Skip to main content
Top
Published in: Cardiovascular Toxicology 2/2015

01-04-2015

Creatine Supplementation Reduces Doxorubicin-Induced Cardiomyocellular Injury

Authors: Lucia Santacruz, Marcus D. Darrabie, Jose Gabriel Mantilla, Rajashree Mishra, Bryan J. Feger, Danny O. Jacobs

Published in: Cardiovascular Toxicology | Issue 2/2015

Login to get access

Abstract

Heart failure is a common complication of doxorubicin (DOX) therapy. Previous studies have shown that DOX adversely impacts cardiac energy metabolism, and the ensuing energy deficiencies antedate clinical manifestations of cardiac toxicity. Brief exposure of cultured cardiomyocytes to DOX significantly decreases creatine transport, which is the cell’s sole source of creatine. We present the results of a study performed to determine if physiological creatine supplementation (5 mmol/L) could protect cardiomyocytes in culture from cellular injury resulting from exposure to therapeutic levels of DOX. Creatine supplementation significantly decreased cytotoxicity, apoptosis, and reactive oxygen species production caused by DOX. The protective effect was specific to creatine and depended on its transport into the cell.
Literature
1.
go back to reference Lipshultz, S. E., Colan, S. D., Gelber, R. D., Perez-Atayde, A. R., Sallan, S. E., & Sanders, S. P. (1991). Late cardiac effects of doxorubicin therapy for acute lymphoblastic leukemia in childhood. New England Journal of Medicine, 324, 808–815.CrossRefPubMed Lipshultz, S. E., Colan, S. D., Gelber, R. D., Perez-Atayde, A. R., Sallan, S. E., & Sanders, S. P. (1991). Late cardiac effects of doxorubicin therapy for acute lymphoblastic leukemia in childhood. New England Journal of Medicine, 324, 808–815.CrossRefPubMed
2.
go back to reference Tokarska-Schlattner, M., Zaugg, M., Zuppinger, C., Wallimann, T., & Schlattner, U. (2006). New insights into doxorubicin-induced cardiotoxicity: The critical role of cellular energetics. Journal of Molecular and Cellular Cardiology, 41, 389–405.CrossRefPubMed Tokarska-Schlattner, M., Zaugg, M., Zuppinger, C., Wallimann, T., & Schlattner, U. (2006). New insights into doxorubicin-induced cardiotoxicity: The critical role of cellular energetics. Journal of Molecular and Cellular Cardiology, 41, 389–405.CrossRefPubMed
3.
go back to reference Tokarska-Schlattner, M., Wallimann, T., & Schlattner, U. (2006). Alterations in myocardial energy metabolism induced by the anti-cancer drug doxorubicin. Comptes Rendus Biologies, 329, 657–668.CrossRefPubMed Tokarska-Schlattner, M., Wallimann, T., & Schlattner, U. (2006). Alterations in myocardial energy metabolism induced by the anti-cancer drug doxorubicin. Comptes Rendus Biologies, 329, 657–668.CrossRefPubMed
4.
go back to reference Maslov, M., Chacko, V., Hirsch, G., Akki, A., Leppo, M., Steenbergen, C., et al. (2010). Reduced in vivo high-energy phosphates precede adriamycin-induced cardiac dysfunction. American Journal of Physiology Heart and Circulatory Physiology, 299, H332–H337.CrossRefPubMedCentralPubMed Maslov, M., Chacko, V., Hirsch, G., Akki, A., Leppo, M., Steenbergen, C., et al. (2010). Reduced in vivo high-energy phosphates precede adriamycin-induced cardiac dysfunction. American Journal of Physiology Heart and Circulatory Physiology, 299, H332–H337.CrossRefPubMedCentralPubMed
5.
go back to reference Wyss, M., & Kaddurah-Daouk, R. (2000). Creatine and creatinine metabolism. Physiological Reviews, 80, 1107–1213.PubMed Wyss, M., & Kaddurah-Daouk, R. (2000). Creatine and creatinine metabolism. Physiological Reviews, 80, 1107–1213.PubMed
6.
go back to reference Ohhara, H., Kanaide, H., & Nakamura, M. (1981). A protective effect of coenzyme Q10 on the adriamycin-induced cardiotoxicity in the isolated perfused rat heart. Journal of Molecular and Cellular Cardiology, 13, 741–752.CrossRefPubMed Ohhara, H., Kanaide, H., & Nakamura, M. (1981). A protective effect of coenzyme Q10 on the adriamycin-induced cardiotoxicity in the isolated perfused rat heart. Journal of Molecular and Cellular Cardiology, 13, 741–752.CrossRefPubMed
7.
go back to reference Seraydarian, M. W., Artaza, L., & Goodman, M. F. (1977). Adriamycin: Effect on mammalian cardiac cells in culture. I. Cell population and energy metabolism. Journal of Molecular and Cellular Cardiology, 9, 375–382.CrossRefPubMed Seraydarian, M. W., Artaza, L., & Goodman, M. F. (1977). Adriamycin: Effect on mammalian cardiac cells in culture. I. Cell population and energy metabolism. Journal of Molecular and Cellular Cardiology, 9, 375–382.CrossRefPubMed
8.
go back to reference Neubauer, S. (2007). The failing heart—an engine out of fuel. New England Journal of Medicine, 356, 1140–1151.CrossRefPubMed Neubauer, S. (2007). The failing heart—an engine out of fuel. New England Journal of Medicine, 356, 1140–1151.CrossRefPubMed
10.
go back to reference Neubauer, S., Horn, M., Cramer, M., Harre, K., Newell, J. B., Peters, W., et al. (1997). Myocardial phosphocreatine-to-ATP ratio is a predictor of mortality in patients with dilated cardiomyopathy. Circulation, 96, 2190–2196.CrossRefPubMed Neubauer, S., Horn, M., Cramer, M., Harre, K., Newell, J. B., Peters, W., et al. (1997). Myocardial phosphocreatine-to-ATP ratio is a predictor of mortality in patients with dilated cardiomyopathy. Circulation, 96, 2190–2196.CrossRefPubMed
11.
go back to reference Nash, S., Giros, B., Kingsmore, S., Rochelle, J., Suter, S., Gregor, P., et al. (1994). Cloning, pharmacological characterization, and genomic localization of the human creatine transporter. Receptors and Channels, 2, 165–174.PubMed Nash, S., Giros, B., Kingsmore, S., Rochelle, J., Suter, S., Gregor, P., et al. (1994). Cloning, pharmacological characterization, and genomic localization of the human creatine transporter. Receptors and Channels, 2, 165–174.PubMed
12.
go back to reference Darrabie, M. D., Arciniegas, A. J., Mishra, R., Bowles, D. E., Jacobs, D. O., & Santacruz, L. (2011). AMPK and substrate availability regulate creatine transport in cultured cardiomyocytes. American Journal of Physiology-Endocrinology and Metabolism, 300, E870–E876.CrossRefPubMed Darrabie, M. D., Arciniegas, A. J., Mishra, R., Bowles, D. E., Jacobs, D. O., & Santacruz, L. (2011). AMPK and substrate availability regulate creatine transport in cultured cardiomyocytes. American Journal of Physiology-Endocrinology and Metabolism, 300, E870–E876.CrossRefPubMed
13.
go back to reference Darrabie, M. D., Zhao, Z. F., Goers, L., Santacruz-Toloza, L., Toloza, E. M., & Jacobs, D. O. (2007). Creatine transport is modulated by PKC and PPI/PP2A. Biophysical Journal, 92, 63a. Darrabie, M. D., Zhao, Z. F., Goers, L., Santacruz-Toloza, L., Toloza, E. M., & Jacobs, D. O. (2007). Creatine transport is modulated by PKC and PPI/PP2A. Biophysical Journal, 92, 63a.
14.
go back to reference Neubauer, S., Remkes, H., Spindler, M., Horn, M., Wiesmann, F., Prestle, J., et al. (1999). Downregulation of the Na(+)-creatine cotransporter in failing human myocardium and in experimental heart failure. Circulation, 100, 1847–1850.CrossRefPubMed Neubauer, S., Remkes, H., Spindler, M., Horn, M., Wiesmann, F., Prestle, J., et al. (1999). Downregulation of the Na(+)-creatine cotransporter in failing human myocardium and in experimental heart failure. Circulation, 100, 1847–1850.CrossRefPubMed
15.
go back to reference Ten Hove, M., Chan, S., Lygate, C., Monfared, M., Boehm, E., Hulbert, K., et al. (2005). Mechanisms of creatine depletion in chronically failing rat heart. Journal of Molecular and Cellular Cardiology, 38, 309–313.CrossRefPubMed Ten Hove, M., Chan, S., Lygate, C., Monfared, M., Boehm, E., Hulbert, K., et al. (2005). Mechanisms of creatine depletion in chronically failing rat heart. Journal of Molecular and Cellular Cardiology, 38, 309–313.CrossRefPubMed
16.
go back to reference Darrabie, M. D., Arciniegas, A. J., Mantilla, J. G., Mishra, R., Pinilla Vera, M., Santacruz, L. & Jacobs, D. O. (2012). Exposing cardiomyocytes to subclinical concentrations of doxorubicin rapidly reduces their creatine transport. American Journal of Physiology-Heart and Circulatory Physiology. Darrabie, M. D., Arciniegas, A. J., Mantilla, J. G., Mishra, R., Pinilla Vera, M., Santacruz, L. & Jacobs, D. O. (2012). Exposing cardiomyocytes to subclinical concentrations of doxorubicin rapidly reduces their creatine transport. American Journal of Physiology-Heart and Circulatory Physiology.
17.
go back to reference Greene, R. F., Collins, J. M., Jenkins, J. F., Speyer, J. L., & Myers, C. E. (1983). Plasma pharmacokinetics of adriamycin and adriamycinol: Implications for the design of in vitro experiments and treatment protocols. Cancer Research, 43, 3417–3421.PubMed Greene, R. F., Collins, J. M., Jenkins, J. F., Speyer, J. L., & Myers, C. E. (1983). Plasma pharmacokinetics of adriamycin and adriamycinol: Implications for the design of in vitro experiments and treatment protocols. Cancer Research, 43, 3417–3421.PubMed
18.
go back to reference White, S. M., Constantin, P. E., & Claycomb, W. C. (2004). Cardiac physiology at the cellular level: use of cultured HL-1 cardiomyocytes for studies of cardiac muscle cell structure and function. American Journal of Physiology Heart and Circulatory Physiology, 286, H823–H829.CrossRefPubMed White, S. M., Constantin, P. E., & Claycomb, W. C. (2004). Cardiac physiology at the cellular level: use of cultured HL-1 cardiomyocytes for studies of cardiac muscle cell structure and function. American Journal of Physiology Heart and Circulatory Physiology, 286, H823–H829.CrossRefPubMed
19.
go back to reference Persky, A. M., Muller, M., Derendorf, H., Grant, M., Brazeau, G. A., & Hochhaus, G. (2003). Single- and multiple-dose pharmacokinetics of oral creatine. Journal of Clinical Pharmacology, 43, 29–37.CrossRefPubMed Persky, A. M., Muller, M., Derendorf, H., Grant, M., Brazeau, G. A., & Hochhaus, G. (2003). Single- and multiple-dose pharmacokinetics of oral creatine. Journal of Clinical Pharmacology, 43, 29–37.CrossRefPubMed
20.
go back to reference Sartini, S., Sestili, P., Colombo, E., Martinelli, C., Bartolini, F., Ciuffoli, S., et al. (2012). Creatine affects in vitro electrophysiological maturation of neuroblasts and protects them from oxidative stress. Journal of Neuroscience Research, 90, 435–446.CrossRefPubMed Sartini, S., Sestili, P., Colombo, E., Martinelli, C., Bartolini, F., Ciuffoli, S., et al. (2012). Creatine affects in vitro electrophysiological maturation of neuroblasts and protects them from oxidative stress. Journal of Neuroscience Research, 90, 435–446.CrossRefPubMed
21.
go back to reference Gewirtz, D. A. (1999). A critical evaluation of the mechanisms of action proposed for the antitumor effects of the anthracycline antibiotics adriamycin and daunorubicin. Biochemical Pharmacology, 57, 727–741.CrossRefPubMed Gewirtz, D. A. (1999). A critical evaluation of the mechanisms of action proposed for the antitumor effects of the anthracycline antibiotics adriamycin and daunorubicin. Biochemical Pharmacology, 57, 727–741.CrossRefPubMed
22.
go back to reference Minotti, G., Menna, P., Salvatorelli, E., Cairo, G., & Gianni, L. (2004). Anthracyclines: Molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity. Pharmacological Reviews, 56, 185–229.CrossRefPubMed Minotti, G., Menna, P., Salvatorelli, E., Cairo, G., & Gianni, L. (2004). Anthracyclines: Molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity. Pharmacological Reviews, 56, 185–229.CrossRefPubMed
23.
go back to reference Berthiaume, J. M., & Wallace, K. B. (2007). Persistent alterations to the gene expression profile of the heart subsequent to chronic Doxorubicin treatment. Cardiovascular Toxicology, 7, 178–191.CrossRefPubMed Berthiaume, J. M., & Wallace, K. B. (2007). Persistent alterations to the gene expression profile of the heart subsequent to chronic Doxorubicin treatment. Cardiovascular Toxicology, 7, 178–191.CrossRefPubMed
24.
go back to reference Berthiaume, J. M., & Wallace, K. B. (2007). Adriamycin-induced oxidative mitochondrial cardiotoxicity. Cell Biology and Toxicology, 23, 15–25.CrossRefPubMed Berthiaume, J. M., & Wallace, K. B. (2007). Adriamycin-induced oxidative mitochondrial cardiotoxicity. Cell Biology and Toxicology, 23, 15–25.CrossRefPubMed
25.
go back to reference Tokarska-Schlattner, M., Zaugg, M., da Silva, R., Lucchinetti, E., Schaub, M. C., Wallimann, T., et al. (2005). Acute toxicity of doxorubicin on isolated perfused heart: response of kinases regulating energy supply. American Journal of Physiology Heart and Circulatory Physiology, 289, H37–H47.CrossRefPubMed Tokarska-Schlattner, M., Zaugg, M., da Silva, R., Lucchinetti, E., Schaub, M. C., Wallimann, T., et al. (2005). Acute toxicity of doxorubicin on isolated perfused heart: response of kinases regulating energy supply. American Journal of Physiology Heart and Circulatory Physiology, 289, H37–H47.CrossRefPubMed
26.
go back to reference Gupta, A., Rohlfsen, C., Leppo, M. K., Chacko, V. P., Wang, Y., Steenbergen, C., et al. (2013). Creatine kinase-overexpression improves myocardial energetics, contractile dysfunction and survival in murine doxorubicin cardiotoxicity. PLoS One, 8, e74675.CrossRefPubMedCentralPubMed Gupta, A., Rohlfsen, C., Leppo, M. K., Chacko, V. P., Wang, Y., Steenbergen, C., et al. (2013). Creatine kinase-overexpression improves myocardial energetics, contractile dysfunction and survival in murine doxorubicin cardiotoxicity. PLoS One, 8, e74675.CrossRefPubMedCentralPubMed
27.
go back to reference Tokarska-Schlattner, M., Dolder, M., Gerber, I., Speer, O., Wallimann, T., & Schlattner, U. (2007). Reduced creatine-stimulated respiration in doxorubicin challenged mitochondria: Particular sensitivity of the heart. Biochimica et Biophysica Acta, 1767, 1276–1284.CrossRefPubMed Tokarska-Schlattner, M., Dolder, M., Gerber, I., Speer, O., Wallimann, T., & Schlattner, U. (2007). Reduced creatine-stimulated respiration in doxorubicin challenged mitochondria: Particular sensitivity of the heart. Biochimica et Biophysica Acta, 1767, 1276–1284.CrossRefPubMed
28.
go back to reference Darrabie, M. D., Arciniegas, A. J. L., Mishra, R., Bowles, D. E., Jacobs, D. O., & Santacruz, L. (2011). AMPK and substrate availability regulate creatine transport in cultured cardiomyocytes. American Journal of Physiology-Endocrinology and Metabolism, 300, E870–E876.CrossRefPubMed Darrabie, M. D., Arciniegas, A. J. L., Mishra, R., Bowles, D. E., Jacobs, D. O., & Santacruz, L. (2011). AMPK and substrate availability regulate creatine transport in cultured cardiomyocytes. American Journal of Physiology-Endocrinology and Metabolism, 300, E870–E876.CrossRefPubMed
29.
go back to reference Prass, K., Royl, G., Lindauer, U., Freyer, D., Megow, D., Dirnagl, U., et al. (2007). Improved reperfusion and neuroprotection by creatine in a mouse model of stroke. Journal of Cerebral Blood Flow and Metabolism, 27, 452–459.CrossRefPubMed Prass, K., Royl, G., Lindauer, U., Freyer, D., Megow, D., Dirnagl, U., et al. (2007). Improved reperfusion and neuroprotection by creatine in a mouse model of stroke. Journal of Cerebral Blood Flow and Metabolism, 27, 452–459.CrossRefPubMed
30.
go back to reference Sestili, P., Martinelli, C., Bravi, G., Piccoli, G., Curci, R., Battistelli, M., et al. (2006). Creatine supplementation affords cytoprotection in oxidatively injured cultured mammalian cells via direct antioxidant activity. Free Radical Biology & Medicine, 40, 837–849.CrossRef Sestili, P., Martinelli, C., Bravi, G., Piccoli, G., Curci, R., Battistelli, M., et al. (2006). Creatine supplementation affords cytoprotection in oxidatively injured cultured mammalian cells via direct antioxidant activity. Free Radical Biology & Medicine, 40, 837–849.CrossRef
31.
go back to reference Sestili, P., Martinelli, C., Colombo, E., Barbieri, E., Potenza, L., Sartini, S., et al. (2011). Creatine as an antioxidant. Amino Acids, 40, 1385–1396.CrossRefPubMed Sestili, P., Martinelli, C., Colombo, E., Barbieri, E., Potenza, L., Sartini, S., et al. (2011). Creatine as an antioxidant. Amino Acids, 40, 1385–1396.CrossRefPubMed
32.
go back to reference Sestili, P., Barbieri, E., Martinelli, C., Battistelli, M., Guescini, M., Vallorani, L., et al. (2009). Creatine supplementation prevents the inhibition of myogenic differentiation in oxidatively injured C2C12 murine myoblasts. Molecular Nutrition & Food Research, 53, 1187–1204.CrossRef Sestili, P., Barbieri, E., Martinelli, C., Battistelli, M., Guescini, M., Vallorani, L., et al. (2009). Creatine supplementation prevents the inhibition of myogenic differentiation in oxidatively injured C2C12 murine myoblasts. Molecular Nutrition & Food Research, 53, 1187–1204.CrossRef
33.
go back to reference Zhu, S., Li, M., Figueroa, B. E., Liu, A., Stavrovskaya, I. G., Pasinelli, P., et al. (2004). Prophylactic creatine administration mediates neuroprotection in cerebral ischemia in mice. Journal of Neuroscience, 24, 5909–5912.CrossRefPubMed Zhu, S., Li, M., Figueroa, B. E., Liu, A., Stavrovskaya, I. G., Pasinelli, P., et al. (2004). Prophylactic creatine administration mediates neuroprotection in cerebral ischemia in mice. Journal of Neuroscience, 24, 5909–5912.CrossRefPubMed
34.
go back to reference Perasso, L., Spallarossa, P., Gandolfo, C., Ruggeri, P., & Balestrino, M. (2013). Therapeutic use of creatine in brain or heart ischemia: available data and future perspectives. Medicinal Research Reviews, 33, 336–363.CrossRefPubMed Perasso, L., Spallarossa, P., Gandolfo, C., Ruggeri, P., & Balestrino, M. (2013). Therapeutic use of creatine in brain or heart ischemia: available data and future perspectives. Medicinal Research Reviews, 33, 336–363.CrossRefPubMed
35.
go back to reference Dedeoglu, A., Kubilus, J. K., Yang, L., Ferrante, K. L., Hersch, S. M., Beal, M. F., et al. (2003). Creatine therapy provides neuroprotection after onset of clinical symptoms in Huntington’s disease transgenic mice. Journal of Neurochemistry, 85, 1359–1367.CrossRefPubMedCentralPubMed Dedeoglu, A., Kubilus, J. K., Yang, L., Ferrante, K. L., Hersch, S. M., Beal, M. F., et al. (2003). Creatine therapy provides neuroprotection after onset of clinical symptoms in Huntington’s disease transgenic mice. Journal of Neurochemistry, 85, 1359–1367.CrossRefPubMedCentralPubMed
36.
go back to reference Lygate, C. A., Bohl, S., ten Hove, M., Faller, K. M., Ostrowski, P. J., Zervou, S., et al. (2012). Moderate elevation of intracellular creatine by targeting the creatine transporter protects mice from acute myocardial infarction. Cardiovascular Research, 96, 466–475.CrossRefPubMedCentralPubMed Lygate, C. A., Bohl, S., ten Hove, M., Faller, K. M., Ostrowski, P. J., Zervou, S., et al. (2012). Moderate elevation of intracellular creatine by targeting the creatine transporter protects mice from acute myocardial infarction. Cardiovascular Research, 96, 466–475.CrossRefPubMedCentralPubMed
37.
go back to reference Saks, V., Kuznetsov, A. V., Gonzalez-Granillo, M., Tepp, K., Timohhina, N., Karu-Varikmaa, M., et al. (2012). Intracellular energetic units regulate metabolism in cardiac cells. Journal of Molecular and Cellular Cardiology, 52, 419–436.CrossRefPubMed Saks, V., Kuznetsov, A. V., Gonzalez-Granillo, M., Tepp, K., Timohhina, N., Karu-Varikmaa, M., et al. (2012). Intracellular energetic units regulate metabolism in cardiac cells. Journal of Molecular and Cellular Cardiology, 52, 419–436.CrossRefPubMed
38.
go back to reference Couture, L., Nash, J. A., & Turgeon, J. (2006). The ATP-binding cassette transporters and their implication in drug disposition: A special look at the heart. Pharmacological Reviews, 58, 244–258.CrossRefPubMed Couture, L., Nash, J. A., & Turgeon, J. (2006). The ATP-binding cassette transporters and their implication in drug disposition: A special look at the heart. Pharmacological Reviews, 58, 244–258.CrossRefPubMed
39.
go back to reference Olson, R. D., Mushlin, P. S., Brenner, D. E., Fleischer, S., Cusack, B. J., Chang, B. K., et al. (1988). Doxorubicin cardiotoxicity may be caused by its metabolite, doxorubicinol. Proceedings of the National Academy of Sciences of the United States of America, 85, 3585–3589.CrossRefPubMedCentralPubMed Olson, R. D., Mushlin, P. S., Brenner, D. E., Fleischer, S., Cusack, B. J., Chang, B. K., et al. (1988). Doxorubicin cardiotoxicity may be caused by its metabolite, doxorubicinol. Proceedings of the National Academy of Sciences of the United States of America, 85, 3585–3589.CrossRefPubMedCentralPubMed
Metadata
Title
Creatine Supplementation Reduces Doxorubicin-Induced Cardiomyocellular Injury
Authors
Lucia Santacruz
Marcus D. Darrabie
Jose Gabriel Mantilla
Rajashree Mishra
Bryan J. Feger
Danny O. Jacobs
Publication date
01-04-2015
Publisher
Springer US
Published in
Cardiovascular Toxicology / Issue 2/2015
Print ISSN: 1530-7905
Electronic ISSN: 1559-0259
DOI
https://doi.org/10.1007/s12012-014-9283-x

Other articles of this Issue 2/2015

Cardiovascular Toxicology 2/2015 Go to the issue