness of data augmentation in image classification using deep learning. 2017.
22.
go back to reference Bernal J, Kushibar K, Asfaw DS, Valverde S, Oliver A, Martí R, et al. Deep convolutional neural networks for brain image analysis on magnetic resonance imaging: a review. Artif Intell Med. 2019;95:64–81.PubMedCrossRef Bernal J, Kushibar K, Asfaw DS, Valverde S, Oliver A, Martí R, et al. Deep convolutional neural networks for brain image analysis on magnetic resonance imaging: a review. Artif Intell Med. 2019;95:64–81.PubMedCrossRef
23.
go back to reference Lin W, Tong T, Gao Q, Guo D, Du X, Yang Y, et al. Convolutional neural networks-based MRI image analysis for the Alzheimer’s disease prediction from mild cognitive impairment. Front Neurosci. 2018;12:777.PubMedPubMedCentralCrossRef Lin W, Tong T, Gao Q, Guo D, Du X, Yang Y, et al. Convolutional neural networks-based MRI image analysis for the Alzheimer’s disease prediction from mild cognitive impairment. Front Neurosci. 2018;12:777.PubMedPubMedCentralCrossRef
24.
go back to reference Convolutional Neural Networks (CNNs / ConvNets). Convolutional Neural Networks (CNNs / ConvNets).
25.
go back to reference Yang J. ReLU and Softmax Activation Functions 2017. Yang J. ReLU and Softmax Activation Functions 2017.
26.
go back to reference Brownlee J. A gentle introduction to pooling layers for convolutional neural networks. Deep Learning for Computer Vision. 2019. Brownlee J. A gentle introduction to pooling layers for convolutional neural networks. Deep Learning for Computer Vision. 2019.
27.
go back to reference Brownlee J. Accelerate the training of deep neural networks with batch normalization. 2019. Brownlee J. Accelerate the training of deep neural networks with batch normalization. 2019.
28.
go back to reference Cook A. Global Average Pooling Layers for Object Localization. GitHub. 2017. Cook A. Global Average Pooling Layers for Object Localization. GitHub. 2017.
29.
go back to reference Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinovm R. Dropout: a simple way to prevent neural networks from Overfitting. J Mach Learn Res. 2014;15. Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinovm R. Dropout: a simple way to prevent neural networks from Overfitting. J Mach Learn Res. 2014;15.
30.
go back to reference Kohavi R. A study of cross-validation and bootstrap for accuracy estimation and model selection. Proceedings of the 14th international joint conference on Artificial intelligence - Volume 2; Montreal, Quebec, Canada. 1643047: Morgan Kaufmann Publishers Inc.; 1995. p. 1137–43. Kohavi R. A study of cross-validation and bootstrap for accuracy estimation and model selection. Proceedings of the 14th international joint conference on Artificial intelligence - Volume 2; Montreal, Quebec, Canada. 1643047: Morgan Kaufmann Publishers Inc.; 1995. p. 1137–43.
31.
32.
go back to reference Deniz CM, Xiang S, Hallyburton RS, Welbeck A, Babb JS, Honig S, et al. Segmentation of the proximal femur from MR images using deep convolutional neural networks. Sci Rep. 2018;8(1):16485.PubMedPubMedCentralCrossRef Deniz CM, Xiang S, Hallyburton RS, Welbeck A, Babb JS, Honig S, et al. Segmentation of the proximal femur from MR images using deep convolutional neural networks. Sci Rep. 2018;8(1):16485.PubMedPubMedCentralCrossRef
33.
go back to reference Milletari F, Navab N, Ahmadi S-A. V-Net: fully convolutional neural networks for volumetric medical image segmentation2016. 565–71 p. Milletari F, Navab N, Ahmadi S-A. V-Net: fully convolutional neural networks for volumetric medical image segmentation2016. 565–71 p.
34.
go back to reference Jack CR Jr, Bennett DA, Blennow K, Carrillo MC, Dunn B, Haeberlein SB, et al. NIA-AA research framework: toward a biological definition of Alzheimer’s disease. Alzheimers Dement. 2018;14(4):535–62.PubMedPubMedCentralCrossRef Jack CR Jr, Bennett DA, Blennow K, Carrillo MC, Dunn B, Haeberlein SB, et al. NIA-AA research framework: toward a biological definition of Alzheimer’s disease. Alzheimers Dement. 2018;14(4):535–62.PubMedPubMedCentralCrossRef
35.
go back to reference Amyvid (Florbetapir F 18 Injection) for intravenous use Initial U.S. 2012. Amyvid (Florbetapir F 18 Injection) for intravenous use Initial U.S. 2012.
36.
go back to reference Filippi L, Chiaravalloti A, Bagni O, Schillaci O. (18)F-labeled radiopharmaceuticals for the molecular neuroimaging of amyloid plaques in Alzheimer's disease. Am J Nucl Med Mol Imaging. 2018;8(4):268–81.PubMedPubMedCentral Filippi L, Chiaravalloti A, Bagni O, Schillaci O. (18)F-labeled radiopharmaceuticals for the molecular neuroimaging of amyloid plaques in Alzheimer's disease. Am J Nucl Med Mol Imaging. 2018;8(4):268–81.PubMedPubMedCentral
37.
go back to reference Wolk DA, Zhang Z, Boudhar S, Clark CM, Pontecorvo MJ, Arnold SE. Amyloid imaging in Alzheimer's disease: comparison of florbetapir and Pittsburgh compound-B positron emission tomography. J Neurol Neurosurg Psychiatry. 2012;83(9):923–6.PubMedCrossRef Wolk DA, Zhang Z, Boudhar S, Clark CM, Pontecorvo MJ, Arnold SE. Amyloid imaging in Alzheimer's disease: comparison of florbetapir and Pittsburgh compound-B positron emission tomography. J Neurol Neurosurg Psychiatry. 2012;83(9):923–6.PubMedCrossRef
Metadata
Title
Classification of negative and positive 18F-florbetapir brain PET studies in subjective cognitive decline patients using a convolutional neural network
Authors
Bart Marius de Vries
Sandeep S. V. Golla
Jarith Ebenau
Sander C. J. Verfaillie
Tessa Timmers
Fiona Heeman
Matthijs C. F. Cysouw
Bart N. M. van Berckel
Wiesje M. van der Flier
Maqsood Yaqub
Ronald Boellaard
Alzheimer’s Disease Neuroimaging Initiative
Publication date
01-03-2021
Publisher
Springer Berlin Heidelberg
Published in
European Journal of Nuclear Medicine and Molecular Imaging / Issue 3/2021
Print ISSN: 1619-7070
Electronic ISSN: 1619-7089
DOI
https://doi.org/10.1007/s00259-020-05006-3

Other articles of this Issue 3/2021

European Journal of Nuclear Medicine and Molecular Imaging 3/2021 Go to the issue