Skip to main content
Top
Published in: Cardiovascular Toxicology 2/2015

01-04-2015

Antithetical Regulation of α-Myosin Heavy Chain Between Fetal and Adult Heart Failure Though Shuttling of HDAC5 Regulating YY-1 Function

Authors: Jie Fang, Yifei Li, Kaiyu Zhou, Yimin Hua, Chuan Wang, Dezhi Mu

Published in: Cardiovascular Toxicology | Issue 2/2015

Login to get access

Abstract

Molecular switches of myosin isoforms are known to occur in various conditions. Here, we demonstrated the result from fetal heart failure and its potential mechanisms. Fetal and adult heart failure rat models were induced by injections of isoproterenol as previously described, and Go6976 was given to heart failing fetuses. Real-time PCR and Western blot were adopted to measure the expressions of α-MHC, β-MHC and YY-1. Co-immunoprecipitation was performed to analysis whether YY-1 interacts with HDAC5. Besides, histological immunofluorescence assessment was carried out to identify the location of HDAC5. α-MHC was recorded elevated in fetal heart failure which was decreased in adult heart failure. Besides, YY-1 was observed elevated both in fetal and adult failing hearts, but YY-1 could co-immunoprecipitation with HDAC5 only in adult hearts. Nuclear localization of HDAC5 was identified in adult cardiomyocytes, while cytoplasmic localization was identified in fetuses. After Go6976 supplied, HDAC5 shuttled into nucleuses interacted with YY-1. The myosin molecular switches were reversed with worsening cardiac functions and higher mortalities. Regulation of MHC in fetal heart failure was different from adult which provided a better compensation with increased α-MHC. This kind of transition was involved with shuttling of HDAC5 regulating YY-1 function.
Literature
1.
go back to reference Thakur, V., Fouron, J. C., Mertens, L., & Jaeggi, E. T. (2013). Diagnosis and management of fetal heart failure. Canadian Journal of Cardiology, 29, 759–767.CrossRefPubMed Thakur, V., Fouron, J. C., Mertens, L., & Jaeggi, E. T. (2013). Diagnosis and management of fetal heart failure. Canadian Journal of Cardiology, 29, 759–767.CrossRefPubMed
2.
go back to reference Zhou, K., Hua, Y., Zhu, Q., Liu, H., Yang, S., et al. (2011). Transplacental digoxin therapy for fetal tachyarrhythmia with multiple evaluation systems. Journal of Maternal-Fetal and Neonatal Medicine, 24, 1378–1383.CrossRefPubMed Zhou, K., Hua, Y., Zhu, Q., Liu, H., Yang, S., et al. (2011). Transplacental digoxin therapy for fetal tachyarrhythmia with multiple evaluation systems. Journal of Maternal-Fetal and Neonatal Medicine, 24, 1378–1383.CrossRefPubMed
3.
go back to reference Zhou, K., Zhou, R., Zhu, Q., Li, Y., Wang, C., et al. (2013). Evaluation of therapeutic effect and cytokine change during transplacental Digoxin treatment for fetal heart failure associated with fetal tachycardia, a case–control study. International Journal of Cardiology, 169, e62–e64.CrossRefPubMed Zhou, K., Zhou, R., Zhu, Q., Li, Y., Wang, C., et al. (2013). Evaluation of therapeutic effect and cytokine change during transplacental Digoxin treatment for fetal heart failure associated with fetal tachycardia, a case–control study. International Journal of Cardiology, 169, e62–e64.CrossRefPubMed
4.
go back to reference Zhou, K. Y., Hua, Y. M., & Zhu, Q. (2012). Transplacental digoxin therapy for fetal atrial flutter with hydrops fetalis. World Journal of Pediatrics, 8, 275–277.CrossRefPubMed Zhou, K. Y., Hua, Y. M., & Zhu, Q. (2012). Transplacental digoxin therapy for fetal atrial flutter with hydrops fetalis. World Journal of Pediatrics, 8, 275–277.CrossRefPubMed
5.
go back to reference Huhta, J. C. (2005). Fetal congestive heart failure. Seminars in Fetal and Neonatal Medicine, 10, 542–552.CrossRefPubMed Huhta, J. C. (2005). Fetal congestive heart failure. Seminars in Fetal and Neonatal Medicine, 10, 542–552.CrossRefPubMed
6.
go back to reference Huhta, J. C., & Paul, J. J. (2010). Doppler in fetal heart failure. Clinical Obstetrics and Gynecology, 53, 915–929.CrossRefPubMed Huhta, J. C., & Paul, J. J. (2010). Doppler in fetal heart failure. Clinical Obstetrics and Gynecology, 53, 915–929.CrossRefPubMed
7.
go back to reference James, J., Martin, L., Krenz, M., Quatman, C., Jones, F., et al. (2005). Forced expression of alpha-myosin heavy chain in the rabbit ventricle results in cardioprotection under cardiomyopathic conditions. Circulation, 111, 2339–2346.CrossRefPubMedCentralPubMed James, J., Martin, L., Krenz, M., Quatman, C., Jones, F., et al. (2005). Forced expression of alpha-myosin heavy chain in the rabbit ventricle results in cardioprotection under cardiomyopathic conditions. Circulation, 111, 2339–2346.CrossRefPubMedCentralPubMed
8.
go back to reference van Rooij, E., Sutherland, L. B., Qi, X., Richardson, J. A., Hill, J., et al. (2007). Control of stress-dependent cardiac growth and gene expression by a microRNA. Science, 316, 575–579.CrossRefPubMed van Rooij, E., Sutherland, L. B., Qi, X., Richardson, J. A., Hill, J., et al. (2007). Control of stress-dependent cardiac growth and gene expression by a microRNA. Science, 316, 575–579.CrossRefPubMed
9.
go back to reference Rajabi, M., Kassiotis, C., Razeghi, P., & Taegtmeyer, H. (2007). Return to the fetal gene program protects the stressed heart: A strong hypothesis. Heart Failure Reviews, 12, 331–343.CrossRefPubMed Rajabi, M., Kassiotis, C., Razeghi, P., & Taegtmeyer, H. (2007). Return to the fetal gene program protects the stressed heart: A strong hypothesis. Heart Failure Reviews, 12, 331–343.CrossRefPubMed
10.
go back to reference Taegtmeyer, H., Sen, S., & Vela, D. (2010). Return to the fetal gene program: A suggested metabolic link to gene expression in the heart. Annals of the New York Academy of Sciences, 1188, 191–198.CrossRefPubMedCentralPubMed Taegtmeyer, H., Sen, S., & Vela, D. (2010). Return to the fetal gene program: A suggested metabolic link to gene expression in the heart. Annals of the New York Academy of Sciences, 1188, 191–198.CrossRefPubMedCentralPubMed
11.
go back to reference Lowes, B. D., Minobe, W., Abraham, W. T., Rizeq, M. N., Bohlmeyer, T. J., et al. (1997). Changes in gene expression in the intact human heart. Downregulation of alpha-myosin heavy chain in hypertrophied, failing ventricular myocardium. Journal of Clinical Investigation, 100, 2315–2324.CrossRefPubMedCentralPubMed Lowes, B. D., Minobe, W., Abraham, W. T., Rizeq, M. N., Bohlmeyer, T. J., et al. (1997). Changes in gene expression in the intact human heart. Downregulation of alpha-myosin heavy chain in hypertrophied, failing ventricular myocardium. Journal of Clinical Investigation, 100, 2315–2324.CrossRefPubMedCentralPubMed
12.
go back to reference Miyata, S., Minobe, W., Bristow, M. R., & Leinwand, L. A. (2000). Myosin heavy chain isoform expression in the failing and nonfailing human heart. Circulation Research, 86, 386–390.CrossRefPubMed Miyata, S., Minobe, W., Bristow, M. R., & Leinwand, L. A. (2000). Myosin heavy chain isoform expression in the failing and nonfailing human heart. Circulation Research, 86, 386–390.CrossRefPubMed
13.
go back to reference Li, Y., Fang, J., Hua, Y., Wang, C., Mu, D., et al. (2014). The study of fetal rat model of intra-amniotic isoproterenol injection induced heart dysfunction and phenotypic switch of contractile proteins. BioMed Research International, 2014, 14.CrossRef Li, Y., Fang, J., Hua, Y., Wang, C., Mu, D., et al. (2014). The study of fetal rat model of intra-amniotic isoproterenol injection induced heart dysfunction and phenotypic switch of contractile proteins. BioMed Research International, 2014, 14.CrossRef
14.
go back to reference Akazawa, H., & Komuro, I. (2003). Roles of cardiac transcription factors in cardiac hypertrophy. Circulation Research, 92, 1079–1088.CrossRefPubMed Akazawa, H., & Komuro, I. (2003). Roles of cardiac transcription factors in cardiac hypertrophy. Circulation Research, 92, 1079–1088.CrossRefPubMed
15.
go back to reference Sucharov, C. C., Mariner, P., Long, C., Bristow, M., & Leinwand, L. (2003). Yin Yang 1 is increased in human heart failure and represses the activity of the human alpha-myosin heavy chain promoter. Journal of Biological Chemistry, 278, 31233–31239.CrossRefPubMed Sucharov, C. C., Mariner, P., Long, C., Bristow, M., & Leinwand, L. (2003). Yin Yang 1 is increased in human heart failure and represses the activity of the human alpha-myosin heavy chain promoter. Journal of Biological Chemistry, 278, 31233–31239.CrossRefPubMed
16.
go back to reference Sucharov, C. C., Langer, S., Bristow, M., & Leinwand, L. (2006). Shuttling of HDAC5 in H9C2 cells regulates YY1 function through CaMKIV/PKD and PP2A. American Journal of Physiology. Cell Physiology, 291, C1029–C1037.CrossRefPubMed Sucharov, C. C., Langer, S., Bristow, M., & Leinwand, L. (2006). Shuttling of HDAC5 in H9C2 cells regulates YY1 function through CaMKIV/PKD and PP2A. American Journal of Physiology. Cell Physiology, 291, C1029–C1037.CrossRefPubMed
17.
go back to reference Li, Y., Fang, J., Zhou, K., Wang, C., Mu, D., et al. (2014). Evaluation of oxidative stress in placenta of fetal cardiac dysfunction rat model and antioxidant defenses of maternal vitamin C supplementation with the impacts on P-glycoprotein. Journal of Obstetrics and Gynaecology Research, 40, 1632–1642.CrossRefPubMed Li, Y., Fang, J., Zhou, K., Wang, C., Mu, D., et al. (2014). Evaluation of oxidative stress in placenta of fetal cardiac dysfunction rat model and antioxidant defenses of maternal vitamin C supplementation with the impacts on P-glycoprotein. Journal of Obstetrics and Gynaecology Research, 40, 1632–1642.CrossRefPubMed
18.
go back to reference Li, Y., Hua, Y., & Zhou, K. (2014). P-glycoprotein makes no contribution to the lower transplacental transfer of digoxin under fetal heart failure, but who should be blamed for? European Journal of Obstetrics, Gynecology, and Reproductive Biology, 179, 256–257.CrossRefPubMed Li, Y., Hua, Y., & Zhou, K. (2014). P-glycoprotein makes no contribution to the lower transplacental transfer of digoxin under fetal heart failure, but who should be blamed for? European Journal of Obstetrics, Gynecology, and Reproductive Biology, 179, 256–257.CrossRefPubMed
19.
go back to reference Chung, R., Foster, B. K., & Xian, C. J. (2013). Inhibition of protein kinase-D promotes cartilage repair at injured growth plate in rats. Injury, 44, 914–922.CrossRefPubMed Chung, R., Foster, B. K., & Xian, C. J. (2013). Inhibition of protein kinase-D promotes cartilage repair at injured growth plate in rats. Injury, 44, 914–922.CrossRefPubMed
20.
go back to reference Feng, W., & Li, W. (2010). The study of ISO induced heart failure rat model. Experimental and Molecular Pathology, 88, 299–304.CrossRefPubMed Feng, W., & Li, W. (2010). The study of ISO induced heart failure rat model. Experimental and Molecular Pathology, 88, 299–304.CrossRefPubMed
21.
go back to reference Mueller, X., Stauffer, J. C., Jaussi, A., Goy, J. J., & Kappenberger, L. (1991). Subjective visual echocardiographic estimate of left ventricular ejection fraction as an alternative to conventional echocardiographic methods: comparison with contrast angiography. Clinical Cardiology, 14, 898–902.CrossRefPubMed Mueller, X., Stauffer, J. C., Jaussi, A., Goy, J. J., & Kappenberger, L. (1991). Subjective visual echocardiographic estimate of left ventricular ejection fraction as an alternative to conventional echocardiographic methods: comparison with contrast angiography. Clinical Cardiology, 14, 898–902.CrossRefPubMed
22.
go back to reference Kleinman, C. S., & Nehgme, R. A. (2004). Cardiac arrhythmias in the human fetus. Pediatric Cardiology, 25, 234–251.CrossRefPubMed Kleinman, C. S., & Nehgme, R. A. (2004). Cardiac arrhythmias in the human fetus. Pediatric Cardiology, 25, 234–251.CrossRefPubMed
23.
go back to reference Krenz, M., & Robbins, J. (2004). Impact of beta-myosin heavy chain expression on cardiac function during stress. Journal of the American College of Cardiology, 44, 2390–2397.CrossRefPubMed Krenz, M., & Robbins, J. (2004). Impact of beta-myosin heavy chain expression on cardiac function during stress. Journal of the American College of Cardiology, 44, 2390–2397.CrossRefPubMed
24.
go back to reference Lowes, B. D., Gilbert, E. M., Abraham, W. T., Minobe, W. A., Larrabee, P., et al. (2002). Myocardial gene expression in dilated cardiomyopathy treated with beta-blocking agents. New England Journal of Medicine, 346, 1357–1365.CrossRefPubMed Lowes, B. D., Gilbert, E. M., Abraham, W. T., Minobe, W. A., Larrabee, P., et al. (2002). Myocardial gene expression in dilated cardiomyopathy treated with beta-blocking agents. New England Journal of Medicine, 346, 1357–1365.CrossRefPubMed
25.
go back to reference Bushmeyer, S., Park, K., & Atchison, M. L. (1995). Characterization of functional domains within the multifunctional transcription factor, YY1. Journal of Biological Chemistry, 270, 30213–30220.CrossRefPubMed Bushmeyer, S., Park, K., & Atchison, M. L. (1995). Characterization of functional domains within the multifunctional transcription factor, YY1. Journal of Biological Chemistry, 270, 30213–30220.CrossRefPubMed
26.
go back to reference Lee, J. S., See, R. H., Galvin, K. M., Wang, J., & Shi, Y. (1995). Functional interactions between YY1 and adenovirus E1A. Nucleic Acids Research, 23, 925–931.CrossRefPubMedCentralPubMed Lee, J. S., See, R. H., Galvin, K. M., Wang, J., & Shi, Y. (1995). Functional interactions between YY1 and adenovirus E1A. Nucleic Acids Research, 23, 925–931.CrossRefPubMedCentralPubMed
27.
go back to reference Bushmeyer, S. M., & Atchison, M. L. (1998). Identification of YY1 sequences necessary for association with the nuclear matrix and for transcriptional repression functions. Journal of Cellular Biochemistry, 68, 484–499.CrossRefPubMed Bushmeyer, S. M., & Atchison, M. L. (1998). Identification of YY1 sequences necessary for association with the nuclear matrix and for transcriptional repression functions. Journal of Cellular Biochemistry, 68, 484–499.CrossRefPubMed
28.
go back to reference Lewis, B. A., Tullis, G., Seto, E., Horikoshi, N., Weinmann, R., et al. (1995). Adenovirus E1A proteins interact with the cellular YY1 transcription factor. Journal of Virology, 69, 1628–1636.PubMedCentralPubMed Lewis, B. A., Tullis, G., Seto, E., Horikoshi, N., Weinmann, R., et al. (1995). Adenovirus E1A proteins interact with the cellular YY1 transcription factor. Journal of Virology, 69, 1628–1636.PubMedCentralPubMed
29.
go back to reference Yao, Y. L., Yang, W. M., & Seto, E. (2001). Regulation of transcription factor YY1 by acetylation and deacetylation. Molecular and Cellular Biology, 21, 5979–5991.CrossRefPubMedCentralPubMed Yao, Y. L., Yang, W. M., & Seto, E. (2001). Regulation of transcription factor YY1 by acetylation and deacetylation. Molecular and Cellular Biology, 21, 5979–5991.CrossRefPubMedCentralPubMed
30.
go back to reference Sucharov, C. C., Mariner, P. D., Nunley, K. R., Long, C., Leinwand, L., et al. (2006). A beta1-adrenergic receptor CaM kinase II-dependent pathway mediates cardiac myocyte fetal gene induction. American Journal of Physiology Heart and Circulatory Physiology, 291, H1299–H1308.CrossRefPubMed Sucharov, C. C., Mariner, P. D., Nunley, K. R., Long, C., Leinwand, L., et al. (2006). A beta1-adrenergic receptor CaM kinase II-dependent pathway mediates cardiac myocyte fetal gene induction. American Journal of Physiology Heart and Circulatory Physiology, 291, H1299–H1308.CrossRefPubMed
31.
go back to reference Mariner, P. D., Luckey, S. W., Long, C. S., Sucharov, C. C., & Leinwand, L. A. (2005). Yin Yang 1 represses alpha-myosin heavy chain gene expression in pathologic cardiac hypertrophy. Biochemical and Biophysical Research Communications, 326, 79–86.CrossRefPubMed Mariner, P. D., Luckey, S. W., Long, C. S., Sucharov, C. C., & Leinwand, L. A. (2005). Yin Yang 1 represses alpha-myosin heavy chain gene expression in pathologic cardiac hypertrophy. Biochemical and Biophysical Research Communications, 326, 79–86.CrossRefPubMed
32.
go back to reference Hang, C. T., Yang, J., Han, P., Cheng, H. L., Shang, C., et al. (2010). Chromatin regulation by Brg1 underlies heart muscle development and disease. Nature, 466, 62–67.CrossRefPubMedCentralPubMed Hang, C. T., Yang, J., Han, P., Cheng, H. L., Shang, C., et al. (2010). Chromatin regulation by Brg1 underlies heart muscle development and disease. Nature, 466, 62–67.CrossRefPubMedCentralPubMed
33.
go back to reference McCain, M. L., Sheehy, S. P., Grosberg, A., Goss, J. A., & Parker, K. K. (2013). Recapitulating maladaptive, multiscale remodeling of failing myocardium on a chip. Proceedings of the National Academy of Sciences USA, 110, 9770–9775.CrossRef McCain, M. L., Sheehy, S. P., Grosberg, A., Goss, J. A., & Parker, K. K. (2013). Recapitulating maladaptive, multiscale remodeling of failing myocardium on a chip. Proceedings of the National Academy of Sciences USA, 110, 9770–9775.CrossRef
Metadata
Title
Antithetical Regulation of α-Myosin Heavy Chain Between Fetal and Adult Heart Failure Though Shuttling of HDAC5 Regulating YY-1 Function
Authors
Jie Fang
Yifei Li
Kaiyu Zhou
Yimin Hua
Chuan Wang
Dezhi Mu
Publication date
01-04-2015
Publisher
Springer US
Published in
Cardiovascular Toxicology / Issue 2/2015
Print ISSN: 1530-7905
Electronic ISSN: 1559-0259
DOI
https://doi.org/10.1007/s12012-014-9277-8

Other articles of this Issue 2/2015

Cardiovascular Toxicology 2/2015 Go to the issue