Skip to main content
Top
Published in: Endocrine 2/2016

Open Access 01-05-2016 | Review

The role of ANGPTL3 in controlling lipoprotein metabolism

Authors: Anna Tikka, Matti Jauhiainen

Published in: Endocrine | Issue 2/2016

Login to get access

Abstract

Angiopoietin-like protein 3 (ANGPTL3) is a secretory protein regulating plasma lipid levels via affecting lipoprotein lipase- and endothelial lipase-mediated hydrolysis of triglycerides and phospholipids. ANGPTL3-deficiency due to loss-of-function mutations in the ANGPTL3 gene causes familial combined hypobetalipoproteinemia (FHBL2, OMIM # 605019), a phenotype characterized by low concentration of all major lipoprotein classes in circulation. ANGPTL3 is therefore a potential therapeutic target to treat combined hyperlipidemia, a major risk factor for atherosclerotic coronary heart disease. This review focuses on the mechanisms behind ANGPTL3-deficiency induced FHBL2.
Literature
1.
go back to reference T.G. Redgrave, Chylomicrons, in Lipoproteins in Health and Disease, ed. by D.J. Betteridge, D.R. Illingworth, J. Shepherd (Arnold, London, 1999), pp. 31–54 T.G. Redgrave, Chylomicrons, in Lipoproteins in Health and Disease, ed. by D.J. Betteridge, D.R. Illingworth, J. Shepherd (Arnold, London, 1999), pp. 31–54
2.
go back to reference H.N. Ginsberg, J.L. Dixon, I.J. Goldberg, Illingworth, J. Shepherd, VLDL/LDL cascade system: assembly, secretion and intravascular metabolism of apoprotein B-containing lipoproteins, in Lipoproteins in Health and Disease, ed. by D.J. Betteridge (Arnold, London, 1999), pp. 55–70 H.N. Ginsberg, J.L. Dixon, I.J. Goldberg, Illingworth, J. Shepherd, VLDL/LDL cascade system: assembly, secretion and intravascular metabolism of apoprotein B-containing lipoproteins, in Lipoproteins in Health and Disease, ed. by D.J. Betteridge (Arnold, London, 1999), pp. 55–70
3.
go back to reference C.J. Packard, J. Shepher, Physiology of the lipoprotein transport system: an overview of lipoprotein metabolism, in Lipoproteins in Health and Disease, ed. by D.J. Betteridge, D.R. Illingworth, J. Shepherd (Arnold, London, 1999), pp. 17–30 C.J. Packard, J. Shepher, Physiology of the lipoprotein transport system: an overview of lipoprotein metabolism, in Lipoproteins in Health and Disease, ed. by D.J. Betteridge, D.R. Illingworth, J. Shepherd (Arnold, London, 1999), pp. 17–30
4.
go back to reference I.J. Goldberg, R.H. Eckel, N.A. Abumrad, Regulation of fatty acid uptake into tissues: lipoprotein lipase- and CD36-mediated pathways. J Lipid Res. 50, S86–S90 (2009)CrossRefPubMedPubMedCentral I.J. Goldberg, R.H. Eckel, N.A. Abumrad, Regulation of fatty acid uptake into tissues: lipoprotein lipase- and CD36-mediated pathways. J Lipid Res. 50, S86–S90 (2009)CrossRefPubMedPubMedCentral
5.
go back to reference A.R. Tall, L. Yvan-Charvet, N. Terasaka, T. Pagler, N. Wang, HDL, ABC transporters, and cholesterol efflux: implications for the treatment of atherosclerosis. Cell Metab. 7(5), 365–375 (2008)CrossRefPubMed A.R. Tall, L. Yvan-Charvet, N. Terasaka, T. Pagler, N. Wang, HDL, ABC transporters, and cholesterol efflux: implications for the treatment of atherosclerosis. Cell Metab. 7(5), 365–375 (2008)CrossRefPubMed
6.
go back to reference C. Willer et al., Newly identified loci that influence lipid concentrations and risk of coronary artery disease. Nat. Genet. 40(2), 161–169 (2008)CrossRefPubMed C. Willer et al., Newly identified loci that influence lipid concentrations and risk of coronary artery disease. Nat. Genet. 40(2), 161–169 (2008)CrossRefPubMed
7.
go back to reference S. Kathiresan, O. Melander, C. Guiducci, A. Surti, NP. Burtt, MJ. Rieder, GM. Cooper, C. Roos, BF. Voight, AS. Havulinna, B. Wahlstrand, T. Hedner, D. Corella, ES. Tai, JM. Ordovas, G. Berglund, E. Vartiainen, P. Jousilahti, B. Hedblad, MR. Taskinen, C. Newton-Cheh, V. Salomaa, L. Peltonen, L. Groop, DM. Altshuler, M. Orho-Melander, Sixnew loci associated with blood low-density lipoprotein cholesterol, high-density lipoprotein cholesterol or triglycerides in humans. Nat. Genet. 40(2),189–97 (2008). Erratum in: Nat. Genet. 40(11):1384 (2008) S. Kathiresan, O. Melander, C. Guiducci, A. Surti, NP. Burtt, MJ. Rieder, GM. Cooper, C. Roos, BF. Voight, AS. Havulinna, B. Wahlstrand, T. Hedner, D. Corella, ES. Tai, JM. Ordovas, G. Berglund, E. Vartiainen, P. Jousilahti, B. Hedblad, MR. Taskinen, C. Newton-Cheh, V. Salomaa, L. Peltonen, L. Groop, DM. Altshuler, M. Orho-Melander, Sixnew loci associated with blood low-density lipoprotein cholesterol, high-density lipoprotein cholesterol or triglycerides in humans. Nat. Genet. 40(2),189–97 (2008). Erratum in: Nat. Genet. 40(11):1384 (2008)
8.
go back to reference N. Woolf, Pathology of atherosclerosis, in Lipoproteins in Health and Disease, ed. by D.J. Betteridge, D.R. Illingworth, J. Shepherd (Arnold, London, 1999), pp. 533–540 N. Woolf, Pathology of atherosclerosis, in Lipoproteins in Health and Disease, ed. by D.J. Betteridge, D.R. Illingworth, J. Shepherd (Arnold, London, 1999), pp. 533–540
9.
go back to reference B.G. Nordestgaard, M. Benn, P. Schnohr, A. Tybjaerg-Hansen, Nonfasting triglycerides and risk of myocardial infarction, ischemic heart disease, and death in men and women. JAMA 298(3), 299–308 (2007)CrossRefPubMed B.G. Nordestgaard, M. Benn, P. Schnohr, A. Tybjaerg-Hansen, Nonfasting triglycerides and risk of myocardial infarction, ischemic heart disease, and death in men and women. JAMA 298(3), 299–308 (2007)CrossRefPubMed
10.
go back to reference H.L. Staniak, W. Salgado Filho, M.H. Miname, I.M. Benseñor, P.A. Lotufo, R. Sharovsky, C.E. Rochitte, R.D. Bittencourt, R.D. Santos, Association between postprandialtriglycerides and coronary artery disease detected by coronary computed tomography angiography. Atherosclerosis 233(2), 381–386 (2014)CrossRefPubMed H.L. Staniak, W. Salgado Filho, M.H. Miname, I.M. Benseñor, P.A. Lotufo, R. Sharovsky, C.E. Rochitte, R.D. Bittencourt, R.D. Santos, Association between postprandialtriglycerides and coronary artery disease detected by coronary computed tomography angiography. Atherosclerosis 233(2), 381–386 (2014)CrossRefPubMed
11.
go back to reference R.C. Oh, J.B. Lanier, Management of hypertriglyceridemia. Am Fam. Physician. 75(9), 1365–1371 (2007)PubMed R.C. Oh, J.B. Lanier, Management of hypertriglyceridemia. Am Fam. Physician. 75(9), 1365–1371 (2007)PubMed
12.
go back to reference T. Hato, M. Tabata, Y. Oike, The role of angiopoietin-like proteins in angiogenesis and metabolism. Trends Cardiovasc. Med. 18, 6–14 (2008)CrossRefPubMed T. Hato, M. Tabata, Y. Oike, The role of angiopoietin-like proteins in angiogenesis and metabolism. Trends Cardiovasc. Med. 18, 6–14 (2008)CrossRefPubMed
13.
go back to reference D. Conklin, D. Gilbertson, D.W. Taft, M.F. Maurer, T.E. Whitmore, D.L. Smith, K.M. Walker, L.H. Chen, S. Wattler, M. Nehls, K.B. Lewis, Identification of a mammalian angiopoietin-related protein expressed specifically in liver. Genomics 62(3), 477–482 (1999)CrossRefPubMed D. Conklin, D. Gilbertson, D.W. Taft, M.F. Maurer, T.E. Whitmore, D.L. Smith, K.M. Walker, L.H. Chen, S. Wattler, M. Nehls, K.B. Lewis, Identification of a mammalian angiopoietin-related protein expressed specifically in liver. Genomics 62(3), 477–482 (1999)CrossRefPubMed
14.
go back to reference M. Ono, T. Shimizugawa, M. Shimamura, K. Yoshida, C. Noji-Sakikawa, Y. Ando, R. Koishi, H. Furukawa, Protein region important for regulation of lipid metabolism in angiopoietin-like 3 (ANGPTL3): ANGPTL3 is cleaved and activated in vivo. J Biol. Chem. 278(43), 41804–41809 (2003)CrossRefPubMed M. Ono, T. Shimizugawa, M. Shimamura, K. Yoshida, C. Noji-Sakikawa, Y. Ando, R. Koishi, H. Furukawa, Protein region important for regulation of lipid metabolism in angiopoietin-like 3 (ANGPTL3): ANGPTL3 is cleaved and activated in vivo. J Biol. Chem. 278(43), 41804–41809 (2003)CrossRefPubMed
15.
go back to reference L. Shan, X.C. Yu, Z. Liu, Y. Hu, L.T. Sturgis, M.L. Miranda, Q. Liu, The angiopoietin-like proteins ANGPTL3 and ANGPTL4 inhibit lipoprotein lipase activity through distinct mechanisms. J Biol. Chem. 284(3), 1419–1424 (2009)CrossRefPubMedPubMedCentral L. Shan, X.C. Yu, Z. Liu, Y. Hu, L.T. Sturgis, M.L. Miranda, Q. Liu, The angiopoietin-like proteins ANGPTL3 and ANGPTL4 inhibit lipoprotein lipase activity through distinct mechanisms. J Biol. Chem. 284(3), 1419–1424 (2009)CrossRefPubMedPubMedCentral
16.
go back to reference G. Camenisch, M.T. Pisabarro, D. Sherman, J. Kowalski, M. Nagel, P. Hass, M.H. Xie, A. Gurney, S. Bodary, X.H. Liang, K. Clark, M. Beresini, N. Ferrara, H.P. Gerber, ANGPTL3 stimulates endothelial cell adhesion and migration via integrin alpha vbeta 3 and induces blood vessel formation in vivo. J Biol. Chem. 277(19), 17281–17290 (2002)CrossRefPubMed G. Camenisch, M.T. Pisabarro, D. Sherman, J. Kowalski, M. Nagel, P. Hass, M.H. Xie, A. Gurney, S. Bodary, X.H. Liang, K. Clark, M. Beresini, N. Ferrara, H.P. Gerber, ANGPTL3 stimulates endothelial cell adhesion and migration via integrin alpha vbeta 3 and induces blood vessel formation in vivo. J Biol. Chem. 277(19), 17281–17290 (2002)CrossRefPubMed
17.
go back to reference W. Jin, X. Wang, J.S. Millar, T. Quertermous, G.H. Rothblat, J.M. Glick, D.J. Rader, Hepatic proprotein convertases modulate HDL metabolism. Cell Metab. 6(2), 129–136 (2007)CrossRefPubMedPubMedCentral W. Jin, X. Wang, J.S. Millar, T. Quertermous, G.H. Rothblat, J.M. Glick, D.J. Rader, Hepatic proprotein convertases modulate HDL metabolism. Cell Metab. 6(2), 129–136 (2007)CrossRefPubMedPubMedCentral
18.
go back to reference F. Quagliarini, Y. Wang, J. Kozlitina, N.V. Grishin, R. Hyde, E. Boerwinkle, D.M. Valenzuela, A.J. Murphy, J.C. Cohen, H.H. Hobbs, Atypical angiopoietin-like protein that regulates ANGPTL3. Proc. Natl. Acad. Sci. USA 109(48), 19751–19756 (2012)CrossRefPubMedPubMedCentral F. Quagliarini, Y. Wang, J. Kozlitina, N.V. Grishin, R. Hyde, E. Boerwinkle, D.M. Valenzuela, A.J. Murphy, J.C. Cohen, H.H. Hobbs, Atypical angiopoietin-like protein that regulates ANGPTL3. Proc. Natl. Acad. Sci. USA 109(48), 19751–19756 (2012)CrossRefPubMedPubMedCentral
19.
go back to reference Z. Fu, F. Yao, A.B. Abou-Samra, R. Zhang, Lipasin, thermoregulated in brown fat, is a novel but atypical member of the angiopoietin-like protein family. Biochem. Biophys. Res. Commun. 430(3), 1126–1131 (2013)CrossRefPubMed Z. Fu, F. Yao, A.B. Abou-Samra, R. Zhang, Lipasin, thermoregulated in brown fat, is a novel but atypical member of the angiopoietin-like protein family. Biochem. Biophys. Res. Commun. 430(3), 1126–1131 (2013)CrossRefPubMed
20.
go back to reference R. Zhang, A.B. Abou-Samra, A dual role of lipasin (betatrophin) in lipid metabolism and glucose homeostasis: consensus and controversy. Cardiovasc. Diabetol. 13, 133 (2014)CrossRefPubMedPubMedCentral R. Zhang, A.B. Abou-Samra, A dual role of lipasin (betatrophin) in lipid metabolism and glucose homeostasis: consensus and controversy. Cardiovasc. Diabetol. 13, 133 (2014)CrossRefPubMedPubMedCentral
21.
go back to reference R. Koishi, Y. Ando, M. Ono, M. Shimamura, H. Yasumo, T. Fujiwara, H. Horikoshi, H. Furukawa, Angptl3 regulates lipid metabolism in mice. Nat. Genet. 30(2), 151–157 (2002)CrossRefPubMed R. Koishi, Y. Ando, M. Ono, M. Shimamura, H. Yasumo, T. Fujiwara, H. Horikoshi, H. Furukawa, Angptl3 regulates lipid metabolism in mice. Nat. Genet. 30(2), 151–157 (2002)CrossRefPubMed
22.
go back to reference T. Shimizugawa, M. Ono, M. Shimamura, K. Yoshida, Y. Ando, R. Koishi, K. Ueda, T. Inaba, H. Minekura, T. Kohama, H. Furukawa, ANGPTL3 decreases very low density lipoprotein triglyceride clearance by inhibition of lipoprotein lipase. J. Biol. Chem. 277(37), 33742–33748 (2002)CrossRefPubMed T. Shimizugawa, M. Ono, M. Shimamura, K. Yoshida, Y. Ando, R. Koishi, K. Ueda, T. Inaba, H. Minekura, T. Kohama, H. Furukawa, ANGPTL3 decreases very low density lipoprotein triglyceride clearance by inhibition of lipoprotein lipase. J. Biol. Chem. 277(37), 33742–33748 (2002)CrossRefPubMed
23.
go back to reference Y. Ando, T. Shimizugawa, S. Takeshita, M. Ono, M. Shimamura, R. Koishi, H. Furukawa, A decreased expression of angiopoietin-like 3 is protective against atherosclerosis in apoE-deficient mice. J. Lipid Res. 44(6), 1216–1223 (2003)CrossRefPubMed Y. Ando, T. Shimizugawa, S. Takeshita, M. Ono, M. Shimamura, R. Koishi, H. Furukawa, A decreased expression of angiopoietin-like 3 is protective against atherosclerosis in apoE-deficient mice. J. Lipid Res. 44(6), 1216–1223 (2003)CrossRefPubMed
24.
25.
go back to reference S. Romeo, W. Yin, J. Kozlitina, L.A. Pennacchio, E. Boerwinkle, H.H. Hobbs, J.C. Cohen, Rare loss-of-function mutations in ANGPTL family members contribute to plasma triglyceride levels in humans. J Clin. Invest. 119(1), 70–79 (2009)PubMedPubMedCentral S. Romeo, W. Yin, J. Kozlitina, L.A. Pennacchio, E. Boerwinkle, H.H. Hobbs, J.C. Cohen, Rare loss-of-function mutations in ANGPTL family members contribute to plasma triglyceride levels in humans. J Clin. Invest. 119(1), 70–79 (2009)PubMedPubMedCentral
26.
go back to reference I. Minicocci, A. Montali, M.R. Robciuc, F. Quagliarini, V. Censi, G. Labbadia, C. Gabiati, G. Pigna, M.L. Sepe, F. Pannozzo, D. Lütjohann, S. Fazio, M. Jauhiainen, C. Ehnholm, M. Arca, Mutations in the ANGPTL3 gene and familial combined hypolipidemia: a clinical and biochemical characterization. J. Clin. Endocrinol. Metab. 97(7), E1266–E1275 (2012)CrossRefPubMed I. Minicocci, A. Montali, M.R. Robciuc, F. Quagliarini, V. Censi, G. Labbadia, C. Gabiati, G. Pigna, M.L. Sepe, F. Pannozzo, D. Lütjohann, S. Fazio, M. Jauhiainen, C. Ehnholm, M. Arca, Mutations in the ANGPTL3 gene and familial combined hypolipidemia: a clinical and biochemical characterization. J. Clin. Endocrinol. Metab. 97(7), E1266–E1275 (2012)CrossRefPubMed
28.
go back to reference M. Arca, I. Minicocci, M. Maranghi, The angiopoietin-like protein 3: a hepatokine with expanding role in metabolism. Curr. Opin. Lipidol. 24(4), 313–320 (2013)CrossRefPubMed M. Arca, I. Minicocci, M. Maranghi, The angiopoietin-like protein 3: a hepatokine with expanding role in metabolism. Curr. Opin. Lipidol. 24(4), 313–320 (2013)CrossRefPubMed
29.
go back to reference J.M. Martín-Campos, R. Roig, C. Mayoral, S. Martinez, G. Marti, J.A. Arroyo, J. Julve, F. Blano-Vaca, Identification of a novel mutation in the ANGPTL3 gene in two families diagnosed of familial hypobetalipoproteinemia without APOB mutation. Clin. Chim. Acta. 413, 552–555 (2012)CrossRefPubMed J.M. Martín-Campos, R. Roig, C. Mayoral, S. Martinez, G. Marti, J.A. Arroyo, J. Julve, F. Blano-Vaca, Identification of a novel mutation in the ANGPTL3 gene in two families diagnosed of familial hypobetalipoproteinemia without APOB mutation. Clin. Chim. Acta. 413, 552–555 (2012)CrossRefPubMed
30.
go back to reference L. Pisciotta et al., Characterization of three kindred with familial combined hypolipidemia due to loss of function mutations of ANGPTL3. Cardiovasc. Genet. 5, 42–50 (2012)CrossRef L. Pisciotta et al., Characterization of three kindred with familial combined hypolipidemia due to loss of function mutations of ANGPTL3. Cardiovasc. Genet. 5, 42–50 (2012)CrossRef
31.
go back to reference D. Noto, A.B. Cefalù, V. Valenti, F. Fayer, E. Pinotti, M. Ditta, R. Spina, G. Vigna, P. Yue, S. Kathiresan, P. Tarugi, M.R. Averna, Prevalence of ANGPTL3 and APOB gene mutations in subjects with combined hypolipidemia. Arterioscler. Thromb. Vasc. Biol. 32(3), 805–809 (2012)CrossRefPubMed D. Noto, A.B. Cefalù, V. Valenti, F. Fayer, E. Pinotti, M. Ditta, R. Spina, G. Vigna, P. Yue, S. Kathiresan, P. Tarugi, M.R. Averna, Prevalence of ANGPTL3 and APOB gene mutations in subjects with combined hypolipidemia. Arterioscler. Thromb. Vasc. Biol. 32(3), 805–809 (2012)CrossRefPubMed
32.
go back to reference K. Hirata, H.L. Dichek, J.A. Cioffi, S.Y. Choi, N.J. Leeper, L. Quintana, G.S. Kronmal, A.D. Cooper, T. Quertermous, Cloning of a unique lipase from endothelial cells extends the lipase gene family. J. Biol. Chem. 274(20), 14170–14175 (1999)CrossRefPubMed K. Hirata, H.L. Dichek, J.A. Cioffi, S.Y. Choi, N.J. Leeper, L. Quintana, G.S. Kronmal, A.D. Cooper, T. Quertermous, Cloning of a unique lipase from endothelial cells extends the lipase gene family. J. Biol. Chem. 274(20), 14170–14175 (1999)CrossRefPubMed
33.
go back to reference M.G. McCoy, G.S. Sun, D. Marchadier, C. Maugeais, J.M. Glick, D.J. Rader, Characterization of the lipolytic activity of endothelial lipase. J. Lipid Res. 43, 921–929 (2002)PubMed M.G. McCoy, G.S. Sun, D. Marchadier, C. Maugeais, J.M. Glick, D.J. Rader, Characterization of the lipolytic activity of endothelial lipase. J. Lipid Res. 43, 921–929 (2002)PubMed
34.
go back to reference M.R. Robciuc, M. Maranghi, A. Lahikainen, D. Rader, A. Bensadoun, K. Öörni, J. Metso, I. Minicocci, E. Ciociola, F. Ceci, A. Montali, M. Arca, C. Ehnholm, M. Jauhiainen, Angptl3 deficiency is associated with increased insulin sensitivity, lipoprotein lipase activity, and decreased serum free fatty acids. Arterioscler. Thromb. VascBiol. 33(7), 1706–1713 (2013)CrossRef M.R. Robciuc, M. Maranghi, A. Lahikainen, D. Rader, A. Bensadoun, K. Öörni, J. Metso, I. Minicocci, E. Ciociola, F. Ceci, A. Montali, M. Arca, C. Ehnholm, M. Jauhiainen, Angptl3 deficiency is associated with increased insulin sensitivity, lipoprotein lipase activity, and decreased serum free fatty acids. Arterioscler. Thromb. VascBiol. 33(7), 1706–1713 (2013)CrossRef
35.
go back to reference J. Liu, H. Afroza, D.J. Rader, W. Jin, Angiopoietin-like protein 3 inhibits lipoprotein lipase activity through enhancing its cleavage by proprotein convertases. J. Biol. Chem. 285(36), 27561–27570 (2010)CrossRefPubMedPubMedCentral J. Liu, H. Afroza, D.J. Rader, W. Jin, Angiopoietin-like protein 3 inhibits lipoprotein lipase activity through enhancing its cleavage by proprotein convertases. J. Biol. Chem. 285(36), 27561–27570 (2010)CrossRefPubMedPubMedCentral
36.
go back to reference M. Shimamura, M. Matsuda, H. Yasumo, M. Okazaki, K. Fujimoto, K. Kono, T. Shimizugawa, Y. Ando, R. Koishi, T. Kohama, N. Sakai, K. Kotani, R. Komuro, T. Ishida, K. Hirata, S. Yamashita, H. Furukawa, I. Shimomura, Angiopoietin-like protein3 regulates plasma HDL cholesterol through suppression of endothelial lipase. Arterioscler. Thromb. Vasc. Biol. 27(2), 366–372 (2007)CrossRefPubMed M. Shimamura, M. Matsuda, H. Yasumo, M. Okazaki, K. Fujimoto, K. Kono, T. Shimizugawa, Y. Ando, R. Koishi, T. Kohama, N. Sakai, K. Kotani, R. Komuro, T. Ishida, K. Hirata, S. Yamashita, H. Furukawa, I. Shimomura, Angiopoietin-like protein3 regulates plasma HDL cholesterol through suppression of endothelial lipase. Arterioscler. Thromb. Vasc. Biol. 27(2), 366–372 (2007)CrossRefPubMed
37.
go back to reference Y. Wang, M.C. McNutt, S. Banfi, M.G. Levin, W.L. Holland, V. Gusarova, J. Gromada, J.C. Cohen, H.H. Hobbs, Hepatic ANGPTL3 regulates adipose tissue energy homeostasis. Proc. Natl. Acad. Sci. USA 112(37), 11630–11635 (2015)CrossRefPubMedPubMedCentral Y. Wang, M.C. McNutt, S. Banfi, M.G. Levin, W.L. Holland, V. Gusarova, J. Gromada, J.C. Cohen, H.H. Hobbs, Hepatic ANGPTL3 regulates adipose tissue energy homeostasis. Proc. Natl. Acad. Sci. USA 112(37), 11630–11635 (2015)CrossRefPubMedPubMedCentral
38.
go back to reference Y. Wang, V. Gusarova, S. Banfi, J. Gromada, J.C. Cohen, H.H. Hobbs, Inactivation of ANGPTL3 reduces hepatic VLDL-triglyceride secretion. J. Lipid Res. 56(7), 1296–1307 (2015)CrossRefPubMed Y. Wang, V. Gusarova, S. Banfi, J. Gromada, J.C. Cohen, H.H. Hobbs, Inactivation of ANGPTL3 reduces hepatic VLDL-triglyceride secretion. J. Lipid Res. 56(7), 1296–1307 (2015)CrossRefPubMed
39.
go back to reference M. Jaye, K.J. Lynch, J. Krawiec, D. Marchadier, C. Maugeais, K. Doan, V. South, D. Amin, M. Perrone, D.J. Rader, A novel endothelial-derived lipase that modulates HDL metabolism. Nat. Genet. 21(4), 424–428 (1999)CrossRefPubMed M. Jaye, K.J. Lynch, J. Krawiec, D. Marchadier, C. Maugeais, K. Doan, V. South, D. Amin, M. Perrone, D.J. Rader, A novel endothelial-derived lipase that modulates HDL metabolism. Nat. Genet. 21(4), 424–428 (1999)CrossRefPubMed
40.
go back to reference J.W. Gofman, W. Young, R. Tandy, Ischemic heart disease, atherosclerosis, and longevity. Circulation 34(4), 679–697 (1966)CrossRefPubMed J.W. Gofman, W. Young, R. Tandy, Ischemic heart disease, atherosclerosis, and longevity. Circulation 34(4), 679–697 (1966)CrossRefPubMed
41.
42.
go back to reference M.C. Moore, K.C. Coate, J.J. Winnick, Z. An, A.D. Cherrington, Regulation of hepatic glucose uptake and storage in vivo. Adv. Nutr. 3(3), 286–294 (2012)CrossRefPubMedPubMedCentral M.C. Moore, K.C. Coate, J.J. Winnick, Z. An, A.D. Cherrington, Regulation of hepatic glucose uptake and storage in vivo. Adv. Nutr. 3(3), 286–294 (2012)CrossRefPubMedPubMedCentral
43.
go back to reference M. Adiels, J. Westerbacka, A. Soro-Paavonen, A.M. Häkkinen, S. Vehkavaara, M.J. Caslake, C. Packard, S.O. Olofsson, H. Yki-Järvinen, M.R. Taskinen, J. Borén, Acute suppression of VLDL1 secretion rate by insulin is associated with hepatic fat content and insulin resistance. Diabetologia 50(11), 2356–2365 (2007)CrossRefPubMed M. Adiels, J. Westerbacka, A. Soro-Paavonen, A.M. Häkkinen, S. Vehkavaara, M.J. Caslake, C. Packard, S.O. Olofsson, H. Yki-Järvinen, M.R. Taskinen, J. Borén, Acute suppression of VLDL1 secretion rate by insulin is associated with hepatic fat content and insulin resistance. Diabetologia 50(11), 2356–2365 (2007)CrossRefPubMed
44.
go back to reference A. Tikka, J. Soronen, P.P. Laurila, J. Metso, C. Ehnholm, M. Jauhiainen, Silencing of ANGPTL 3 (angiopoietin-like protein 3) in human hepatocytes results in decreased expression of gluconeogenic genes and reduced triacylglycerol-rich VLDL secretion upon insulin stimulation. Biosci. Rep. 34(6), e00160 (2014)CrossRefPubMedPubMedCentral A. Tikka, J. Soronen, P.P. Laurila, J. Metso, C. Ehnholm, M. Jauhiainen, Silencing of ANGPTL 3 (angiopoietin-like protein 3) in human hepatocytes results in decreased expression of gluconeogenic genes and reduced triacylglycerol-rich VLDL secretion upon insulin stimulation. Biosci. Rep. 34(6), e00160 (2014)CrossRefPubMedPubMedCentral
45.
go back to reference M. Baranowski, Biological role of liver X receptors. J. Physiol. Pharmacol. 59(Suppl 7), 31–55 (2008)PubMed M. Baranowski, Biological role of liver X receptors. J. Physiol. Pharmacol. 59(Suppl 7), 31–55 (2008)PubMed
46.
go back to reference S.D. Lee, P. Tontonoz, Liver X receptors at the intersection of lipid metabolism and atherogenesis. Atherosclerosis 242(1), 29–36 (2015)CrossRefPubMed S.D. Lee, P. Tontonoz, Liver X receptors at the intersection of lipid metabolism and atherogenesis. Atherosclerosis 242(1), 29–36 (2015)CrossRefPubMed
47.
go back to reference B.A. Laffitte, L.C. Chao, J. Li, R. Walczak, S. Hummasti, S.B. Josephm, A. Castrillo, D.C. Wilpitz, D.J. Mangelsdorf, J.L. Collins, E. Saez, P. Tontonoz, Activation of liver X receptor improves glucose tolerance through coordinate regulation of glucose metabolism in liver and adipose tissue. Proc. Natl. Acad. Sci. USA 100(9), 5419–5424 (2003)CrossRefPubMedPubMedCentral B.A. Laffitte, L.C. Chao, J. Li, R. Walczak, S. Hummasti, S.B. Josephm, A. Castrillo, D.C. Wilpitz, D.J. Mangelsdorf, J.L. Collins, E. Saez, P. Tontonoz, Activation of liver X receptor improves glucose tolerance through coordinate regulation of glucose metabolism in liver and adipose tissue. Proc. Natl. Acad. Sci. USA 100(9), 5419–5424 (2003)CrossRefPubMedPubMedCentral
48.
go back to reference R. Kaplan, T. Zhang, M. Hernandez, R.X. Gan, S.D. Wright, M.G. Waters, T.Q. Cai, Regulation of the angiopoietin-like protein 3 gene by LXR. J. Lipid Res. 44(1), 136–143 (2003)CrossRefPubMed R. Kaplan, T. Zhang, M. Hernandez, R.X. Gan, S.D. Wright, M.G. Waters, T.Q. Cai, Regulation of the angiopoietin-like protein 3 gene by LXR. J. Lipid Res. 44(1), 136–143 (2003)CrossRefPubMed
49.
go back to reference T. Inaba, M. Matsuda, M. Shimamura, N. Takei, N. Terasaka, Y. Ando, H. Yasumo, R. Koishi, M. Makishima, I. Shimomura, Angiopoietin-like protein 3 mediates hypertriglyceridemia induced by the liver X receptor. J. Biol. Chem. 278(24), 21344–21351 (2003)CrossRefPubMed T. Inaba, M. Matsuda, M. Shimamura, N. Takei, N. Terasaka, Y. Ando, H. Yasumo, R. Koishi, M. Makishima, I. Shimomura, Angiopoietin-like protein 3 mediates hypertriglyceridemia induced by the liver X receptor. J. Biol. Chem. 278(24), 21344–21351 (2003)CrossRefPubMed
50.
go back to reference S.M. Choi, D.F. Tucker, D.N. Gross, R.M. Easton, L.M. DiPilato, A.S. Dean, B.R. Monks, M.J. Birnbaum, Insulin regulates adipocyte lipolysis via an Akt-independent signaling pathway. Mol. Cell Biol. 30(21), 5009–5020 (2010)CrossRefPubMedPubMedCentral S.M. Choi, D.F. Tucker, D.N. Gross, R.M. Easton, L.M. DiPilato, A.S. Dean, B.R. Monks, M.J. Birnbaum, Insulin regulates adipocyte lipolysis via an Akt-independent signaling pathway. Mol. Cell Biol. 30(21), 5009–5020 (2010)CrossRefPubMedPubMedCentral
51.
go back to reference M. Shimamura, M. Matsuda, S. Kobayashi, Y. Ando, M. Ono, R. Koishi, H. Furukawa, M. Makishima, I. Shimomura, Angiopoietin-like protein 3, a hepatic secretory factor, activates lipolysis in adipocytes. Biochem. Biophys. Res. Commun. 301(2), 604–609 (2003)CrossRefPubMed M. Shimamura, M. Matsuda, S. Kobayashi, Y. Ando, M. Ono, R. Koishi, H. Furukawa, M. Makishima, I. Shimomura, Angiopoietin-like protein 3, a hepatic secretory factor, activates lipolysis in adipocytes. Biochem. Biophys. Res. Commun. 301(2), 604–609 (2003)CrossRefPubMed
53.
go back to reference J.I. Pulai, R.J. Neuman, A.W. Groenewegen, J. Wu, G. Schonfeld, Genetic heterogeneity in familial hypobetalipoproteinemia: linkage and non-linkage to the apoB gene in Caucasian families. Am. J. Med. Genet. 76, 79–86 (1998)CrossRefPubMed J.I. Pulai, R.J. Neuman, A.W. Groenewegen, J. Wu, G. Schonfeld, Genetic heterogeneity in familial hypobetalipoproteinemia: linkage and non-linkage to the apoB gene in Caucasian families. Am. J. Med. Genet. 76, 79–86 (1998)CrossRefPubMed
54.
go back to reference V. Gusarova, C.A. Alexa, Y. Wang, A. Rafique, J.H. Kim, D. Buckler, I.J. Mintah, L.M. Shihanian, J.C. Cohen, H.H. Hobbs, Y. Xin, D.M. Valenzuela, A.J. Murphy, G.D. Yancopoulos, J. Gromada, ANGPTL3 blockade with a human monoclonal antibody reduces plasma lipids in dyslipidemic mice and monkeys. J. Lipid Res. 56(7), 1308–1317 (2015)CrossRefPubMed V. Gusarova, C.A. Alexa, Y. Wang, A. Rafique, J.H. Kim, D. Buckler, I.J. Mintah, L.M. Shihanian, J.C. Cohen, H.H. Hobbs, Y. Xin, D.M. Valenzuela, A.J. Murphy, G.D. Yancopoulos, J. Gromada, ANGPTL3 blockade with a human monoclonal antibody reduces plasma lipids in dyslipidemic mice and monkeys. J. Lipid Res. 56(7), 1308–1317 (2015)CrossRefPubMed
Metadata
Title
The role of ANGPTL3 in controlling lipoprotein metabolism
Authors
Anna Tikka
Matti Jauhiainen
Publication date
01-05-2016
Publisher
Springer US
Published in
Endocrine / Issue 2/2016
Print ISSN: 1355-008X
Electronic ISSN: 1559-0100
DOI
https://doi.org/10.1007/s12020-015-0838-9

Other articles of this Issue 2/2016

Endocrine 2/2016 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.